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Abstract

We extend answer set semantics to deal with inconsistent programs (containing classical negation),
by finding a “best” answer set. Within the context of inconsistent programs, it is natural to have a
partial order on rules, representing a preference for satisfying certain rules, possibly at the cost of
violating less important ones. We show that such a rule orderinduces a natural order on extended
answer sets, the minimal elements of which we call preferredanswer sets. We characterize the ex-
pressiveness of the resulting semantics and show that it cansimulate negation as failure, disjunction
and some other formalisms such as logic programs with ordered disjunction. The approach is shown
to be useful in several application areas, e.g. repairing database, where minimal repairs correspond
to preferred answer sets.

To appear in Theory and Practice of Logic Programming (TPLP).

KEYWORDS: nonmonotonic reasoning, knowledge representation,answer set programming, prefer-
ence

1 Introduction

The intuition behind the stable model semantics (Gelfond and Lifschitz 1988), and, more
generally, behind answer set semantics (Gelfond and Lifschitz 1991) for (extended) logic
programs is both intuitive and elegant. Given a programP and a candidate answer setM ,
one computes a reduct programPM of a simpler type for which a semanticsP ⋆

M is known.
The reductPM is obtained fromP by taking into account the consequences of accepting
the proposed truth values of the literals inM . The candidate setM is then an answer set
just whenP ⋆

M = M , i.e.M is “self-supporting”.
In this paper, we apply this reduction technique to deal withinconsistent programs, e.g.

programs with (only) classical negation (denoted as¬) where the immediate consequence
operator would yield inconsistent interpretations. For example, computing the least fixpoint
of the program{a ← , b ← , ¬a ← b}, where negative literals¬a are considered as
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fresh atoms, yields the inconsistent{a, b,¬a}. To prevent this, we will allow for a rule
to be defeated by an opposing rule w.r.t. an interpretation.In the example,{a, b} will be
accepted because the rule¬a ← b is defeated by the rulea ← . The definition of answer
set remains the same (see, e.g., (Lifschitz 2002)), but the reduct is restricted to rules that
are not defeated. We show that theextended answer set semanticsthus obtained can be
simulated by an extended logic programE(P ) that is trivially constructed from the original
programP .

The above technique can be generalized toordered programswhere a partial order, rep-
resenting preference or specificity, is defined on the rules of a program. E.g. one may prefer
certain “constraint” rules to be satisfied, possibly at the expense of defeating less important
“optional” or “default” rules. We show that such a preference structure on the rules induces
a natural partial order on the reducts of the program, and hence on its candidate (extended)
answer sets. Minimal elements in this induced partial orderare calledpreferred answer
sets.

Intuitively, an answer setM1 is preferred over an answer setM2 if any rule r2 that is
satisfied byM2 but not byM1, is “countered” by a more preferred (thanr2) rule r1 that
is satisfied byM1 but not byM2. In other words, with preferred answer sets, one tries
to maximize rule satisfaction, taking into account the relative “priority” of the rules. The
approach has some immediate applications in e.g. diagnostic systems, as illustrated in the
example below.

Example 1

Consider the problem of diagnosing a simple system where thelight fails to come on. The
normal operation of the system is described using the rulesr1, r2 andr3.

r1 light ← power , bulb

r2 power ←

r3 bulb ←

which, by themselves, yieldlight . The fault model is given by the following rules (r4 and
r5), which indicate that the power may fail and the bulb may be broken.

r4 ¬power ←

r5 ¬bulb ←

Finally, the observation that something is wrong is encodedby the constraint-like ruler6,
i.e. a rule that can only be satisfied when there is no light.

r6 ¬light ← light

Obviously, the program{r1, r2, r3, r4, r5, r6} is inconsistent. On the other hand, it is nat-
ural to structure the rules in a preference hierarchy wherer1 (the “law” governing the
system) andr6 (the observation) are most preferred. Slightly less preferred (thanr1 and
r6) are the assumptionsr2 andr3 representing normal system operation. Finally, the fault
rulesr4 andr5 are least preferred, indicating that, if the program is inconsistent, such rules
will be the first to be considered for defeat.

Without the observationr6, the program is still inconsistent and, following the pref-
erence relation on the rules,M1 = {bulb, power , light} will be a preferred answer set



Preferred Answer Sets for Ordered Logic Programs 3

satisfying all but the least preferred (r4 andr5) rules. If we take into account the obser-
vationr6, M1, which does not satisfyr6, will turn out to be less preferred than either of
M2 = {¬bulb, power} or M3 = {bulb,¬power}. E.g.M2 is preferred overM1 because,
unlikeM1, M2 satisfiesr6 which counters the non-satisfaction ofr3 by M2. It can be veri-
fied that bothM2 andM3 are preferred answer sets, with each corresponding to a minimal
explanation of the observation.

Besides diagnostic systems, ordered logic programs may be useful in other application
areas. E.g. we show that the minimal repairs of a databaseD (Arenas et al. 2000) w.r.t.
a set of constraintsC correspond with the preferred answer sets of an ordered program
where the constraintsC are preferred overD, which is itself preferred over¬D, the latter
representing the negation of the facts inD.

Although simple, ordered programs turn out to be rather expressive under the preferred
answer set semantics. E.g., it is possible to simulate both negation as failure and disjunction
in classical non-ordered programs.

Negation as failure has a long history, starting from the Clark completion (Clark 1978),
over stable model semantics (Gelfond and Lifschitz 1988) and well-founded semantics (van Gelder et al. 1988),
to answer set programming (Gelfond and Lifschitz 1991; Lifschitz 2002). It is well-known
that adding negation as failure to programs results in a moreexpressive formalism. How-
ever, in the context of disjunctive logic programming (Przymusinski 1991; Leone et al. 1997),
(Inoue and Sakama 1998) demonstrated that adding negation as failure positively in a pro-
gram, i.e. in the head of the rules, yields no extra computational power to the formalism.
One of the more interesting features of negation as failure in the head is that answers no
longer have to be minimal w.r.t. subset inclusion (e.g. the program{a ∨ nota ← } has both
{a} and∅ as answer sets). Indeed, such minimality turns out to be too demanding to express
certain problems, e.g. in the areas of abductive logic programming (Kakas et al. 1992;
Inoue and Sakama 1996) or logic programming with ordered disjunction (Brewka 2002;
Brewka et al. 2002).

In light of the above, it is natural to considerextended ordered programswhere negation
as failure is allowed in both the head and the body of a clause.Just as for disjunctive
logic programs, adding negation as failure positively results in a formalism where answer
sets are not anymore guaranteed to be subset minimal. Nevertheless, we will present a
construction that translates an extended ordered program into a semantically equivalent
ordered program without negation as failure, thus demonstrating that negation as failure
does not increase the expressiveness of ordered programs.

Although extended ordered programs do not improve on ordered programs w.r.t. com-
putational power, they can be used profitably to express certain problems in a more natural
way. They also support the simulation of certain extensionsof answer set programming,
which we illustrate by two intuitive transformations that translate more complex concepts,
i.e. ordered disjunction (Brewka 2002; Brewka et al. 2002) and consistency-restoring rules
(Balduccini and Gelfond 2003; Balduccini and Mellarkod 2003), into equivalent extended
ordered programs. This demonstrates that ordered programscan be used successfully as an
implementation vehicle for such high level extensions of answer set programming, where
the translation is processed by an ordered logic program solver such asOLPS(Section 3.2).

The remainder of this paper is organized as follows. After some preliminary notions and
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notations, Section 2 presents an extension of the usual answer set semantics to cover also
inconsistent simple programs (without disjunction or negation as failure).

In Section 3.1,we introduce ordered programs where rules are partially ordered accord-
ing to preference. It is shown that the rule-order induces a partial order on extended answer
sets. The minimal elements in the latter order are called preferred answer sets. We char-
acterize the expressiveness of the resulting semantics andshow that it can simulate nega-
tion as failure as well as disjunction. Section 3.2 proposesan algorithm to compute such
preferred answer sets and shows that the complexity is the same as for disjunctive logic
programming. In Section 3.3, we show that adding negation asfailure to ordered programs
does not yield any extra expressive power.

The relation of preferred answer set semantics with similarformalisms from the litera-
ture is discussed in Section 4. We consider Brewka’s preferred answer sets (Brewka and Eiter 1999)
in Section 4.1, together with D- and W-preferred answer sets(Delgrande et al. 2000; Wang et al. 2000).
It turns out that these semantics are not related to our framework as they yield, in general,
different preferred answer sets, that are sometimes less intuitive than the ones resulting
from the semantics in Section 3.1. Section 4.2 shows that logic programs with ordered dis-
junction (Brewka 2002) have a natural simulation using ordered programs with preferred
answer sets. In Section 4.3 we elaborate on the simulation ofconsistency-restoring rules
(Balduccini and Gelfond 2003) using the preferred answer set semantics. In Section 4.4,
we compare our semantics withDOL (Buccafurri et al. 1998),DLP< (Buccafurri et al. 1999)
and ordered logic (Laenens and Vermeir 1990). Section 5 illustrates another application of
the preferred answer set semantics: the minimal repairs of adatabaseD w.r.t. a set of con-
straintsC can be obtained as the preferred answer sets of an ordered programP (C, D).

In Section 6 we conclude and give some directions for furtherresearch.
To increase readability, several proofs and lemmas have been moved to the appendix.

2 Extended Answer Sets for Simple Programs

2.1 Preliminaries and Notation

We use the following basic definitions and notation.

Literals

A literal is an atoma or a negated atom¬a. An extended literalis a literal or of the
form not l wherel is a literal. The latter form is called anaf-literal and denotes negation
as failure:not l is interpreted as “l is not true”. We usêl to denote the ordinary literal
underlying an extended literal, i.e.l̂ = a if l = nota while â = a if a is an ordinary literal.
Both notations are extended to sets soX̂ = {ê | e ∈ X}, with X a set of extended literals,
while notY = {not l | l ∈ Y } for any set of (ordinary) literalsY .

For a set of (ordinary) literalsX we use¬X to denote{¬p | p ∈ X} where¬(¬a) ≡ a.
Also,X+ denotes the positive part ofX , i.e.X+ = {a ∈ X | a is an atom}. TheHerbrand
baseof X , denotedBX , contains all atoms appearing inX , i.e.BX = (X ∪ ¬X)+. A set
I of literals isconsistentif I ∩ ¬I = ∅.

For a set of extended literalsX , we useX− to denote the literals underlying elements
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of X that are not ordinary literals, i.e.X− = {l | not l ∈ X}. We say thatX is consistent
iff the set of ordinary literals¬X− ∪ (X\notX−) is consistent.

Programs

An extended disjunctive logic program(EDLP, see e.g. (Lifschitz 2002)) is a countable set
of rules of the formα← β whereα ∪ β is a finite set of extended literals. In adisjunctive
logic program(DLP), the headα of each ruleα← β must contain only ordinary literals.

If always|α| ≤ 1, i.e.α is a singleton or empty, we drop the “disjunctive” qualification.
If, for all rules, all literals inα ∪ β̂ are atoms, the program is calledseminegativeand if,
furthermore, each rule satisfiesβ− = ∅, the program is said to bepositive.

Answer sets

TheHerbrand baseBP of and EDLPP contains all atoms appearing inP . An interpre-
tation I of P is any consistent subset ofBP ∪ ¬BP (for seminegative programs, we can
restrict to a set of atoms). An interpretationI is total if BP ⊆ I ∪ ¬I.

An extended literall is true w.r.t. an interpretationI, denotedI |= l if l ∈ I in casel is
ordinary, orI 6|= a if l = nota for some ordinary literala. As usual,I |= X for some set
of (extended) literalsl iff ∀l ∈ X · I |= l.

A rule r = α← β is satisfiedby I, denotedI |= r, if I |= l for somel ∈ α andα 6= ∅,
wheneverI |= β, i.e. if r is applicable(I |= β), then it must beapplied (∃l ∈ α · I |=

β ∪ {l}). As a consequence, aconstraint, i.e. a rule with empty head (α = ∅), can only be
satisfied if it is not applicable (I 6|= β).

For a DLPP without negation as failure (β− = ∅), ananswer setis a minimal (w.r.t. set
inclusion) interpretationI that isclosedunder the rules ofP (i.e.∀r ∈ P · I |= r).

For an EDLPP containing negation as failure and an interpretationI, the Gelfond-
Lifschitz transformation (Gelfond and Lifschitz 1988) yields theGL-reductprogramP I

that consists of those rules(α\notα−)← (β\notβ−) whereα← β is in P , I |= notβ−

andI |= α−.
Thus,P I is obtained fromP by (a) removing all true naf-literalsnot a, a 6∈ I, from

the bodies of rules inP , (b) removing all false naf-literalsnota, a ∈ I from the heads of
rules inP , and (c) keeping inP I only the transformed rules that are free from negation as
failure. An interpretationI is then ananswer setof P iff I is an answer set of the reduct
P I .

Reducts

In this paper, we use the term “reduct” of a program, w.r.t. aninterpretation, to denote the
set of rules that are satisfied w.r.t. the interpretation.

Definition 1
Let P be an EDLP program. Thereduct PI ⊆ P of P w.r.t. an interpretationI contains
just the rules satisfied byI, i.e.PI = {r ∈ P | I |= r}.

Naturally,PM = P for any answer setM of P .
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2.2 Simple Programs and Extended Answer Sets

In this section, we consider simple logic programs which arelogic programs with only
classical negation and no disjunction in the head of a rule.

Definition 2
A simple logic program (SLP) is a countable setP of rules of the formα ← β where
α ∪ β is a finite set of literals1 and|α| ≤ 1, i.e.α is a singleton or empty.

A rule r = a ← β is defeatedw.r.t. an interpretationI iff there exists an applied (w.r.t.
I) competing rule¬a ← β′ in P; such a rule is said todefeatr.

We will often confuse a singleton set with its sole element, writing rules asa ← β or
← β. Thus, a ruler = a ← β cannot be left unsatisfied unless one accepts the opposite

conclusion¬a which is motivated by a competing applied rule¬a ← β′ that defeatsr.
Obviously, it follows that a constraint can never be defeated.

Example 2
Consider the SLPP containing the following rules.

¬a← ¬b←

a←¬b b←¬a

For the interpretationI = {¬a, b} we have thatI satisfies all rules inP but one:¬a ←
andb ← ¬a are applied whilea ← ¬b is not applicable. The unsatisfied rule¬b ← is
defeated byb ← ¬a.

For a set of rulesR, we useR⋆ to denote the unique minimal (van Emden and Kowalski 1976)
model of the positive logic program consisting of the rules in R where (a) negative literals
¬a are considered as fresh atoms and (b) constraint rules← β are replaced by rules of the
form⊥ ← β. Besides the normal notion of inconsistency, a set of literals containing⊥ is
also considered inconsistent. Clearly, the⋆ operator is monotonic.

For the program of Example 2, we have thatP ⋆ = {¬a,¬b, a, b} is inconsistent. The
following definition allows us to not apply certain rules, when computing a consistent
interpretation for programs such asP .

Definition 3
An interpretationI of a SLPP is founded iff P ⋆

I = I. A founded interpretationI is an
extended answer setof P if all rules inP are satisfied or defeated.

The following is a straightforward consequence of the abovedefinition and the fact that
a simple (reduct) program has at most one answer set.

Theorem 1
An interpretationM is an extended answer set of a SLPP iff M is the unique answer set
(Section 2.1) ofPM and every rule inP \PM is defeated w.r.tM .

Thus, the extended answer set semantics deals with inconsistency in a simple yet intu-
itive way: when faced with contradictory applicable rules,just select one for application

1 As usual, we assume that programs have already been grounded.
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and ignore (defeat) the other. In the absence of extra information (e.g. regarding a prefer-
ence for satisfying certain rules at the expense of others),this seems a reasonable strategy
for extracting a consistent semantics from inconsistent programs.

Using the above definition, it is easy to verify that the programP from Example 2 has
three extended answer sets, namelyM1 = {¬a, b}, M2 = {a,¬b} andM3 = {¬a,¬b}.
Note thatPM1

= P \{¬b ← } while PM2
= P \{¬a ← }, andPM3

= P \{a ← ¬b, b ←

¬a}, i.e.¬b ← is defeated w.r.t.M1, ¬a ← is defeated w.r.t.M2 and botha ← ¬b and
b ← ¬a are defeated w.r.t.M3.

The definition of extended answer set is rather similar to thedefinition of answer sets for
(non-disjunctive) programs without negation as failure: the only non-technical difference
being that, for extended answer sets, a rule may be left unsatisfied if it is defeated by a
competing (i.e. a rule with opposite head) rule. This is confirmed by the following theorem.

Theorem 2

Let P be a SLP and letM be an answer set ofP . Then,M is the unique extended answer
set ofP .

Proof

By definition,M is a minimal consistent interpretation that satisfies all rules in P . The
latter implies thatPM = P . BecauseM is minimal, it follows thatM = P ⋆

M , makingM

founded. Obviously,M must be unique.

While allowing for PM , with M an extended answer set, to be a strict subset ofP ,
Definition 3 still maximizes the set of satisfied rules w.r.t.an extended answer set.

Theorem 3

Let P be a SLP and letM be an extended answer set forP . Then,PM is maximal w.r.t.⊆
among the reducts of founded interpretations ofP .

Proof

Assume that, on the contrary,PM is not maximal, i.e. there exists a founded interpretation
N such thatPM ⊂ PN . From the monotonicity of the⋆-operator, it follows thatM ⊆ N .
As M is an extended answer set, all constraints are included inPM , thus, byPM ⊂ PN ,
also inPN . So,PN \PM does not contain any constraint. Letr = (a ← β) ∈ PN \PM .
Sincer is not satisfied w.r.t.M , it must be the case thatβ ⊆ M while a 6∈ M . Because
M is an extended answer set,r must have been defeated by an applied ruler′ = (¬a ←

β′) ∈ PM ⊂ PN and, consequently,¬a ∈ M ⊆ N . On the other hand,β ⊆ N and thus,
sincer ∈ PN , r must be applied w.r.t.N , yielding thata ∈ N . This makesN inconsistent,
a contradiction.

The reverse of Theorem 3 does not hold in general, as can be seen from the following
example.
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Example 3
Consider the programP containing the following rules.

¬a←

b←

¬b←¬a

The interpretationN = {b} is founded withPN = {b ← , ¬b ← ¬a} which is obviously
maximal sinceP ⋆ is inconsistent. Still,N is not an extended answer set because¬a ← is
not defeated.

However, when considering simple programs without constraints, for total interpreta-
tions, founded interpretations with maximal reducts are extended answer sets.

Theorem 4
Let P be a SLP without constraints and letM be a total founded interpretation such that
PM is maximal among the reducts of founded interpretations ofP . Then,M is an extended
answer set.

Proof
It suffices to show that each unsatisfied rule is defeated w.r.t. M . Assume that, on the
contrary,r = (a ← β) ∈ P \PM is not defeated, i.e.a 6∈ M while β ⊆ M and there is
no applied competitor¬a ← β′. But then also¬a 6∈ M , contradicting the fact thatM is
total.

The need for programs to be constraint free in the previous theorem is demonstrated by
the following example.

Example 4
Consider the programP containing the following rules.

a← ¬a← ← a

The total interpretationN = {a} is founded withPN = {a ← } which is obviously
maximal. However,N is not an extended answer set as the constraint← a is neither
satisfied nor defeated w.r.t.N .

The computation of extended answer sets reduces to the computation of answer sets for
seminegative non-disjunctive logic programs, using the following transformation, which is
similar to the one used in (Kowalski and Sadri 1990) for logicprograms with exceptions.

Definition 4
Let P be a SLP. Theextended versionE(P ) of P is the (non-disjunctive) logic program
obtained fromP by replacing each rulea ← β by its extended versiona ← β, not¬a.

Note that the above definition captures our intuition about defeat: one can ignore an
applicable rulea ← β if it is defeated by evidence for the contrary¬a, thus makingnot¬a
false and the rulea ← β, not¬a not applicable.

Theorem 5
Let P be a SLP. The extended answer sets ofP coincide with the answer sets ofE(P ).

When considering programs without constraints, the extended answer set semantics is
universal.
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Theorem 6
Each simple logic program without constraints has extendedanswer sets.

Proof
Let P be a simple logic program without constraints. DefineδP : 2BP → 2BP by

δP (I) = {a 6∈ I | ¬a 6∈ I ∧ ∃(a ← β) ∈ P · β ⊆ I}

Then, clearly, any sequenceI0 = ∅, I1, . . . where, fori ≥ 0, Ii+1 = Ii ∪ {a} for some
a ∈ δP (Ii) if δP (Ii) 6= ∅, andIi+1 = Ii otherwise, is monotonically increasing and thus
reaches a fixpointI⋆ which is easily verified to be an extended answer set.

Note that a similar result is well-known for normal default logic(Reiter 1980).

3 Ordered Programs and Preferred Answer Sets

3.1 Definitions and Basic Results

When constructing extended answer sets for simple logic programs, one can defeat any
rule for which there is an applied competing rule. In many cases, however, there is a clear
preference among rules in the sense that one would rather defeat less preferred rules in
order to keep the more preferred ones satisfied.

As an example, reconsider the programP from Example 2 and assume that we prefer
not to defeat the rules with positive conclusion ({a ← ¬b, b ← ¬a}). Semantically,
this should result in the rejection ofM3 = {¬a,¬b} in favor of eitherM1 = {¬a, b} or
M2 = {a,¬b} because the latter two sets are consistent with our preferences.

In ordered programs, such preferences are represented by a partial order on the rules of
the program.

Definition 5
An ordered logic program (OLP) is a pair〈R, <〉 whereR is a a simple program and<
is a well-founded strict2 partial order on the rules inR3.

Intuitively, r1 < r2 indicates thatr1 is more preferred thanr2. In the examples we will
often represent the order implicitly using the format

. . .

R2

R1

R0

where eachRi, i ≥ 0, represents a set of rules, indicating that all rules below aline are more

2 A strict partial order< on a setX is a binary relation onX that is antisymmetric, anti-reflexive and transitive.
The relation< is well-founded if every nonempty subset ofX has a<-minimal element.

3 Strictly speaking, we should allowR to be a multiset or, equivalently, have labeled rules, so that the same rule
can appear in several positions in the order. For the sake of simplicity of notation, we will ignore this issue in
the present paper: all results also hold for the general multiset case.
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preferred than any of the rules above the line, i.e.∀i ≥ 0·∀ri ∈ Ri, ri+1 ∈ Ri+1 ·ri < ri+1

or ∀i ≥ 0 ·Ri < Ri+1 for short.

Example 5
Consider the OLPP = 〈R, <〉 where< is as shown below.

f ← b

¬f ← p

b← p

p←

The program uses the preference order to indicate that the rule f ← b (“birds fly”) should
be considered a “default”, i.e. the rule¬f ← p (“penguins don’t fly”) is more preferred.
The lowest rules, i.e.b ← p (“penguins are birds”) andp ← (“the bird under consideration
is a penguin”), are the “strongest” (minimal): an extended answer set forP that respects
the preference order should satisfy these minimal rules, ifat all possible.

For the interpretationsI1 = {p, b, f} andI2 = {p, b,¬f}, the reducts areRI1 = {f ←

b, b ← p, p ← } andRI2 = {¬f ← p, b ← p, p ← }, respectively. BothI1 andI2 are
extended answer sets ofP : for I1, the unsatisfied rule¬f ← p is defeated byf ← b while
for I2, the reverse holds:f ← b is defeated by¬f ← p.

Intuitively, if we take the preference order< into account,I2 is to be preferred over
I1 becauseI2 defeats less preferred rules than doesI1. Specifically,I2 compensates for
defeatingf ← b by satisfying the stronger¬f ← p which is itself defeated w.r.t.I1.

The following definition formalizes the above intuition by defining a preference relation
between reducts.

Definition 6
LetP = 〈R, <〉 be an OLP. For subsetsR1 andR2 of R we defineR1 ⊑ R2 iff ∀r2 ∈ R2\R1·

∃r1 ∈ R1\R2 · r1 < r2. We writeR1 < R2 just whenR1 ⊑ R2 and notR2 ⊑ R1.

Intuitively, a reductR1 is preferred over a reductR2 if every ruler2 which is inR2 but
not inR1 is “countered” by a stronger ruler1 < r2 from R1 which is not inR2.

According to the above definition, we obtain that, indeed,RI2 < RI1 , for the program
P from Example 5.

Note that, unlike other approaches, e.g. (Laenens and Vermeir 1992), we do not require
that the stronger ruler1 ∈ R1\R2 that counters a weaker ruler1 < r2 ∈ R2\R1, is applied
and neither doesr1 need to be a competitor ofr2. Thus, unlike the other approaches, we do
not consider rule application as somehow ”stronger” than satisfaction. This is illustrated in
the following example.

Example 6
ConsiderP = 〈R, <〉, wereR is shown below and the interpretationsM1 = {study, pass},
M2 = {¬study, pass}, M3 = {¬study,¬pass}, andM4 = {study,¬pass}. The pro-
gram indicates a preference for not studying, a strong desire to pass4 and an equally strong

4 Note that, while the rulepass ← ¬pass can only be satisfied by an interpretation containingpass, it does not
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(and uncomfortable) suspicion that not studying leads to failure.

r4 : pass ← study

r3 : study ←

r2 : ¬study ←

r1 : ¬pass ← ¬study

r0 : pass ← ¬pass

It is easily verified thatRM1
< RM2

, RM1
< RM3

, RM1
< RM4

(vacuously) andRM3
<

RM4
. Here, e.g.RM1

= {r0, r1, r3, r4} < RM2
= {r0, r2, r4} becauser2 ∈ RM2

\RM1

is countered byr1 ∈ RM1
\RM2

which is neither applied nor a competitor ofr2.

The following theorem implies that the relation⊑ is a partial order on reducts.

Theorem 7
Let< be a well-founded strict partial order on a setX . The binary relation⊑ on2X defined
by X1 ⊑ X2 iff ∀x2 ∈ X2\X1 · ∃x1 ∈ X1\X2 · x1 < x2 is a partial order.

Theorem 7 can be used to define a partial order on extended answer sets ofR, where
〈R, <〉 is an ordered logic program.

Definition 7
Let P = 〈R, <〉 be an OLP. ForM1, M2 extended answer sets ofR, we defineM1 ⊑ M2

iff RM1
⊑ RM2

. As usual,M1 < M2 iff M1 ⊑M2 and notM2 ⊑M1.

Preferred answer sets for ordered programs correspond to minimal (according to⊑)
extended answer sets.

Definition 8
Let P = 〈R, <〉 be an OLP. Ananswer setfor P is any extended answer set ofR. An
answer set forP is calledpreferred if it is minimal w.r.t.⊑. An answer set is calledproper
if it satisfies all minimal (according to<) rules inR.

Proper answer sets respect the strongest (minimal) rules ofthe program.

Lemma 1
Let M be a proper answer set of an OLPP . Then any more preferred answer setN < M

is also proper.

Proof
Assume that, on the contrary,N < M for some answer setN which is not proper. It
follows that there is some minimal ruler ∈ PM \PN which cannot be countered byN ,
contradicting thatN < M .

The following theorem confirms that taking the minimal (according to ⊑) elements
among the proper answer sets is equivalent to selecting the proper elements among the
preferred answer sets.

provide a justification forpass. Thus such rules act like constraints. However, note that, depending on where
such a rule occurs, it may, unlike traditional constraints,be defeated.
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Theorem 8
Let P be an OLP. The set of minimal proper answer sets ofP coincides with the set of
proper preferred answer sets ofP .

Proof
Let M be a minimal proper answer set and suppose that, on the contrary, M is not a proper
preferred answer set. SinceM is proper, this would imply thatM is not preferred, i.e.
N < M for some answer setN . From Lemma 1, we obtain thatN must also be proper,
contradicting thatM is a minimal proper answer set.

To show the reverse, letM be a proper preferred answer set ofP . If M were not a
minimal proper answer set, there would exist a proper answersetN < M , contradicting
thatM is preferred.

The program from Example 5 has a single preferred answer set{p, b,¬f} which is also
proper. In Example 6,M1 = {pass, study} is the only proper preferred answer set.

While all the previous examples have a linear ordering, the semantics also yields in-
tuitively correct solutions in case of non-linear orderings, as witnessed by the following
example.

Example 7
Consider a problem taken from (Balduccini and Mellarkod 2003). We need to take full-
body exercise. Full-body exercise is achieved either by combining swimming and ball
playing, or by combining weight lifting and running. We prefer running to swimming and
ball playing to weight lifting, but we do not like to do more than necessary to achieve our
full-body exercise. This last condition implies that we cannot have a solution containing
our two most preferred sports as in that case we also need a third sport to have a full-body
exercise. The ordered programP corresponding to this problem is shown below using a
straightforward extension of the graphical representation defined before.

lift weights ←

play ball ←

¬full body exercise ←

swim ←

run ←

¬swim ←

¬run ←¬play ball ←

¬lift weights ←

full body exercise ← lift weights , run

full body exercise ← play ball , swim

full body exercise ← ¬full body exercise

The rules in the least preferred component indicate a reluctance to do any sport; they will
be used only to satisfy more preferred rules. On the other hand, the rules in the most pre-
ferred component contain the conditions for a full body exercise, together with a constraint-
like rule that demands such an exercise. The rules in the middle components represent our
preferences for certain sports. Note that, in order to minimize the sports we need to do,
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preferences are expressed on the negated facts. Consequently, e.g. a preference for running
over swimming is encoded as a preference for not swimming over not running.

Consider the following extended answer sets:

M1 = {full body exercise, lift weights , run,¬swim,¬play ball} ,

M2 = {full body exercise, swim, play ball ,¬lift weights ,¬run} ,

M3 = {full body exercise, lift weights , run, swim,¬play ball} .

Clearly, all extended answer sets satisfy the three most specific rules. Comparing the
reductsPM1

andPM3
yields thatPM3

\PM1
= {swim ← } andPM1

\PM3
= {¬swim ← }.

From¬swim ← < swim ← , it then follows thatM1 is preferred overM3, fitting our
desire that we do not like to do more than necessary.

As for M1 andM2, it appears that the rule¬play ball ← ∈ PM1
\PM2

is countered by
the rule¬lift weights ← ∈ PM2

\PM1
. However, there is no rule in inPM2

\PM1
to counter

¬swim ← ∈ PM1
\PM2

, and thusM2 6⊑ M1. On the other hand,M1 cannot counter
¬lift weights ← ∈ PM2

\PM1
, and thusM1 6⊑M2, makingM1 andM2 incomparable. It

can be verified that bothM1 andM2 are minimal w.r.t.⊑, making them preferred extended
answer sets.

Example 8
Consider the ordered program〈P, <〉whereP is as in Example 2 and< is as shown below.

¬a←

¬b←

a←¬b

b←¬a

The reducts of the extended answer sets ofP arePM1
= P\{¬b ← }, PM2

= P\{¬a ← },
andPM3

= P \{a ← ¬b, b ← ¬a} which are ordered byPM1
< PM3

andPM2
< PM3

.
Thus〈P, <〉 has two (proper) preferred answer sets:M1 = {¬a, b} andM2 = {a,¬b}.

Note that, in the above example, the preferred answer sets correspond to the stable mod-
els (answer sets) of the logic program{a ← notb, b ← nota}, i.e. the stronger rules of
〈P, <〉 where negation as failure (not) replaces classical negation (¬). In fact, the ordering
of P , which makes the rules¬a ← and¬b ← less preferred, causes¬ to behave as
negation as failure, under the preferred answer set semantics.

In general, we can easily simulate negation as failure usingclassical negation and a
trivial ordering.

Theorem 9
Let P be an (non-disjunctive) seminegative logic program The ordered version ofP , de-
notedN(P ) is defined byN(P ) = 〈P ′ ∪ P¬, <〉 with P¬ = {¬a ← | a ∈ BP } andP ′

is obtained fromP by replacing each negated literalnotp by ¬p. The order is defined by
P ′ < P¬, i.e.∀r ∈ P ′, r′ ∈ P¬ · r < r′ (note thatP ′∩P¬ = ∅). ThenM is a stable model
of P iff M ∪ ¬(BP \M) is a proper preferred answer set ofN(P ).

Note that 2-level programs as above can also be used to support an extension of simple
programs with “strict” rules. Such a program has the form〈Ps ∪Pd, <〉 wherePs contains
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strict rules that may not be defeated andPd contains “default” rules. The order< is defined
by Ps < Pd, i.e.rs < rd for all rs ∈ Ps, rd ∈ Pd. The proper preferred answer sets then
provide an intuitive semantics for such programs.

Interestingly, preference can also simulate disjunction.

Definition 9
Let P be a positive disjunctive logic program. The ordered version of P , denotedD(P ), is
defined byD(P ) = 〈P+ ∪ P− ∪ Pp, <〉 whereP+ = {a ← | a ∈ BP }, P− = {¬a ←

| a ∈ BP }, Pp = {a ← β ∪ ¬(α\{a}) | (α← β) ∈ P ∧ a ∈ α}, andPp < P− < P+.

Intuitively, the rules fromP+ ∪ P− guess a total interpretationI of P while the rules
in Pp ensure thatI+ is a model ofP . Minimality is assured by the fact that negations are
preferred.

Example 9
Consider the disjunctive programP = {a ∨ b ← , a ← b, b ← a}. This program
illustrates that the shifted version5 of a disjunctive program need not have the same models,
see e.g. (Dix et al. 1996; De Vos and Vermeir 2001). The program D(P ) is represented
below.

a← b←

¬a← ¬b←

b←¬a a←¬b

a← b b← a

D(P ) has a single proper preferred answer set{a, b} which is also the unique minimal
model ofP , while the shifted version yields no models at all. Note thatboth¬a ← and
¬b ← are defeated because minimization is overridden by satisfaction of more preferred
non-disjunctive rules.

Theorem 10
Let P be a positive disjunctive logic program.M is a minimal model ofP iff M ′ =

M ∪ ¬(BP \M) is a proper preferred answer set ofD(P ).

In view of Theorem 9 and Theorem 10, it is natural to try to simulate programs that
combine negation as failure and disjunction.

Definition 10
Let P be a seminegative disjunctive logic program. The ordered version of P , denoted
Dn(P ), is defined byDn(P ) = 〈Pc ∪ P− ∪ Pp, <〉 wherePc = {a ← β′ | (α ← β) ∈

P ∧ a ∈ α}, P− = {¬a ← | a ∈ BP }, Pp = {a ← β′ ∪ ¬(α\{a}) | (α ← β) ∈

P ∧ a ∈ α}, andPp < P− < Pc. Here,β′ is obtained fromβ by replacing all occurrences
of nota ∈ β by¬a ∈ β′.

Intuitively, the rules inPc apply disjunctive rules by choosing a literal from the head of
the original rule; rules inPp ensure that any proper answer set is a model and the preference
P− < Pc supports minimization.

5 The shifted version of a disjunctive program is a seminegative program where each disjunctive ruleα← β is
replaced by the set of rules containinga ← β ∪ not(α\{a}) for eacha ∈ α.
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Theorem 11

Let P be a seminegative disjunctive logic program. IfM is an answer set ofP thenM ∪

¬(BP \M) is a proper preferred answer set ofDn(P ).

Proof

The theorem immediately follows from Theorem 12 and Proposition 3.3 in (Sakama and Inoue 1994).

Unfortunately,Dn(P ) may have too many proper preferred answer sets, as illustrated
by the following example.

Example 10

Consider the seminegative disjunctive programP = {a ∨ b ← , b ← a, a ← nota}. This
program does not have an answer set. Indeed, any answer setM would need to containa
and thus, by the ruleb ← a, alsob, thusM = {a, b}. But the reductPM = {a ∨ b ←

, b ← a} has only one minimal answer set{b} 6= M .
However,{a, b} is the unique minimal preferred answer set ofDn(P ) which is shown

below.

a← b←

¬a← ¬b←

b← a a←¬a

a←¬b b←¬a

In fact, the preferred answer sets semantics ofDn(P ) corresponds to the possible model
semantics of (Sakama and Inoue 1994).

Definition 11

For a seminegative disjunctive logic programP , we define asplit program as the (non-
disjunctive) seminegative program obtained fromP by replacing each ruleα ← β ∈ P

with a ← β for everya ∈ S, whereS is some non-empty subset ofα. Now, apossible
modelof P is any answer set of any split program ofP .

Theorem 12

Let P be a seminegative disjunctive logic program. An interpretation M is a proper pre-
ferred answer set ofDn(P ) iff M+ is a minimal possible model ofP .

In the next subsection, we’ll see that, nevertheless, the expressiveness of the preferred
answer set semantics of OLP is similar to that of seminegative disjunctive programs.

3.2 Computing Preferred Answer Sets

In this subsection, we only consider finite programs (corresponding to datalog-like rules).
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Definition 12
Let 〈P, <〉 be a partially ordered set (where< is strict). Thedownward closureof a subset
X ⊆ P is defined bydown(X) = {u ∈ P | ∃x ∈ X ·u < x}. A setX ⊆ P is downward
closediff down(X) ⊆ X .

A specificationfor an ordered program poses restrictions on the sets of rules that should
be satisfied, respectively defeated, by a conforming extended answer set.

Definition 13
Let 〈P, <〉 be an ordered program. Aspecificationfor P is pair〈Ri, Ro〉 of disjoint subsets
of P such thatRi ∪Ro is downward closed.

A specification〈R′i, R
′
o〉 extendsanother specification〈Ri, Ro〉, denoted〈Ri, Ro〉 �

〈R′i, R
′
o〉, iff Ri ⊆ R′i andRo ⊆ R′o.

A set of rulesR ⊆ P satisfiesa specification〈Ri, Ro〉, denotedR |= 〈Ri, Ro〉, iff R⋆

is an extended answer set forP , Ri ⊆ R, Ro ∩R = ∅ and, moreover,∀r ∈ Ro · R∗ 6|= r.

Obviously, ifR satisfies〈Ri, Ro〉 thenR satisfies any weaker specification〈R′i, R
′
o〉 �

〈Ri, Ro〉.
In the remainder of this section, we will use the term “extended answer set” for both the

interpretationI and the corresponding set of rules{r ∈ P | I |= r} that it satisfies.
To force a conforming extended answer set to satisfy at leastone out of a collection of

sets of rules, we define a constraint. Such constraints will be used to ensure that conforming
extended answer sets are not smaller (w.r.t.<) than others.

Definition 14
Let 〈P, <〉 be an ordered program. Aconstraint is a set of sets of rulesC ⊆ 2P . A
specification〈Ri, Ro〉 is consistent with a constraint iff∃c ∈ C ·Ro ∩ c = ∅. A rule setR
satisfies a constraintC, denotedR |= C, iff ∃c ∈ C · c ⊆ R.

The expansionof a specification and a constraint, denotedµ(〈Ri, Ro〉, C), is defined
by

µ(〈Ri, Ro〉, C) = {R ⊆ P | R |= 〈Ri, Ro〉 ∧R |= C} .

We usemin µ(〈Ri, Ro〉, C) to denote the minimal elements ofµ(〈Ri, Ro〉, C) w.r.t. the
<-order.

By definition,min µ(〈Ri, Ro〉, C) contains minimal (according to<) answer sets that
satisfy both the specification〈Ri, Ro〉 and the constraintC.

Definition 15
Let 〈P, <〉 be an ordered program andR ⊆ P andT ⊆ P be sets of rules. Awitnessof R

againstT is any ruler ∈ R\T such that∀t ∈ T \R · t 6< r.
We useω(T ) to denote the set{{r} ∪ (down({r}) ∩ T ) | r ∈ P \ T }.

In Lemma 4 from the Appendix, it is shown thatT 6< R iff R has a witness againstT ,
which is itself equivalent to∃X ∈ ω(T ) ·X ⊆ R.

The basic algorithm to compute preferred answer sets is shown in Figure 1. Intuitively,
aset(〈Ri, Ro〉, C) returns the minimal elements among the extended answer setsfrom P

that satisfy both the specification〈Ri, Ro〉 and the constraintC.
This is achieved as follows:
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• If 〈Ri, Ro〉 is inconsistent withC then, obviously, there are no elements satisfying
both.
• If Ri ∪Ro = P , Ri should be returned, if it is an extended answer set.
• Otherwise, we first compute the setM of minimal extended answer sets containing

a minimal ruler from P \(Ri ∪Ro), using the callaset(〈Ri ∪ {r}, Ro〉, C).
• Next, we compute the minimal extended answer sets not containingr. Such answer

sets must contain a witness against eachm ∈ M . This is ensured by appropriately
extending the constraintC to C′. The missing solutions are then computed using
aset(〈Ri, Ro ∪ {r}〉, C′).

Formally, we will have thataset(〈Ri, Ro〉, C) = minµ(〈Ri, Ro〉, C) from which, since
the preferred answer sets ofP obviously correspond tomin µ(〈∅, ∅〉, {∅}), it follows that
aset(〈∅, ∅〉, {∅}) returns exactly the preferred answer sets ofP .

set<RuleSet>
aset (〈Ri, Ro〉, C) {
// precondition: C 6= ∅

if ( 〈Ri, Ro〉 and C are inconsistent )
return ∅

if ((Ri ∪ Ro) = P )
if ( R⋆

i is an extended answer set ofP )
return {Ri}

else
return ∅

chooser minimal in P \(Ri ∪ Ro)

// compute preferred answer sets containing r

M = aset(〈Ri ∪ {r}, Ro〉, C);

// add constraints that guarantee that each element in
// µ(〈Ri, Ro ∪ {r}〉, C′) has a witness against any m ∈ M.
C′ = C

for eachm ∈ M

C′ = {c ∪ x | c ∈ C′ ∧ x ∈ ω(m) ∧ r 6∈ x}
if (C′ = ∅) // ∃m ∈ M · ∀x ∈ ω(m) · r ∈ x

return M

// compute preferred answer sets not containing r

return M ∪ aset(〈Ri, Ro ∪ {r}〉, C′);
}

Fig. 1: Basic Algorithm

Theorem 13
Let 〈P, <〉 be an ordered program,〈Ri, Ro〉 be a specification andC a constraint. Then
aset(〈Ri, Ro〉, C) = minµ(〈Ri, Ro〉, C).
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Since a preferred answer set is minimal w.r.t. the extended answer sets that satisfy the
“empty” specification and constraint, we obtain the following corollary.

Corollary 1
Let 〈P, <〉 be an ordered program. The preferred answer sets ofP are computed by
aset(〈∅, ∅〉, {∅}).

Clearly, the algorithm of Figure 1 can be further optimized,e.g. by proactively comput-
ing certain conditions, such as the consistency ofRi, etc.

A first implementation of an ordered logic program solver (OLPS) is available under
the GPL at http://tinf2.vub.ac.be/olp/. After grounding,OLPS computes (a
selection of) the proper preferred answer sets of a finite ordered program which is described
using a sequence of module definitions and order assertions.A module is specified using a
module name followed by a set of rules, enclosed in braces while an order assertion is of
the formm0 < m1 < . . . < mn, n > 0, where eachmi, 0 ≤ i ≤ n is a module name.
Such an assertion expresses that each rule inmi, 0 ≤ i ≤ n is more preferred than any rule
in mi+1. Figure 2 shows theOLPSversion of the the diagnostic problem from Example 1.

FaultModel{
−power.
−bulb.

}
NormalOperation{

power.
bulb .

}
System{

light :− power, bulb .
}
System< NormalOperation< FaultModel
Observations{ − light :− light . }

Fig. 2: TheOLPSversion of Example 1.

The following results shed some light on the complexity of the preferred answer set
semantics.

First we note that checking whetherM is not a preferred answer set of an OLPP is in
NP because

1. Checking thatM is an extended answer set ofP , i.e. verifying foundedness and ver-
ify that each non-satisfied rule is defeated, can be done in deterministic polynomial
time. (E.g. foundedness can be verified using a marking algorithm that repeatedly
scans all rules inP , marking elements ofM that have a “motivation” based on al-
ready marked elements fromM ).

2. Guess a setN ⊑M , which can be done in polynomial time, and verify thatN is an
extended answer set.

Finding a preferred answer setM can then be performed by an NP algorithm that guesses
M and uses an NP oracle to verify that it is not the case thatM is not a preferred answer
set. Hence the following theorem.

http://tinf2.vub.ac.be/olp/
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Theorem 14
The problem of deciding, given an arbitrary ordered programP and a literala, whethera
occurs in any preferred answer set ofP is in ΣP

2 .

Theorem 15
The problem of deciding, given an arbitrary ordered programP and a literala, whethera
occurs in every preferred answer set ofP is in ΠP

2 .

Proof
Finding a preferred answer setM such thata 6∈M is in ΣP

2 due to Theorem 14. Thus, the
complement is inΠP

2 .

Theorem 16
The problem of deciding, given an arbitrary ordered programP and a literala, whethera
occurs in any preferred answer set ofP is ΣP

2 -hard.

Proof
The proof uses a reduction of the knownΣP

2 -hard problem of deciding whether a quantified
boolean formulaφ = ∃x1, . . . , xn · ∀y1, . . . , ym · F is valid, where we may assume that
F = ∨c∈Cc with eachc a conjunction of literals overX ∪ Y with X = {x1, . . . , xn}

andY = {y1, . . . , ym} (n, m > 0). The construction is inspired by a similar result in
(Eiter and Gottlob 1993) for disjunctive logic programs.

The programP corresponding toφ is shown below using a straightforward extension of
the graphical representation of Definition 5: the order in P is defined byP4 < P3 < P2

(note that the rules inP1 are not related to any other rules).

P1 = {x ← ¬x ← | x ∈ X}

P2 = {y ← ¬y ← | y ∈ Y }

P3 = ¬sat ← sat

P4 = {sat ← c | c ∈ C}

Obviously, the construction ofP can be done in polynomial time. Intuitively, the rules in
P1 andP2 are used to guess a truth assignment forX ∪ Y .

In the sequel, we will abuse notation by usingxM andyM whereM is an answer set
for P , to denote subsets ofM , e.g.xM = X ∩M and in expressions such asF (xM , yM )

which stands forF (x1, . . . , xn, y1, . . . ym) with xi = true iff xi ∈ xM and, similarly,
yj = true iff yj ∈ yM . We will also sometimes abbreviate the arguments ofF , writing
e.g.F (x, y) rather thanF (x1, . . . , xn, y1, . . . ym).

The following properties ofP are straightforward to show:

1. If we have an extended answer setM containingsat ∈M , thenF (xM , yM ) must hold.
2. Any extended answer set satisfies all the rules inP4.
3. For extended answer setsM1 andM2, with M1 ∩ X 6= M2 ∩ X , neitherM1 < M2 nor

M2 < M1 holds, as the rules inP1 are unrelated to any other rules.
4. If M1 < M2 for some extended answer setsM1 andM2, thenM1 ∩ X = M2 ∩ X and,

moreover,sat ∈M2 \M1, i.e.(¬sat ← sat) ∈ PM1
\ PM2

.
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We show thatφ is valid iff sat ∈M for some preferred answer setM of P .
To show the ”if” part, assume thatM is a preferred answer set withsat ∈M . By (1) we

have thatF (xM , yM ) holds. To prove thatφ is valid it remains to show that∀y ·F (xM , y).
Suppose that, on the contrary,∃y · ¬F (xM , y) and consider the extended answer setM ′ =

(M ∩ (X ∪ ¬X)) ∪ y ∪ ¬(Y \ y). It is easy to verify thatM ′
< M since the rules inP1

satisfied byM are the same as the rules inP1 satisfied byM ′; and all the rules inP4 are
satisfied by bothM andM ′ (due to (2)); and the rule inP3 is defeated byM and satisfied
by M ′. ButM ′

< M contradicts the fact thatM is a preferred answer set. Thus,φ is valid.
To show the reverse, assume thatφ is valid, i.e. there exists somexM ⊆ X such that
∀y · F (xM , y). ConsiderM = xM ∪ ¬(X \ xM ) ∪ y ∪ ¬(Y \ y) ∪ {sat} wherey ⊆ Y is
arbitrary. Clearly,M is an extended answer set. To show thatM is preferred, assume that,
on the contrary,M ′

< M for some extended answer setM ′. By (4), M ∩ X = M ′ ∩ X

andsat 6∈M ′. These imply that¬F (xM , yM ′), contradicting that∀y · F (xM , y).

Theorem 17
The problem of deciding, given an arbitrary ordered programP and a literala, whethera
occurs in every preferred answer set ofP is ΠP

2 -hard.

Proof
Reconsider the programP in the proof of Theorem 16. Leta be a fresh atom not occur-
ring in P and defineP ′ asP with two extra rulesa ← and¬a ← in the component
P2. Clearly, showing thata does not occur in every preferred answer set is the same as
showing that¬a occurs in any preferred answer set ofP . Deciding the latter isΣP

2 -hard
by Theorem 16; thus deciding the complement of the former isΠP

2 -hard.
In the appendix an alternative proof is provided using quantified boolean formulas.

The following is immediate from Theorem 14, Theorem 15, and Theorem 16.

Corollary 2
The problem of deciding, given an arbitrary ordered programP and a literala, whethera
occurs in any proper preferred answer set ofP is ΣP

2 -complete. The problem of deciding,
given an arbitrary ordered programP and a literala, whethera occurs in every proper
preferred answer set ofP is ΠP

2 -complete.

3.3 Adding Negation as Failure

In view of the results from Section 3.1 and Section 3.2, it is natural to wonder whether
adding negation as failure to ordered programs leads to a more expressive formalism.

To study this question, we first extend simple logic programsto allow negation as failure
in both the head and the body of rules. The definition closely mirrors Definition 2: we only
generalize the notion of defeat to take into account the possible presence of negation as
failure in the head of a rule.

Definition 16
An extended logic program(ELP) is a countable setP of extended rulesof the form
α← β whereα ∪ β is a finite set of extended literals, and|α| ≤ 1, i.e.α is a singleton or
empty.
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An extended ruler = a ← β is defeatedw.r.t. P and I iff P contains an applied
competing rule r′ = a′ ← β′ such that{a, a′} is inconsistent.

An interpretationI is an extended answer setof P iff I is an answer set (see Sec-
tion 2.1) ofPI and each unsatisfied rule fromP \PI is defeated w.r.t.I.

Example 11
Consider the extended programP containing the following rules.

¬a← ¬b← c←

a← notb b← nota notc← a

For the interpretationI = {a,¬b}, PI contains all rules but¬a ← andc ← which are
defeated (w.r.t.I) by the applied rulesa ← notb andnotc ← a, respectively.I is then an
extended answer set because{a,¬b} is an answer set of(PI)

I = {¬b ← , a ← }.
P has three more extended answer sets, namelyJ = {¬a, b, c}, K = {¬a,¬b, c} and

L = {a,¬b, c}. Here,PJ = P \{¬b ← }, and(PJ )J contains¬a ← , b ← , c ← and
← a. For K, we have thatPK = P \ {a ← notb, b ← nota} and(PK)K contains
¬a ← , ¬b ← , c ← and← a. Finally,L yields thatPL = P \ {¬a ← , notc ← a} and
(PL)L containsa ← , ¬b ← andc ← .

Unlike for simple logic programs, extended answer sets for extended logic programs
are not necessary minimal w.r.t. subset inclusion, as demonstrated by the previous exam-
ple whereI ⊂ L. The same holds for extended disjunctive logic programs as shown in
(Inoue and Sakama 1994).

Furthermore, the extended answer set semantics for extended logic programs is not uni-
versal, even for programs without constraints, as witnessed by the following example.

Example 12
Consider the extended logic programP containing the rulesa ← notb andb ← a, notc.
Clearly, no extended answer set can containc or¬c.

For I = ∅ we obtain(PI)
I = {b ← a, notc}I = {b ← a}, which has a unique answer

set∅ = I. However,a ← notb is neither satisfied nor defeated inI. ForI = {a}, (PI)
I =

{a ← notb}I = {a ← } which has a unique answer set{a} = I. However,b ← a, notc
is neither satisfied nor defeated inI. For I = {b}, (PI)

I = P I = {b ← a} which has a
unique answer set∅ 6= I. Finally, for I = {a} we obtain(PI)

I = P I = {b ← a} which
has∅ 6= I as a unique answer set.

Thus,P has no extended answer sets.

Obviously, any traditional answer set of an ELPP is also an extended answer set. How-
ever, unlike for simple programs, a consistent ELP, i.e. a program that has answer sets, may
also have additional extended answer sets, as in the following example.

Example 13
Consider the following programP .

¬b← a b← notb
a← notb b← nota

Clearly,I = {b} is an answer set withP I containing¬b ← a andb ← which has{b} as
a minimal answer set. SincePI = P , {b} is also an extended answer set.
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However, alsoJ = {a,¬b} is an extended answer set because:

• PJ contains all rules butb ← notb. The latter rule is defeated (w.r.t.J) by the
applied rule¬b ← a.
• (PJ )

J contains justa ← and¬b ← a and thusJ is an answer set ofPJ .

Clearly, though,J is not an answer set ofP .

Note that the program in the above example does not contain negation as failure in
the head of a rule. In fact, negation as failure in the heads ofrules can be removed by a
construction that is similar to the one used in (Inoue and Sakama 1998) for reducing DLP’s
with negation as failure in the head to DLP’s without.

Definition 17
For P an ELP, defineE(P ) as the ELP, without negation as failure in the head, obtained
from P by replacing each rulea ← β by (for a an ordinary literal,nota is a new atom) by
a ← β, not¬a, not nota whena is an ordinary literal; or bynot̂a ← β, not â whena

is a naf-literal.

Intuitively, one can ignore an applicable rulea ← β if it is defeated by evidence
for either¬a or not a, thus making eithernot ¬a or not nota false and the rulea ←
β, not¬a, not nota not applicable.

The extended answer sets ofP can then be retrieved from the traditional answer sets of
E(P ).

Theorem 18
Let P be an ELP. Then,S is an extended answer set ofP iff there is an answer setS′ of
E(P ) such thatS = S′ ∩ (BP ∪ ¬BP ).

For example, letP = {a ← , nota ← }, which has two extended answer sets{a}
and∅. ThenE(P ) = {a ← not¬a, not nota , nota ← nota} which has two traditional
answer sets{a} and{nota} corresponding with{a} and∅.

The definitions from Section 3.1 can be reused to define extended ordered logic pro-
grams and their preferred answer set semantics. However, unlike simple programs, an ex-
tended programR can have extended answer setsM1 6= M2 while RM1

= RM2
. E.g.,

the program{a ← notb , b ← nota} has two (extended) answer sets{a} and{b} that
both satisfy all the rules. Intuitively,M1 should be incomparable withM2, hence the extra
conditionRM1

6= RM2
in the definition of⊑ between extended answer sets.

Definition 18
An extended ordered logic program(EOLP) is a pair〈R, <〉 whereR is an extended
program and< is a well-founded strict partial order on the rules inR6.

The partial order⊑ between subsets ofR is defined as in Definition 6. ForM1, M2

extended answer sets ofR, we defineM1 ⊑ M2 iff RM1
6= RM2

andRM1
⊑ RM2

. As
usual,M1 < M2 iff M1 ⊑M2 andM1 6= M2.

An answer setfor an EOLPP is any extended answer set ofR. An answer set forP is
calledpreferred if it is minimal w.r.t.⊑.

6 Strictly speaking, we should allowR to be a multiset or, equivalently, have labeled rules, so that the same rule
can appear in several positions in the order. For the sake of simplicity of notation, we will ignore this issue: all
results also hold for the general multiset case.
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Example 14
Reconsider the program from Example 11 with the following preference relation, yielding
an extended ordered program〈P, <〉.

¬a← ¬b← notc← a

a← notb b← nota c←

The reducts of the answer sets ofP arePI = P \ {c ← , ¬a ← }, PJ = P \ {¬b ← },
PK = P \ {a ← notb, b ← nota} andPJ = P \ {¬a ← , notc ← a}, which are
ordered byPJ ⊑ PI , PJ ⊑ PK , PL ⊑ PI andPL ⊑ PK , making bothJ = {¬a, b, c} and
L = {a,¬b, c} preferred over bothI = {a,¬b} andK = {¬a,¬b, c}.

An interesting interaction between defeat and negation as failure can occur when default
(minimally preferred) rules of the formnota ← are used. At first sight, such rules are
useless becausenota is true by default. However, if present, such rules can also be used to
defeat others as in the following example.

Example 15
Consider the following EOLP.

nota←

a←

← a

This program has the empty set as its single preferred answerset, its reduct containing
the rules nota ← and ← a. Without nota ← , it would be impossible to defeat
a ← , thus violating ← a and thus the program would not have any answer sets.

Extended (unordered) programs can be regarded as EOLP’s with an empty order rela-
tion.

Theorem 19
For an ELPP , the extended answer sets ofP coincide with the preferred answer sets of
the EOLP〈P, ∅〉.

Proof
Trivial. If the order relation is empty, there are no rules tocounter defeated rules, so every
extended answer set is also preferred.

Interestingly, negation as failure can be simulated using order alone. However, from
Theorem 19 and Example 11 (whereI ⊂ L are both preferred answer sets), it follows that
preferred answer sets for EOLP’s are not necessarily subset-minimal, which is not the case
for the preferred answer sets of the ordered programs from Section 3.1. Hence, simulating
an EOLP with an OLP will necessarily involve the introduction of fresh atoms.

One might be tempted to employ a construction similar to the one used in Definition
9 for simulating negation as failure using a two-level order. This would involve replacing
extended literals of the formnot a by fresh atomsnota and adding “default” rules to
introducenota.
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E.g. the extended programP = {a ← notb, b ← nota} would be simulated by the
ordered programN(P )

nota← notb←

a← notb b← nota

¬a← nota ¬b← notb
¬nota← a ¬notb← b

where the rules on the lowest level act as constraints, forcing one of the “default rules”
in the top level to be defeated in any proper answer set ofN(P ). The “constraint rules”
also serve to indirectly introduce competition between formally unrelated atoms: in the
example, we need e.g. a rule to defeatnota ← , based on the acceptance ofa.

This does not work, however, since it may introduce unwantedanswer sets as for the
program{a ← nota} which would yield the OLP program

nota←

a← nota

¬a← nota
¬nota← a

which has a (proper) preferred answer set{nota,¬a} while the original program has no
extended answer sets.

The above examples seem to point to contradictory requirements for the corresponding
OLP programs: for the first example, rules implyingnota should be (indirect) competitors
for a-rules while for the second example, thenota-rule shouldnotcompete with thea-rule,
in order not to introduce spurious answer sets.

The solution is to add not only fresh atoms for extended literals of the formnota, but
also for ordinary literals. Thus each extended literall will be mapped to an independent
new atomφ(l). A rule l ← β will then be translated toφ(l) ← φ(β), which does not
compete with any other such rule. Defeat between such rules is however supported in-
directly by adding extra rules that encode the consequencesof applying such a rule: for
an original rule of the forma ← β, a an ordinary literal, we ensure that its replacement
φ(a) ← φ(β) can, when applied, indirectly defeatφ(¬a)- andφ(not a)-rules by adding
both¬φ(¬a) ← φ(β), φ(a) and¬φ(nota) ← φ(β), φ(a). Similarly, for an original rule
of the formnota ← β, a an ordinary literal, a rule¬φ(a)← φ(β), φ(nota) will be added
along with its replacementφ(nota)← φ(β). Consistency is assured by introducing a new
most preferred component containing, besides translated constraints← φ(β) for the orig-
inal ones, rules of the form← φ(a), φ(nota) and ← φ(a), φ(¬a). In addition, this
new component also contains translationsa ← φ(a) of the new atoms, that correspond to
ordinary literals, back to their original versions.

Negation as failure can then be simulated by introducing “default” rules of the form
φ(nota)← in a new least preferred component.

Spurious answer sets are prevented, as these new default rules introducingφ(not a),



Preferred Answer Sets for Ordered Logic Programs 25

which do not have defeat-enabling accompanying rules as described above, cannot be used
to defeat transformed rules of the original program, but only to make them applicable. E.g.
the program{a ← nota}mentioned above would be translated as

φ(nota)← φ(not¬a)←

φ(a)← φ(nota)

¬φ(nota)← φ(nota), φ(a)

¬φ(¬a)← φ(nota), φ(a)

← φ(a), φ(nota) a← φ(a)

← φ(a), φ(¬a) ¬a← φ(¬a)

← φ(¬a), φ(not¬a)

which has no proper preferred answer sets.

Formally, for an EOLP〈R, <〉, we define a mappingφ translating original extended
literals by:φ(a) = a′, φ(¬a) = a′¬, φ(not a) = nota andφ(not¬a) = not¬a; where
for each atoma ∈ BR, a′, a¬

′, nota andnot¬a are fresh atoms. We useφ(X), X a set of
extended literals, to denote{φ(x) | x ∈ X}.

Definition 19

Let P = 〈R, <〉 be an extended ordered logic program. The OLP version ofP , denoted
Ns(P ), is defined byNs(P ) = 〈Rn ∪R′ ∪Rc, Rc < R′< < Rn〉, where

• Rn = {φ(nota)← | a ∈ BR ∪ ¬BR},

• R′ is obtained fromR by replacing each rule

— a ← β, wherea is a literal, by the rulesφ(a) ← φ(β) and¬φ(¬a) ←

φ(β), φ(a) and¬φ(nota)← φ(β), φ(a);

— nota ← β by the rulesφ(nota)← φ(β) and¬φ(a)← φ(β), φ(nota);

• Rc = { ← φ(β) | ← β ∈ R} ∪ { ← φ(a), φ(nota); ← φ(a), φ(¬a); a ←

φ(a) | a ∈ BR ∪ ¬BR}.

Furthermore,R′< stands for the original order onR but defined on the corresponding rules
in R′.

Note thatNs(P ) is free from negation as failure.

Example 16

The OLPNs(P ), corresponding to the EOLP of Example 14 is shown below.
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nota← notb← notc←
not¬a← not¬b← not¬c←

a′¬← b′¬← notc← a′

¬a′← a′¬ ¬b′← b′¬ ¬c′← a′, notc
¬not¬a← a′¬ ¬not¬b← b′¬

a′← notb b′← nota c′←

¬a′¬← notb, a′ ¬b′¬← nota, b′ ¬c′¬← c′

¬nota← notb, a′ ¬notb← nota, b′ ¬notc← c′

a← a′ b← b′ c← c′

¬a← a′¬ ¬b← b′¬ ¬c← c′¬
← a′, nota ← b′, notb ← c′, notc
← a′¬, not¬a ← b′¬, not¬b ← c′¬, not¬c

← a′, a′¬ ← b′, b′¬ ← c′, c′¬

The OLP has two proper preferred answer setsJ ′ = {¬a, b, c, a′¬, b
′, c′,¬a′, nota, ¬notb,

¬b′¬, ¬notc,¬c′¬,¬not¬a, not¬b, not¬c} and L′ = {a,¬b, c, a′, b′¬, c
′,¬b′, ¬nota, ¬a′¬,

notb, ¬notc, ¬c′¬, not¬a, ¬not¬b, not¬c}, corresponding to the preferred answer setsJ and
L of P .

In the above example, the preferred answer set ofP can be recovered from the proper
preferred answer set ofNs(P ) by selecting the literals fromBP ∪ ¬BP . The following
theorem shows that this is a general property ofNs(P ).

Theorem 20
Let P = 〈R, <〉 be an extended ordered logic program. Then,M is a preferred answer set
of P iff there exists a proper preferred answer setM ′ of Ns(P ), such thatM = M ′ ∩

(BR ∪ ¬BR).

Since the construction ofNs(P ) is polynomial, the above result, together with Theo-
rems 9 and 11, suggests that order is at least as expressive asnegation as failure, even if
the latter is used in combination with the former.

4 Relationship to Other Approaches

4.1 Brewka’s Preferred Answer Sets

Preferred answer sets have been introduced in the setting ofextended logic programs. In
(Brewka and Eiter 1999) a strict partial order on the rules ina program is used to prefer
certain traditional answer sets above others. Intuitively, such preferred answer sets, which
we call B-preferred answer sets in what follows to avoid confusion, are traditional answer
sets that can be reconstructed by applying the rules in orderof their priorities, i.e. starting
with a most specific rule and ending with the least specific ones.

First, we note that the semantics defined in (Brewka and Eiter1999) resides at the first
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level of the polynomial hierarchy, i.e.ΣP
1 , while the semantics from Section 3.1 is at the

second level, i.e.ΣP
2 . The extra expressiveness of the latter semantics is usefulfor diag-

nostic and abductive reasoning applications: e.g. finding asubset minimal explanation is
known to beΣP

2 -complete (Eiter et al. 1997). In addition, we illustrate with some simple
examples the differences between both approaches.

Using the ordered programs from Section 2 directly in the setting of the B-preferred
answer set semantics is not very useful since the latter applies only to consistent programs
that do have traditional answer sets. However, if we first apply the translation from Def-
inition 4 to our programs, thus transforming the extended answer set semantics into the
traditional one, we have a means to compare both approaches.

We start with a brief, formal description of B-preferred answer sets. The programs under
consideration in (Brewka and Eiter 1999) are prioritized extended logic programs.

Definition 20

A prioritized extended logic program is a pairP = (R, <), whereR is an extended
logic program (Definition 16) and< is a strict partial order on the rules7 in R.

Theprerequisitesof a ruler = a ← β are the literals from(β\notβ−), i.e. the ordinary
literals in its body. Ifβ contains no ordinary literals,r is said to beprerequisite-free.

The B-preferred answer set semantics is defined on programs having a well-ordering8

relation on the rules. Therefore another definition is needed to go from an ordinary priori-
tized program to one with a well-ordering.

Definition 21

A full prioritization of a prioritized programP = (R, <) is any pairP ∗ = (R, <∗)

where<∗ is a well-ordering onR compatible with<, i.e.r1 < r2 impliesr1 <∗ r2, for all
r1, r2 ∈ R. ByFP(P ) we denote the collection of all full prioritizations ofP . We say that
P is fully prioritized, ifFP(P ) = {P}, i.e.P coincides with its unique full prioritization.

Like the traditional answer set semantics, B-preferred answer sets are defined in two
steps. In the first step, B-preferred answer sets are defined for prerequisite-free programs,
i.e. programs containing only prerequisite-free rules. A rule r is blocked9 by a literall iff
l ∈ B−r . On the other hand,r is blocked by a set of literalsX , iff X contains a literal that
blocksr.

In the following construction, the rules in a full prioritization are applied in the order of
their priorities.

Definition 22

Let P = (R, <) be a full prioritization of a prerequisite-free prioritized program; letS be

7 Again we only consider grounded programs, thus avoiding thecomplex definitions in (Brewka and Eiter 1999)
dealing with the ground instantiations of prioritized rulebases.

8 A (strict) partial order< on S is called a (strict) total order iff∀x, y ∈ S · x 6= y ⇒ x < y ∨ y < x.
A (strict) total orderS, < is called a well-ordering iff each nonempty subset ofS has a minimal element, i.e.
∀X ⊆ S, X 6= ∅ · ∃x ∈ X · ∀y ∈ X · (x = y ∨ x < y).

9 We use the term “blocked” instead of the original “defeat” (Brewka and Eiter 1999) to avoid confusion with
the notion of defeat from Definition 2.
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a set of literals and let(R, <) = {rα}<. We define the sequenceSα, 0 ≤ α < ord(<), of
setsSα ⊆ BR ∪ ¬BR as follows:

Sα =







⋃

β<α Sβ , if rα is blocked by
⋃

β<α Sβ or
Hrα

∈ S andrα is blocked byS,
⋃

β<α Sβ ∪ {Hrα
} otherwise.

The setCP (S) is the smallest set of ground literals, i.e.CP (S) ⊆ BR ∪ ¬BR, such that

1.
⋃

α<ord(<) Sα ⊆ CP (S), and
2. CP (S) is logically closed.

The condition “Hrα
∈ S andrα is blocked byS” in the above definition is necessary to

avoid situations in which a literal inS is derived by two rulesr1 andr2 such thatr1 < r2,
butr2 is applicable inS andr1 is not. This would result in the conclusionHr1

at a priority
higher than effectively sanctioned by the rules, as in the following example.

Example 17
Consider the following program, taken from (Brewka and Eiter 1999).

r4 : p ← not¬p

r3 : ¬p ← notp

r2 : q ← not¬q

r1 : p ← notq

This program has two classical answer sets, i.e.S1 = {p, q} andS2 = {¬p, q}. Without
the condition “Hrα

∈ S andrα is blocked byS” in Definition 22, the sequence forS1

would be{p}, {p, q}, {p, q}, {p, q} becauser1 would be applied, even if it is blocked w.r.t.
the final setS1. This in turn blocksr3. On the other hand, using Definition 22 correctly,
S1 yields the sequence{}, {q}, {¬p, q}, {¬p, q} wherer1 is not applied andr3 becomes
applicable. With Definition 23, this implies thatS1 is not B-preferred.

In general,CP does not necessarily return the consequences ofR, i.e. an applied rulerα

may later be blocked by some less preferred rulerβ whereα < β. However, if a normal
answer setA of R is a fixpoint ofCP , then all preferences are taken into account, i.e. a
rule whose head is not inA is blocked by a more preferred rule applied inA. Such answer
sets will be preferred.

Definition 23
Let P = (R, <) be a full prioritization of a prerequisite-free prioritized program; and let
A be a normal answer set ofR. ThenA is aB-preferred answer setof P iff CP (A) = A.

The B-preferred answer sets for programs with prerequisites are obtained using a reduc-
tion to prerequisite-free programs.

Definition 24
Let P = (R, <) be a full prioritization of a prioritized program; and letX ⊆ BR ∪ ¬BR.
Then,XP = (XR,X<) is the fully prioritized program obtained fromP , whereXR is the
set of rules obtained fromR by
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1. deleting every rule having a prerequisitel such thatl 6∈ X , and
2. removing from each remaining rule all prerequisites,

and whereX< is inherited from< by the mappingf : XR −→ R, i.e. r′1
X<r′2 iff

f(r′1) < f(r′2), wheref(r′) is the first rule inR w.r.t.< such thatr′ results fromr by step
2.

In the above reduction, a rulea ← β is removed from the program w.r.t. a set of literals
X iff the prerequisite part of the rule is not applicable w.r.t. X , i.e.(β \ notβ−) 6⊆ X . The
prerequisites of the remaining rules can then be safely removed.

Definition 25
A set of ground literalsA ⊆ BR ∪ ¬BR is a B-preferred answer set of a full prioritization
P = (R, <) of a prioritized program, ifA is a B-preferred answer set ofAP . A is a B-
preferred answer set of a prioritized programQ, if A is a B-preferred answer set for some
P ∈ FP(Q). We useASB(Q) to denote the set of all B-preferred answer sets ofQ.

The following examples suggest that there is no clear relationship between the preferred
(Section 3) and B-preferred (Brewka and Eiter 1999) semantics.

Example 18
Consider the OLPP on the left side below.

¬a ← ¬b ←

a ← b ←

¬b ← ¬a ¬a ← ¬b

a ← b b ← a

¬a ← nota ¬b ← notb

a ← not¬a b ← not¬b

¬b ← ¬a, notb ¬a ← ¬b, nota
a ← b, not¬a b ← a, not¬b

This program has only one preferred answer set, i.e.I = {a, b}. On the other hand, the
transformed programE(P ) (see Definition 4) with the same ordering among the rules as
in P (see the program on the right side above), has two B-preferred answer sets, namelyI
andJ = {¬a,¬b}.

While the above example illustrates that the B-preferred answer set semantics may yield
too many answers w.r.t. the preferred answer set semantics,the next example shows that
both approaches can yield different answers.

Example 19
Consider the OLPP on the left side below, and its consistent versionE(P ), with the same
order among the rules, on the right.

¬b ←

b ←

a ← b

¬a ←

¬b ← notb

b ← not¬b

a ← b, not¬a

¬a ← nota
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Let us interpreta as ”we have light” andb as ”the power is on”. The fact that we do not
have any light (¬a) has the highest priority, followed by the rule that, if there is power, we
should have light (a ← b). The weakest rules assert that probably the power is on (b), but
on the other hand, it may not be (¬b).

Clearly, the only preferred answer set{¬a,¬b} of P fits well with our intuition: we have
no light because somehow, the power is cut (defeating theb ← rule). On the other hand,
the single B-preferred answer set is{¬a, b} which questions the rulea ← b, although this
rule is more preferred thanb ← . This example illustrates some form of contrapositive
reasoning: since it is preferable to satisfya ← b, and¬a holds, any answer set that pro-
vides (a motivation for)¬b will be preferred over one that does not. It is this capability
that is of interest in e.g. diagnostic applications (Van Nieuwenborgh and Vermeir 2003a;
Van Nieuwenborgh and Vermeir 2003b).

In the literature two stricter version of the B-preferred answer set semantics have been
considered: theD-preferred answer set semantics (Delgrande et al. 2000) andtheW -preferred
answer set semantics (Wang et al. 2000). A nice overview of and comparison between the
B-, W - andD- preferred answer sets can be found in (Schaub and Wang 2001). It turns out
(Theorem 8 in (Schaub and Wang 2001)) thatASD(R, <) ⊆ ASW (R, <) ⊆ASB(R, <)

⊆ AS(R), i.e.B-preferredness is more strict than traditional answer sets, W -preferredness
is more strict thanB-preferredness andD-preferredness is the most strict preference rela-
tion. This is illustrated by Example 18 where neitherI or J is W - or D-preferred. Nev-
ertheless, in Example 19 theB-preferred answer set{¬a, b} is alsoW - andD-preferred,
suggesting that there is no relationship between those approaches and the preferred answer
set semantics from Section 3.

(Brewka and Eiter 1999) also introduces two principles, which we rephrase below us-
ing the present framework, that every system based on prioritized defeasible rules should
satisfy.

Principle 1

Let M1 andM2 be two different extended answer sets of an ordered logic programP =

〈R, <〉, generated by the rulesR′ ∪ {d1} andR′ ∪ {d2}, whered1, d2 6∈ R′, respectively.
If d1 is preferred overd2, thenM2 is not a (maximally) preferred answer set ofP .

Principle 2

Let M be a preferred answer set of an ordered logic programP = 〈R, <〉 and letr be an
inapplicable rule w.r.t.M . ThenM is a preferred answer set of〈R∪{r}, <′〉 whenever<′

agrees with< on the preference among the rules inR.

In this context, a ruler is said to be generating w.r.t. an extended answer setM , if it is
applied w.r.t.M . It turns out that the preferred answer set semantics from Section 3 violates
Principle 1, as illustrated by the following example.

Example 20
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Let P be the OLP
a←

b←

¬a←

¬b←¬a

b←¬b

and consider the interpretationsI = {a, b} andJ = {¬a, b}. The generating rules for
I are{a ← , b ← }, while those forJ are{¬a ← , b ← }. Furthermore, we have that
¬a ← < a ← . SinceI is a preferred answer set ofP , this violates Principle 1.

The problem with Principle 1 comes from the fact that it only considers “generating”,
i.e. applied, rules while the semantics of Section 3 also takes into account unapplied but
satisfied rules, which have an equal influence on the shape of an answer set. E.g. in the
above example, the rule¬b ← ¬a is violated byJ but not byI, which should lead one to
preferI overJ .

These considerations lead to a modified version of Principle1 where “generating rules”
is replaced by “reducts” (Definition 1) of the extended answer sets.

Principle 1’ Let M1 andM2 be two different extended answer sets of an ordered logic
programP = 〈R, <〉, with reductsRM1

= R′ ∪ {d1} and RM2
= R′ ∪ {d2}, where

d1, d2 6∈ R′, respectively. Ifd1 is preferred overd2, thenM2 is not a (maximally) preferred
answer set ofP .

Clearly, the semantics of Section 3 obeys this principle (obviously,RM1
< RM2

). The
new principle is also vacuously satisfied for approaches, such as the B-preferred semantics,
that start from consistent programs. However, if we apply e.g. the B-preferred semantics
“indirectly” on inconsistent programs using the construction of Definition 4, it appears
from Example 19 that this semantics does satisfy Principle 1’.

Obviously, the second principle holds for the preferred answer set semantics.

Theorem 21
The preferred answer set semantics satisfies Principle 2.

Proof
Trivial. Adding inapplicable rules w.r.t. a preferred answer set to an ordered logic program
does not change anything to its preferredness.

4.2 Logic Programming with Ordered Disjunction

Logic programming with ordered disjunction (LPOD) (Brewka2002; Brewka et al. 2002)
combines qualitative choice logic (Brewka et al. 2002) withanswer set programming by
adding a new connective, called ordered disjunction, to logic programs. Using this connec-
tive, conclusions in the head of a rule are ordered accordingto preference. Intuitively, one
tries to satisfy an applicable rule by using its most preferred, i.e. best ranked, conclusion.
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Definition 26
A logic program with ordered disjunction (LPOD) is a set of rules of the forma1 × . . .× an ←

β, n ≥ 1, where theai’s are (ordinary) literals andβ is a finite set of extended literals.

An ordered disjunctive rulea1 × . . .× an ← β can intuitively be read as: ifβ is true,
then accepta1, if possible; if not, then accepta2, if possible; ...; if none ofa1, . . . , an−1

are possible, thenan must be accepted.
Similarly to ordered programs, the semantics for LPOD’s is defined in two steps. First,

answer sets for LPOD’s are defined, which are then ordered by arelation that takes into
account to what degree rules are satisfied. The minimal elements in this ordering are also
called preferred answer sets. To avoid confusion, we will use the term “preferred LPOD
answer sets” for the latter.

Answer sets for LPOD’s are defined usingsplit programs, a mechanism first used in
(Sakama and Inoue 1994) to define the possible model semantics for disjunctive logic pro-
grams.

Definition 27
Let r = a1 × . . .× an ← β be a LPOD rule. Fork ≤ n we define thekth option ofr as
rk = ak ← β, not{a1 , . . . , ak−1}.

An extended logic programP ′ is called asplit program of a LPODP if it is obtained
by replacing each rule inP by one of its options. An interpretationS is then an (LPOD)
answer setof P if it is an answer set of a split programP ′ of P .

Note that the split programs defined above do not contain negation as failure in the head
of rules.

Example 21
The LPOD

b × c× d←

c× a× d←

¬c← b

has five answer sets, namelyS1 = {a, b,¬c}, S2 = {b,¬c, d}, S3 = {c}, S4 = {a, d}

andS5 = {d}.
Note thatS5 ⊂ S4, illustrating that answer sets for LPOD programs need not besubset-

minimal. Intuitively, onlyS1 andS3 are optimal in that they correspond with a best com-
bination of options for each of the rules.

The above intuition is formalized in the following definition of a preference relation on
LPOD answer sets.

Definition 28
Let S be an answer set of a LPODP . ThenS satisfies the rulea1 × . . .× an ← β

- to degree1 if S 6|= β.
- to degreej (1 ≤ j ≤ n) if S |= β andj = min{i | ai ∈ S}.

For a set of literalsS, we defineSi(P ) = {r ∈ P | degS(r) = i}, wheredegS(r) is used
to denote the degree to whichr is satisfied w.r.t.S.
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Let S1 andS2 be answer sets ofP . ThenS1 is preferred overS2, denotedS1 <b S2,
iff there is ak such thatSk

2 (P ) ⊂ Sk
1 (P ), and for allj < k, S

j
1(P ) = S

j
2(P ). A minimal

(according to<b) answer set is called a (LPOD)preferred answer setof P .

Example 22

In the LPOD from Example 21, bothS1 andS3 satisfy the third rule to degree 1. In addition,
S1 satisfies the first rule to degree 1 and the second rule to degree 2, whileS3 satisfies the
second rule to degree 1 and the first rule to degree 2. ThusS1 andS3 are incomparable
w.r.t. <b. All other answer sets are less preferred than eitherS1 or S3: e.g.S5 satisfies the
first and second rule only to degree 3, and the third rule to degree 1, from whichS1 <b S5

andS3 <b S5. It follows thatS1 andS3 are both preferred.

Next, we show that the preference relation which is implicitin ordered disjunctive rules
can be intuitively simulated using preference between non-disjunctive rules in one sin-
gle ordered program. In (Brewka et al. 2002) an algorithm is presented to compute LPOD
preferred answer sets using traditional answer set programming. The algorithm needs two
different programs, i.e. a generator that computes answer sets and a tester for checking
preferredness, which are executed in an interleaved fashion. On the other hand, using the
following translation together with theOLPS solver (see Section 3.2) does the job in a
single run.

Definition 29

The EOLP version of a LPODP , denotedL(P ), is defined byL(P ) = 〈Pr ∪ P1 ∪ . . . ∪

Pn ∪ Pd, Pr < P1 < . . . < Pn < Pd〉, where

• n is the size of the greatest ordered disjunction in P;

• Pr contains every non-disjunctive rulea ← β ∈ P . In addition, for every or-
dered disjunctive ruler = a1 × . . .× an ← β ∈ P , Pr contains a ruleai ←

β, not{a1 , . . . , an} \ {ai} for every1 ≤ i ≤ n, a rulenapr ← not l for every
literal l ∈ β and a rulenapr ← l for everynot l ∈ β.

• Pd contains for every ordered disjunctive ruler = a1 × . . .× an ← β ∈ P a rule
notnapr ← and rulesnotai ← β, not{a1 , . . . , ai−1 } for every1 ≤ i ≤ n.

• for 1 ≤ k ≤ n, Pk is defined byPk = {ak ← β, not{a1 , . . . , ak−1} | a1 × . . .× am ←

β ∈ P with k ≤ m ≤ n}.

Intuitively, the rules inPr ensure that all rules inP are satisfied, while the rules inPd

allow to defeat a rule in one of theP1, . . . , Pn−1 in favor of a rule in a less preferred
component (see also Example 15). Finally, the rules inP1, . . . , Pn encode the intuition
behind LPOD, i.e. better ranked literals in an ordered disjunction are preferred.

The napr-literals (and their corresponding rules) serve to preventLPOD answer sets
that block disjunctive rules to be preferred over others inL(P ). E.g. the program

c× d← a

a← notb
b← nota
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has both{a, c} and{b} as preferred LPOD answer sets, with the latter blocking the dis-
junctive rule. Applying Definition 29 yields the EOLP

notnapc×d←a ←

notc← a

notd← a, notc

d← a, notc

c← a

c← a, notd
d← a, notc

napc×d←a ← nota
a← notb
b← nota

which has two preferred answer sets{a, c} and{b, napc×d←a}. Without thenapc×d←a

construct, only{b} would be preferred as{b} would satisfy all rules, while{a, c} would
defeatnotc ← a.

Example 23
The result of the transformation of the LPOD from Example 21 is shown below, where
r = b × c × d ← ands = c × a × d ← .

notb← notc←
notc← notb nota← notc
notd← notb, notc notd← notc, nota

notnapr← notnaps←

d← notb, notc d← nota, notc

c← notb a← notc

b← c←

b← notc, notd c← nota, notd
c← notb, notd a← notc, notd
d← notb, notc d← nota, notc
¬c← b

This EOLP program has two proper preferred answer sets, i.e.S1 = {a, b,¬c} andS3 =

{c}.

In general, the preferred LPOD answer sets for a LPOD programP coincide with the
proper preferred answer sets ofL(P ).

Theorem 22
An interpretationS is a preferred LPOD answer set of a LPODP iff there exists a proper
preferred answer setS′ of L(P ) such thatS = S′ ∩ (BP ∪ ¬BP ).
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4.3 Answer Set Programming with Consistency-Restoring Rules

In (Balduccini and Gelfond 2003; Balduccini and Mellarkod 2003) an extension of answer
set programming with consistency-restoring rules (cr-rules) and preferences10 is presented.
The approach allows problems to be described in a concise, and easy to read, manner.
While (Balduccini and Gelfond 2003) introduces cr-rules, (Balduccini and Mellarkod 2003)
combines them with ordered disjunction (Section 4.2). A possible application is presented
in (Balduccini 2004) where cr-rules are used to improve the quality of solutions in the
planning domain.

Intuitively, cr-rules in a program are like normal rules, but they can only be used as a last
resort to obtain solutions, i.e. only when the program without cr-rules is inconsistent we
can apply some of the cr-rules to obtain a solution for the problem, taking into account the
preferences among the cr-rules. Consider for example the following program where←cr

is used to denote cr-rules:
r1 : p ←cr nott
r2 : q ←cr nott
r3 : s ←

andr2 is preferred overr1. As the single ruler3 is consistent, the above program has only
one answer set, i.e.{s}. Adding the constraint

r4 :← notp, notq

causes the combination ofr3 andr4 to be inconsistent. In this case, one of the cr-rules
r1 or r2 is selected for application. Either of them yields, when combined withr3 andr4,
a consistent program, making both{p, s} and{q, s} candidate solutions for the program.
However, sincer2’s application is preferred overr1’s, only the latter candidate solution
should be sanctioned as an answer set of the program.

It turns out that the intuition behind consistency restoring rules can be captured by
the preferred answer set semantics using a translation similar to the one used for diag-
nostic and abductive reasoning with preferences (Van Nieuwenborgh and Vermeir 2003a;
Van Nieuwenborgh and Vermeir 2003b). E.g., the above program can be captured by the
following ordered program:

p ← not t , inconsistent

q ← not t , inconsistent

notq ← inconsistent

notp ← inconsistent

s ←

inconsistent ← nots
← notp, notq

inconsistent ← notp, notq

10 (Balduccini and Gelfond 2003; Balduccini and Mellarkod 2003) allow for both static and dynamic preferences;
here we only consider the static case.
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Intuitively, the non cr-rules, which must always be satisfied, are placed in the most spe-
cific component, together with rules that check when the normal program is inconsistent,
so allowing consistency-restoring rules to be applied. Thecr-rules are placed at the least
preferred level because they will only be applied as a last resort. In the middle levels we in-
troduce rules that allow for the defeat of the cr-rules, i.e.allowing an applicable cr-rule not
to be applied. The ordering relation on these rules is the opposite of the preference relation
between cr-rules as preferring (the application of)r2 overr1 corresponds to preferring the
satisfaction ofnotp ← uponnotq ← . It can be verified that the above ordered program
has only one preferred answer set{q, s, inconsistent} corresponding with the application
of the most preferred cr-rule, while removingr4 from the ordered program will result in
the single preferred answer set{s} implying that no cr-rules are used.

Example 7 (Section 3.1) provides another illustration of the above translation11: the
ordered program there is obtained by applying the construction on the following program
with cr-rules:

lift weights ←cr

play ball ←cr

run ←cr

swim ←cr

full body exercise ← lift weights , run

full body exercise ← swim, play ball

← not full body exercise

with, additionally,run ←cr < swim ←cr andball play ←cr < lift weights ←cr
12.

As with the translation of LPOD (Section 4.2), this illustrates how OLP can be used to
encode other extensions of answer set programming. Together with an OLP solver such as
OLPS(Section 3.2), it also provides a convenient translation-based implementation of such
higher level formalisms.

4.4 Ordered Logic,DOL andDLP<

Ordered logic programming has a long history: in (Laenens and Vermeir 1990; Gabbay et al. 1991;
Laenens and Vermeir 1992) semantics are given for ordered programs containing non-disjunctive
rules, while (Buccafurri et al. 1998; Buccafurri et al. 1999) apply the same ideas to the dis-
junctive case.

In all these approaches, the partial order on rules is used todecide conflicts between
contradictory rules, i.e. applicable rules that cannot both be applied in a consistent inter-
pretation. Specifically, an applicable ruler may be left unapplied, i.e. defeated, iff there
exists an applied competitorr′ that is more preferred, i.e.r < r′13. Clearly, these classical
semantics for ordered logic use the order relation on a localbasis, i.e. to resolve conflicts

11 As the program, except the constraint, is positive we can useclassical negation (¬) and dispense the
inconsistent literals and rules.

12 We user1 < r2 to indicate that (the application of) the cr-ruler1 is preferred overr2.
13 In some approaches one demands that the competitorr′ cannot be less preferred thenr, i.e. r′ 6> r, thus

allowing rules on the same level or on unrelated levels to defeat each other. However, this does not change
anything to the conclusions made in this section.
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between individual contradicting rules, while the semantics from Section 3 is based on a
global comparison of the reducts corresponding to the candidate answer sets.

This difference in using the order relation has important consequences on the complexity
of the resulting formalisms: while the semantics that use the order in a ”local” way all stay
in the same complexity class of the underlying non-ordered language, i.e.ΣP

1 -complete
for (Laenens and Vermeir 1990; Gabbay et al. 1991; Laenens and Vermeir 1992) andΣP

2 -
complete for (Buccafurri et al. 1998; Buccafurri et al. 1999), the “global order” semantics
from Section 3 increments the complexity in the polynomial hierarchy, i.e.ΣP

2 -complete
instead ofΣP

1 -complete (see Section 3.2).
The following example illustrates how the classical semantics leads to different, and, in

our opinion less intuitive, results from the preferred answer set semantics.

Example 24
Consider the following ordered program.

a←

¬a←

b←

¬b←¬a

Using the semantics from Section 3 yields one preferred answer set, i.e.I = {a, b}.
However, in the setting of the classical semanticsI cannot be a model as the rule¬a ← is
applicable, not applied and no better rule with opposite head exists. On the contrary, those
classical semantics will yieldJ = {¬a,¬b} as a model, which is certainly not a preferred
answer set as the ruleb ← is defeated w.r.t.J , while it is satisfied w.r.t.I.

5 Application: Repairing Databases

The notion of database repair was first introduced in (Arenaset al. 1999) to address the
problem of consistent query answering in inconsistent databases, which was first men-
tioned in (Bry 1997). (Arenas et al. 1999) describes an algorithm to compute such query
answers using database repairs, while (Arenas et al. 2000) provides an algorithm to com-
pute such repairs themselves, using a complex translation to disjunctive logic programs
with exceptions (Kowalski and Sadri 1990).

Here we show that database repairs can be obtained as the preferred answer sets of a sim-
ple and intuitive ordered program corresponding to the original database and constraints.
We review some definitions from (Arenas et al. 2000), using a simplified notation.

Definition 30
A databaseis a consistent set of literals. Aconstraint is a setA of literals, to be interpreted
as a disjunction,c = ∨a∈Aa. The Herbrand baseBC of a set of constraintsC is defined by
BC = ∪c∈CBc. A databaseD is consistentwith a set of constraintsC, whereBC ⊆ BD,
just whenD |= ∧c∈Cc, i.e.D is a classical model ofC. A set of constraintsC is consistent
iff there exists a databaseD such thatD is consistent withC.
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Definition 31
Let D andD′ be databases withBD = BD′ . We use∆D(D′) to denote the difference
D′\D. A databaseD induces a partial order relation14 ≤D defined by

D1 ≤D D2 iff ∆D(D1) ⊆ ∆D(D2) .

Intuitively, ∆D(D′) contains the update operations that must be performed onD to
obtainD′. A negative literal¬a in ∆D(D′) means that the facta must be removed from
D while a ∈ ∆D(D′) suggests addinga to D.

The≤D relation represents the closeness toD: D1 ≤D D2 means thatD1 is a better
approximation ofD thanD2 (note thatD ≤D D).

Definition 32
Let D be a database and letC be a set of constraints withBC ⊆ BD. A databaseD′ is
a C-repair of D iff D′ |= C andD′ is minimal in the≤D partial order; i.e.D′′ ≤D D′

implies thatD′′ = D′.

This definition differs from the one in (Arenas et al. 2000) where≤D was defined based
on the symmetric difference∆(D, D′) = (D+\D′+)∪(D′

+\D+) rather than our∆D(D′).
The following lemma shows that≤D is the same using both relations.

Lemma 2
Let D , D1 andD2 be databases over the same Herbrand base.∆D(D1) ⊆ ∆D(D2) iff
∆(D, D1) ⊆ ∆(D, D2).

From Lemma 2, it follows that Definition 32 is equivalent to the one in (Arenas et al. 2000).
Next we provide a construction that maps a databaseD and a set of constraintsC

to an ordered logic programP (D, C) which, as shall be shown further on, has theC-
repairs ofD as preferred answer sets. Using ordered logic instead of logic programs with
exceptions (Kowalski and Sadri 1990) greatly simplifies (w.r.t. (Arenas et al. 2000)) con-
structing repairs: we can dispense with the shadow versionsof each predicate and we do
not need disjunction. Moreover, our approach handles constraints of arbitrary size, while
(Arenas et al. 2000) is limited to constraints containing upto two literals.

Definition 33
Let D be a database and letC be a consistent set of constraints withBC ⊆ BD. The
ordered versionof D w.r.t. C, denotedP (D, C), is shown below.

{¬a ← | a ∈ D} (n)

{a ← | a ∈ D} (d)

{a ← ¬(A\{a}) | ∨a∈Aa ∈ C} (c)

Intuitively, thec-rules enforce the constraints (they are also the strongestrules according
to the partial order). Thed-rules simply input the database as “default” facts while the n-
rules will be used to provide a justification for literals needed to satisfy certainc-rules, thus
defeatingd-rules that would cause constraints to be violated.

14 The proof that≤D is a partial order is straightforward.
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Theorem 23

LetD be a database and letC be a consistent set of constraints withBC ⊆ BD. Each repair
of D w.r.t. C is a preferred answer set ofP (D, C).

The reverse of Theorem 23 also holds.

Theorem 24

Let D be a database and letC be a consistent set of constraints withBC ⊆ BD. Each
preferred answer set ofP (D, C) is aC-repair ofD.

Example 25

Consider the propositional version of the example from (Arenas et al. 2000) where the
databaseD = {p, q, r} and the set of constraintsC = {¬p ∨ q,¬p ∨ ¬q,¬q ∨ r,¬q ∨

¬r,¬r ∨ p,¬r ∨ ¬p, }. The programP (D, C) is shown below.

¬p← ¬q← ¬r←

p← q← r←

¬p←¬q q← p ¬p← q

¬q← p ¬q←¬r r← p

¬r← q ¬q← r p← r

¬r←¬p ¬p← r ¬r← p

It is easily verified thatR = {¬p,¬q,¬r} is the only repair ofD w.r.t. C and the only
proper preferred answer set ofP (D, C).

The example below illustrates that the simple translation of Definition 33 for database
repairs does not work with other ordered formalisms (see Section 4), where a rule may be
left unsatisfied if there exists an applicable (or applied) better rule with an opposite head.

Example 26

Consider the databaseD = {¬a,¬b} and the following set of constraintsC = {a ∨

¬b,¬a ∨ b}. Obviously,D itself is the only repair w.r.t.C. Now, considerP (D, C) which
is shown below.

a← b←

¬a← ¬b←

a← b b← a

¬a←¬b ¬b←¬a

This program has only one proper preferred answer set, namely D itself. But, when we
consider the same program in most other ordered formalisms,e.g. (Laenens and Vermeir 1992),
we get two solutions, i.e.D and{a, b}.
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6 Conclusions and Directions for Further Research

The preferred answer set semantics for ordered programs is based on a few simple intu-
itions: ignore rules that are defeated by other applied rules and order answer sets according
to the natural order between the sets of rules that they satisfy. The resulting system is sur-
prisingly powerful and versatile and turns out to be useful for several application areas such
as database repair (Section 5) or diagnostic systems (Van Nieuwenborgh and Vermeir 2003a;
Van Nieuwenborgh and Vermeir 2003b). It may also serve as a “common base language”
for the encoding and implementation (through an OLP solver)of other higher level exten-
sions of answer set programming such as ordered disjunctions (Brewka 2002; Brewka et al. 2002)
or programs with consistency-restoring rules (Balducciniand Gelfond 2003; Balduccini and Mellarkod 2003).

A first implementation of an ordered logic program solver (OLPS) is available under
the GPL at http://tinf2.vub.ac.be/olp/. After grounding,OLPS computes (a
selection of) the proper preferred answer sets of a finite ordered program.

Besides research topics relating to the theory and implementation of the preferred answer
set semantics, there are also some other application areas that still need to be explored. One
such area concerns updates of logic programs, see e.g. (Eiter et al. 2000; Alferes and Pereira 2000).
Here, it is natural to consider a new update as an addition of anew most specific level to
the ordered program representing the previous version. Thepreferred answer set semantics
will then return solutions that favor compatibility with more recent knowledge, possibly at
the expense of earlier rules.

The formalism can also be extended to consider hierarchies of preference orders. Such
a system could be used to model hierarchical decision makingwhere each agent has her
own preferences, and agents participate in a hierarchy representing relative authority or
confidence. The semantics of such a system should reflect bothindividual preferences and
the decision hierarchy.

Finally, it would be interesting to apply the intuition of Definition 6 to a system where
preferences are expressed on literals rather than on rules.Intuitively, in such a formalism,
preference would depend on the content of the candidate answer sets, rather than how
well they satisfy the underlying rules15. In fact, a system that combines both rule- and
literal-preferences, perhaps in a complex hierarchy as mentioned above, could be useful
for certain applications.

Appendix: Proofs

Theorem 5
Let P be a SLP. The extended answer sets ofP coincide with the answer sets ofE(P ).

Proof
=⇒ Let M be an extended answer set ofP . We must show thatM is an answer set of

E(P ), i.e.M is an answer set of the simple programE(P )M which is obtained fromE(P )

by keeping (a) the rulesa ← β from P where¬a 6∈M and (b) the constraints← β from
P . Thus it suffices to show thatP ⋆

M = E(P )M ⋆
.

15 A system using preferences on literals has been proposed in (Sakama and Inoue 1996) but the way these pref-
erences are used to obtain a ranking of answer sets is different from our proposal.

http://tinf2.vub.ac.be/olp/
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Consider a ruler = a ← β in E(P )M . Since¬a 6∈M , this rule cannot be defeated and
hencer ∈ PM . Further, constraintss = ← β in E(P )M can never be defeated and asM

is an extended answer set they are satisfied w.r.t.M , sos ∈ PM . As a resultE(P )M ⊆ PM

and, by the monotonicity of the⋆-operator,

E(P )M ⋆
⊆ P ⋆

M . (1)

Next, note thatP ⋆
M = {r | r applied w.r.t.M}⋆, i.e. only the applied rules inPM

suffice to generateM . Each applied ruler = a ← β in PM must belong toE(P )M

sincea ∈ M , and thus¬a 6∈ M , becauser is applied. ThusP ⋆
M ⊆ E(P )M ⋆

and, by (1),
P ⋆

M = E(P )M ⋆
.

⇐= Let M be an answer set ofE(P ), i.e.M = E(P )M ⋆
whereE(P )M is as above.

We show thatM is an extended answer set ofP . Obviously, all rules inE(P )M are satis-
fied byM and thusE(P )M ⊆ PM and, by the monotonicity of the⋆-operator,M ⊆ P ⋆

M .
The constraints inE(P ) do not contain negation as failure and, obviously, they are

satisfied byM . So, all rulesr not kept inE(P )M have the forma ← β.
For a ruler = a ← β not in E(P )M we know that¬a ∈ M . If β 6⊆ M , r is

not applicable and thusr ∈ PM . If, on the other hand,β ⊆ M , r is defeated because
¬a ∈ M ⊆ P ⋆

M , which implies the existence of an applied competitor inPM . Thus each
unsatisfied rule inP is defeated w.r.t.M . It remains to be shown thatP ⋆

M = M . This
follows from E(P )M ⊆ PM and the fact that only rules that are not applicable w.r.t.M

are inPM \E(P )M .

Theorem 7
Let< be a well-founded strict partial order on a setX . The binary relation⊑ on2X defined
by X1 ⊑ X2 iff ∀x2 ∈ X2\X1 · ∃x1 ∈ X1\X2 · x1 < x2 is a partial order.

Proof
The relation⊑ is clearly reflexive. To show that it is antisymmetric, assume that both
X1 ⊑ X2 andX2 ⊑ X1. We show thatX1\X2 = X2\X1 = ∅, from whichX1 = X2.
Assume that, on the contrary,X2\X1 6= ∅ and letx0 be a minimal element inX2\X1 (such
an element exists because< is well-founded). BecauseX1 ⊑ X2, there existsx1 ∈ X1\X2

for whichx1 < x0. SinceX2 ⊑ X1, x1 ∈ X1\X2 implies the existence ofx2 ∈ X2\X1

such thatx2 < x1 < x0, contradicting the fact thatx0 is minimal inX2\X1.
To show that⊑ is transitive, letX1 ⊑ X2 ⊑ X3 and letx0 ∈ X3\X1. We consider two

possibilities.

• If x0 ∈ X2 then, becauseX1 ⊑ X2, there existsx1 ∈ X1\X2 with x1 < x0, where we
choosex1 to be a minimal element satisfying these conditions. Again there are two cases:

— If x1 6∈ X3 thenx1 ∈ X1\X3, showing thatX1 ⊑ X3.
— If x1 ∈ X3 thenx1 ∈ X3\X2 and thus, sinceX2 ⊑ X3, there existsx2 ∈ X2\X3

such thatx2 < x1 < x0. If x2 ∈ X1 we are done. Otherwisex2 ∈ X2\X1 and thus,
sinceX1 ⊑ X2, there existsx3 ∈ X1\X2 wherex3 < x2 < x1 < x0, contradicting
the minimality assumption onx1.

• Otherwise,x0 6∈ X2 and thus, becauseX2 ⊑ X3, there exists an elementx1 ∈ X2\X3

such thatx1 < x0 where we choosex1 to be a minimal element satisfying these conditions.
Again there are two cases:
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— If x1 ∈ X1 then we are done asx1 < x0.

— Otherwise, sinceX1 ⊑ X2, there exists an elementx2 ∈ X1\X2 such thatx2 < x1.
If x2 6∈ X3 then we are done asx2 < x0. If, on the other hand,x2 ∈ X3, X2 ⊑ X3

implies the existence of an elementx3 ∈ X2\X3 with x3 < x2, contradicting our
earlier assumption of the minimality ofx1.

Hence, in call cases, there exists an elementx ∈ X1 \X3 such thatx < x0 and thus
X1 ⊑ X3.

Theorem 9

Let P be an (non-disjunctive) seminegative logic program The ordered version ofP , de-
notedN(P ) is defined byN(P ) = 〈P ′ ∪ P¬, <〉 with P¬ = {¬a ← | a ∈ BP } andP ′

is obtained fromP by replacing each negated literalnotp by ¬p. The order is defined by
P ′ < P¬, i.e.∀r ∈ P ′, r′ ∈ P¬ · r < r′ (note thatP ′∩P¬ = ∅). ThenM is a stable model
of P iff M ∪ ¬(BP \M) is a proper preferred answer set ofN(P ).

Proof

=⇒ Let M ⊆ BP be a stable model ofP . Thus, by definition,PM ∗ = M wherePM is
the result of the Gelfond-Lifschitz transformation. We show first thatM ′ = M∪¬(BP\M)

is an extended answer set ofR = P ′ ∪ P¬. Besides{¬a | ¬a ∈M ′} the reductRM ′ also
contains all rules fromP ′: if not, there would be a rulea ← β in PM whereβ ⊆M while
a 6∈ M , contradicting thatPM ⋆

= M . Also, it is is easy to see that applying theRM ′ -
rules from{¬a ← | ¬a ∈ M ′} blocks16 all rules corresponding to rules fromP \PM .
Consequently,R⋆

M ′ = ({¬a ← | ¬a ∈M ′} ∪ PM )⋆ = M ′.
To show thatRM ′ is minimal (andM ′ is preferred), note for anyR-extended answer set

X with RX < RM ′ , it must be the case thatRX ⊃ RM ′ and, moreover,(RX\RM ′) ⊆ P¬
since the only rules defeated byM ′ are inP¬. Let¬a ← ∈ RX\RM ′ . Since⋆ is monotonic
andP ′ ⊆ RX , it follows thatR⋆

X ⊇ {a,¬a}, contradicting thatX is an extended answer
set. From the fact thatP ′ ⊆ RM ′ , it follows thatM ′ is proper.
⇐= Let M ′ be a proper preferred answer set ofN(P ) = 〈R = P ′ ∪ P¬, <〉. As

M ′ is proper,P ′ ⊆ RM ′ . Clearly M ′ ∩ ¬BP = {¬a | ¬a ← ∈ (P¬ ∩ RM ′} and
M ′+ = (R⋆

M ′ )+ = Q⋆, whereQ is obtained fromP ′ ⊆ RM ′ by removing all rules that
contain a literal¬a in the body such thata ∈M ′ and, moreover, removing¬a ∈M ′ from
the bodies of the remaining rules. ThenQ = PM+

, yielding thatM+ is a stable model of
P .

Theorem 10

Let P be a positive disjunctive logic program.M is a minimal model ofP iff M ′ =

M ∪ ¬(BP \M) is a proper preferred answer set ofD(P ).

16 A rule a ← α is blocked w.r.t. and interpretationI if α ∩ ¬I 6= ∅.
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Proof
=⇒ Let M be a minimal model ofP . Clearly,M ′ is total forD(P ) and, by construc-

tion, each rule inD(P ) is either satisfied or defeated. On the other hand, the rules from
D(P )M ′ ∩ (P+ ∪ P−) suffice to generateM ′ which is thus founded. Hence, by Defini-
tion 3, M ′ is an extended answer set ofD(P ). Since all rules inPp are satisfied by any
model ofP , M ′ is also proper.

To show thatM ′ is preferred, assume it is not, i.e.N < M ′ for some proper extended
answer setN of D(P ), for which, obviously,N+ is also a model ofP . From the con-
struction ofD(P ) and Definition 6, we obtain thatD(P )M ′ \D(P )N ⊆ P+ from which
N+ ⊂M , contradicting the fact thatM is a minimal model ofP .
⇐= Let M ′ = M ∪ ¬(BP \M) be a proper preferred answer set ofD(P ). Clearly,

sinceM ′ |= Pp, M must be a model ofP by construction of the rules inPp. To show
thatM is minimal, assume that it is not, i.e.N ⊂ M for some modelN of P . A similar
reasoning as above yields thatN ′ = N ∪ ¬(BP \N) is a proper extended answer set of
D(P ). Moreover, fromN ⊂M , it is straightforward to show thatN ′ < M ′, contradicting
thatM ′ is preferred.

Lemma 3
Let P be a seminegative DLP and letM1 and M2 be proper extended answer sets of
Dn(P ). ThenM+

1 ⊂M+
2 iff M1 < M2.

Proof
=⇒ Assume thatM+

1 ⊂M+
2 and letr ∈ Dn(P )M2

\Dn(P )M1
and lets ∈ Dn(P )M1

\

Dn(P )M2
. Since bothM1 andM2 are proper, it must be the case thatr, s ∈ P− ∪ Pc.

Obviously,Dn(P )M2
∩ P− = {¬a ← ∈ P− | ¬a ∈M2\M

+
2 }. As bothM1 andM2 are

total andM+
1 ⊂M+

2 , we know that∀¬a ∈M2\M
+
2 ·¬a ∈M1\M

+
1 and∀a ∈M+

2 \M
+
1 ·

¬a ∈M+
1 . Combining the above yields thatDn(P )M1

∩P− = (Dn(P )M2
∩P−)∪{¬a ←

∈ P− | a ∈ M+
2 \M

+
1 }. Thus,(Dn(P )M2

∩ P−) ⊂ (Dn(P )M1
∩ P−), makingM1

preferred uponM2, i.e.M1 < M2.
⇐= Assume thatM1 < M2 (from which,M1 6= M2) and leta ∈ M+

1 \M
+
2 . Since

a 6∈ M+
2 , theP− rule r¬a = ¬a ← cannot be defeated and thus¬a ∈ M2 andr¬a ∈

Dn(P )M2
. On the other hand,r¬a 6∈ Dn(P )M1

because the rule is defeated by a rule
introducinga into M1. Thusr¬a ∈ Dn(P )M2

\Dn(P )M1
but, sinceM1 and M2 are

proper,r¬a is not countered byDn(P )M1
, contradicting thatM1 < M2.

Theorem 12
Let P be a seminegative DLP. An interpretationM is a proper preferred answer set of
Dn(P ) iff M+ is a minimal possible model ofP .

Proof
We show that the proper extended answer sets ofDn(P ) coincide with the possible models
of P , from which, by Lemma 3, the theorem readily follows.

=⇒ Let M be a proper extended answer set ofDn(P ) and considerSM (P ) =

(Dn(P )M ) ∩ Pc where all occurrences of negative literals¬a have been replaced by their
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negation-as-failure counterpartsnota. We claim thatSM (P ) is a split program ofP be-
causeSM (P ) contains at least one split clause for each ruleα← β from P . Indeed, if this
were not the case, there would exist a ruleα ← β such thatβ ⊆ M while α ∩M = ∅,
violating the corresponding rules inPp and thus contradicting the assumption thatM is
proper.

To show thatM is a possible model, it then suffices to show thatP ′⋆ = M+, where

P ′ = SM (P )M+

is the result of applying the Gelfond-Lifschitz transformation toSM (P )

andM+. However, we already know thatP ′′⋆ = M whereP ′′ = (Dn(P )M ) ∩ (Pc ∪

P−) because rules fromDn(P )M ∩ Pp are not needed to “produce”M (indeed, for any
applicable (and thus applied) rulea ← β ∪ ¬(α\{a}) in Dn(P )M ∩ Pp, there exists an
“equivalent” applied rulea ← β in Dn(P )M ∩ Pc). It is then not difficult to see thatP ′

can also be obtained fromP ′′ by (a) removing all negative literals¬a, where¬a ← is
in P ′′, from all rule bodies, and (b) removing any rules that still contain negative literals,
thus also the rules¬a ← which were not affected by (a). Since this this operation canbe
viewed as part of the computation of(P ′′⋆)+ = M+, it follows thatP ′⋆ = M+.
⇐= Let N ⊆ BP be a possible model corresponding to a split programSN (P ) of P

and letM = N ∪ ¬(BP \N). We useP ′ to denote the program obtained fromSN (P ) by
replacingnotβ by¬β in all its rules. It follows thatP ′′ = Dn(P )M = X ∪ {¬a ← | a ∈

(BP \N} ∪ Pp whereP ′ ⊆ X ⊆ Pc. To show thatM is a proper extended answer set we
must show that (1)M |= r for anyr ∈ Pp, (2)P ′′⋆ = M , and (3) each rule inDn(P )\P ′′

is defeated. Clearly, (1) follows from the fact thatM is a model ofP (Proposition 3.1 in
(Sakama and Inoue 1994)). To establish (2), it suffices to note that(P ′∪(P ′′∩P−))⋆ = M

becauseM+ is a possible model, from whichP ′′⋆ = M because(P ′ ∪ (P ′′ ∩ P−) ⊆ P ′′

(and, by definition ofP ′′, P ′′⋆ ⊆ M ). (3) then follows immediately from the fact thatM

is total and (2).

Lemma 4
Let 〈P, <〉 be an ordered program andR ⊆ P andT ⊆ P be sets of rules. ThenT 6< R iff
R has a witness againstT , which is equivalent to∃X ∈ ω(T ) ·X ⊆ R.

Proof
From the definition of<, it immediately follows thatT 6< R iff R has a witness againstT .

To show the second part of the lemma, supposeX ⊆ R for someX ∈ ω(T ). Then
X = {r} ∪ (down({r}) ∩ T ) for somer 6∈ T . It is then straightforward to verify thatr is
a witness forR againstT and thusT 6< R.

Conversely, ifT 6< R then, according to the first part of the lemma, there exists a witness
r ∈ R\T for which it is easy to verify thatr 6∈ T while down({r}) ∩ T ⊆ R, and thus
r ∈ ω(T ).

Lemma 5
Let 〈P, <〉 be an ordered program,〈Ri, Ro〉 be a specification,C a constraint andr a
minimal (according to<) element fromP\(Ri∪Ro). LetR, with r ∈ R, be a set of rules.
ThenR ∈ min µ(〈Ri, Ro〉, C) iff R ∈ min µ(〈Ri ∪ {r}, Ro〉, C).
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Proof
=⇒ Let R ∈ min µ(〈Ri, Ro〉, C). Then, by definition,R ∈ µ(〈Ri ∪ {r}, Ro〉, C)

becauser ∈ R. Assume that, on the contrary,R 6∈ min µ(〈Ri ∪ {r}, Ro〉, C). Hence
∃T ∈ µ(〈Ri ∪ {r}, Ro〉, C) · T < R. But then alsoT ∈ µ(〈Ri, Ro〉, C) becauseµ(〈Ri ∪

{r}, Ro〉, C) ⊆ µ(〈Ri, Ro〉, C). Consequently,R would not be minimal inµ(〈Ri, Ro〉,

C), a contradiction.
⇐= Let R ∈ min µ(〈Ri ∪ {r}, Ro〉, C) and assume that, on the contrary,

∃T ∈ µ(〈Ri, Ro〉, C) · T < R. Surely,r 6∈ T , since otherwiseT ∈ µ(〈Ri ∪ {r}, Ro〉, C)

andR would not be minimal inµ(〈Ri∪{r}, Ro〉, C). Becauser is minimal inP\(Ri∪Ro),
down({r})∩T = down({r})∩R, and thusr ∈ R is a witness forR againstT . It follows
thatT 6< R, contradicting our assumption.

Lemma 6
Let 〈P, <〉 be an ordered program,〈Ri, Ro〉 be a specification,C a constraint andr a min-
imal (according to<) element fromP \(Ri ∪Ro). Let R, with r 6∈ R be a set of rules.
Then, R ∈ min µ(〈Ri, Ro〉, C) iff R ∈ min µ(〈Ri, Ro ∪ {r}〉, C) and
∀T ∈ min µ(〈Ri ∪ {r}, Ro〉, C) · T 6< R.

Moreover, ifC′ is such that

µ(〈Ri, Ro ∪ {r}〉, C
′) =

{T | T ∈ µ(〈Ri, Ro ∪ {r}〉, C) ∧ ∀m ∈M · ∃x ∈ ω(m) · x ⊆ T } (2)

with M = min µ(〈Ri ∪ {r}, Ro〉, C), then

min µ(〈Ri, Ro ∪ {r}〉, C
′) =

{T | T ∈ min µ(〈Ri, Ro ∪ {r}〉, C) ∧ ∀m ∈M · ∃x ∈ ω(m) · x ⊆ T } (3)

Proof
=⇒ Suppose thatR ∈ min µ(〈Ri, Ro〉, C). Sinceµ(〈Ri, Ro ∪ {r}〉, C) ⊆ µ(〈Ri, Ro〉,

C) andR ∈ µ(〈Ri, Ro ∪ {r}〉, C), R ∈ min µ(〈Ri, Ro ∪ {r}〉, C).
Let T ∈ min µ(〈Ri ∪ {r}, Ro〉, C). By Lemma 5,T ∈ min µ(〈Ri, Ro〉, C). Conse-

quently,R can only be minimal inµ(〈Ri, Ro〉, C) if T 6< R.
⇐= Let R ∈ min µ(〈Ri, Ro ∪ {r}〉, C) such that∀T ∈ min µ(〈Ri ∪ {r}, Ro〉, C) ·

T 6< R and assume that, on the contrary,S < R for someS ∈ µ(〈Ri, Ro〉, C). Without
loss of generality, we can assume thatS is minimal inµ(〈Ri, Ro〉, C). Note thatr 6∈ S is
impossible since that would putS in µ(〈Ri, Ro∪{r}〉, C), contradicting thatR is minimal
in µ(〈Ri, Ro∪{r}〉, C). It follows thatr ∈ S and thus, by our assumption thatS is minimal
in µ(〈Ri, Ro〉, C) and by Lemma 5, thatS is minimal inµ(〈Ri ∪ {r}, Ro〉, C). But then
our assumption guaranteesS 6< R, a contradiction.
⊇ of (3) Let T be any set inmin µ(〈Ri, Ro ∪ {r}〉, C) that satisfies∀m ∈M ·

∃x ∈ ω(m) · T ∩ ω(m) 6= ∅. By (2), T ∈ µ(〈Ri, Ro ∪ {r}〉, C′). If T would not be
minimal in µ(〈Ri, Ro ∪ {r}〉, C′), there would exist aS < T in µ(〈Ri, Ro ∪ {r}〉, C′).
But, by (2),S ∈ µ(〈Ri, Ro∪{r}〉, C), contradicting thatT is minimal inµ(〈Ri, Ro∪{r}〉,

C).
⊆ of (3) Assume, on the contrary, thatS ∈ min µ(〈Ri, Ro ∪ {r}〉, C′) whileS 6∈ {T |

T ∈ min µ(〈Ri, Ro ∪ {r}〉, C)∧∀m ∈M · ∃x ∈ ω(m) · x ⊆ T }. Obviously,S ∈ µ(〈Ri,
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Ro ∪ {r}〉, C′) which, combined with (2), yields that∀m ∈M · ∃x ∈ ω(m) · x ⊆ S

holds. So, it must be the case thatS 6∈ min µ(〈Ri, Ro ∪ {r}〉, C), but from (2) we have
that S ∈ µ(〈Ri, Ro ∪ {r}〉, C), thus∃U ∈ µ(〈Ri, Ro ∪ {r}〉, C) · U < S. SinceS ∈

min µ(〈Ri, Ro ∪ {r}〉, C′) we have thatU 6∈ min µ(〈Ri, Ro ∪ {r}〉, C′), but alsoU 6∈

µ(〈Ri, Ro ∪ {r}〉, C′) and thus∃m ∈M · ∀x ∈ ω(m) · x 6⊆ U . As a result,U has no
witness against somem ∈ M , from which, by Lemma 4,m < U . Since< is a partial
order, transitivity withU < S yieldsm < S, contradicting thatS has a witness against
anym ∈M .

Lemma 7
Let 〈P, <〉 be an ordered program. IfR is minimal w.r.t.< in µ(〈Ri, Ro〉, C) thenR ∈

aset(〈Ri, Ro〉, C).

Proof
Let R ∈ min µ(〈Ri, Ro〉, C). We show the result by induction on the cardinality ofP \

(Ri ∪Ro).
For the base case, we have thatRi ∪Ro = P and, consequently,µ(〈Ri, Ro〉, C) = {R}

which is also returned byaset(〈Ri, Ro〉, C).
For the induction step, take a minimal ruler ∈ P \ (Ri ∪ Ro), such that

aset(〈Ri, Ro〉, C) callsaset(〈Ri ∪ {r}, Ro〉, C) andaset(〈Ri, Ro ∪ {r}〉, C
′).

We consider two cases.

• If r ∈ R then, by Lemma 5,R ∈ min µ(〈Ri ∪ {r}, Ro〉, C). From the induction hypoth-
esis, it follows thatR ∈ aset(〈Ri ∪ {r}, Ro〉, C). It is clear thataset(〈Ri ∪ {r}, Ro〉,

C) ⊆ aset(〈Ri, Ro〉, C) and thusR ∈ aset(〈Ri, Ro〉, C).
• If r 6∈ R then, by Lemma 6,R ∈ min µ(〈Ri, Ro ∪ {r}〉, C) and, moreover,S 6< R for

anyS ∈ min µ(〈Ri ∪ {r}, Ro〉, C). The latter condition is ensured by the definition ofC′

in the code of Figure 1: it is straightforward to show thatR |= C′ iff R |= C andR has a
witness against everym ∈M . Hence

µ(〈Ri, Ro ∪ {r}〉, C
′) =

{T | T ∈ µ(〈Ri, Ro ∪ {r}〉, C) ∧ ∀m ∈M · ∃x ∈ ω(m) · x ⊆ T }

From (3) in Lemma 6 and the induction hypothesis, it then follows that R ∈

aset(〈Ri, Ro ∪ {r}〉, C′), from whichR ∈ aset(〈Ri, Ro〉, C) by the last line in Figure 1.

Lemma 8
Let 〈P, <〉 be an ordered program,〈Ri, Ro〉 be a specification andC a constraint. Then
aset(〈Ri, Ro〉, C) ⊆ min µ(〈Ri, Ro〉, C).

Proof
Clearly, the function terminates since, within a callaset(〈Ri, Ro〉, C), any recursive call
aset(〈R′i, R

′
o〉, C

′) satisfiesRi ∪Ro ⊂ R′i ∪R′o while Ri ∪Ro is bounded from above by
the finite setP .

Since the functionasetis recursive, we can show the result by induction on the depthof
the recursion.

For the base case, we consider two possibilities:
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• If 〈Ri, Ro〉 is inconsistent withC thenµ(〈Ri, Ro〉, C) = ∅ and the lemma holds vacuously.
• If Ri∪Ro = P , R⋆

i is an extended answer set and〈Ri, Ro〉 is consistent withC thenµ(〈Ri,

Ro〉, C) = {Ri} and, again, the lemma holds vacuously.

For the induction step, letR ∈ aset(〈Ri, Ro〉, C). There are two possibilities.

• R ∈ aset(〈Ri ∪ {r}, Ro〉, C) and thus, by the induction hypothesis,R ∈

min µ(〈Ri ∪ {r}, Ro〉, C). Lemma 5 then impliesR ∈ min µ(〈Ri, Ro〉, C).
• If R ∈ aset(〈Ri, Ro ∪ {r}〉, C′) whereC′ satisfies

µ(〈Ri, Ro ∪ {r}〉, C
′) =

{T | T ∈ µ(〈Ri, Ro ∪ {r}〉, C) ∧ ∀m ∈M · ∃x ∈ ω(m) · x ⊆ T } (4)

The induction hypothesis impliesR ∈ min µ(〈Ri, Ro ∪ {r}〉, C′). Together with (4) and
Lemma 6, this implies thatR ∈ min µ(〈Ri, Ro〉, C).

Theorem 13
Let 〈P, <〉 be an ordered program,〈Ri, Ro〉 be a specification andC a constraint. Then
aset(〈Ri, Ro〉, C) = minµ(〈Ri, Ro〉, C).

Proof
Immediate from Lemma 7 and Lemma 8

Theorem 17
The problem of deciding, given an arbitrary ordered programP and a literala, whethera
occurs in every preferred answer set ofP is ΠP

2 -hard.

Proof
The proof uses a reduction of the knownΠP

2 -hard problem of deciding whether a quantified
boolean formulaφ = ∀x1, . . . , xn · ∃y1, . . . , ym · F is valid, where we may assume that
F = ∧c∈Cc with eachc a disjunction of literals overX ∪ Y with X = {x1, . . . , xn} and
Y = {y1, . . . , ym} (n, m > 0).

The programP corresponding toφ is shown below.

P1 = {x ← ¬x ← | x ∈ X}

P2 = sat ←

P3 = {y ← ¬y ← | y ∈ Y }

P4 = sat ← ¬sat

P5 = {¬sat ← c′ | c ∈ C}

wherec′ is obtained fromc by taking the negation, i.e. ifc = l1 ∨ . . . ∨ ln, thenc′ denotes
¬l1 ∧ . . . ∧ ¬ln.

Obviously, the construction ofP can be done in polynomial time. Intuitively, the rules
in P1 andP3 are used to guess a truth assignment forX ∪ Y .

In the sequel, we will abuse notation by usingxM andyM whereM is an answer set
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for P , to denote subsets ofM , e.g.xM = X ∩M and in expressions such asF (xM , yM )

which stands forF (x1, . . . , xn, y1, . . . ym) with xi = true iff xi ∈ xM and, similarly,
yj = true iff yj ∈ yM . We will also sometimes abbreviate the arguments ofF , writing
e.g.F (x, y) rather thanF (x1, . . . , xn, y1, . . . ym).

The following properties ofP are straightforward to show:

1. A rule in P5 is only applicable ifF does not hold. If we have an extended answer setM

containing¬sat ∈M , thenF (xM , yM ) does not hold.
2. Any preferred answer setM of P always satisfies all the rules inP5, otherwiseM ′ =

(M \ {sat}) ∪ {¬sat} would be better thenM , a contradiction.
3. For each combinationXi of X we have at least one preferred answer set containingXi.

For extended answer setsM1 andM2, with M1 ∩ X 6= M2 ∩ X , neitherM1 < M2 nor
M2 < M1 holds, as the rules inP1 are unrelated to any other rules.

We show thatφ is valid iff sat ∈M for every preferred answer setM of P .
To show the ”if” part, assume that every preferred answer setM containssat ∈ M .

Supposeφ is not valid, then there exists a combinationXi of X such that∀y · ¬F (Xi, y).
By (3) we know that there must exist at least one preferred answer setM ′ with Xi ⊆ M ′.
Combining (1) and (2) with the fact that∀y · ¬F (Xi, y) yields¬sat ∈ M ′, contradicting
that every preferred answer set containssat. Thus,φ is valid.

To show the reverse, assume thatφ is valid. Suppose there exists a preferred answer set
M of P not containingsat, i.e.sat 6∈M . Then, by construction ofP , ¬sat ∈M . By (1),
this yields thatF (xM , yM ) does not hold. AsM is preferred any other preferred answer
setM ′ containingxM (we will have one for each combination ofY due to the rules in
P3) must also makeF not valid, otherwiseM could not be preferred, as the one makingF

valid would satisfy the ruleP4 which is defeated w.r.t.M , making it obviously preferred
uponM . This yields that for the combinationxM of X no combination ofY exists making
F true, i.e.∃x · ∀y · ¬F (x, y), a contradiction. Thus, every preferred answer set contains
sat.

Theorem 18
Let P be anELP . Then,S is an extended answer sets ofP iff there is an answer setS′ of
E(P ) such thatS = S′ ∩ (BP ∪ ¬BP ).

Proof
=⇒ LetS be an extended answer set ofP and consider the interpretationS′ = S∪{nota |

nota ← β ∈ P ∧ S |= β ∪ {nota}}. Then,S′ is an answer set ofE(P ).
First we show that every rule inE(P ) is satisfied w.r.t.S′. Constraint rules are clearly

satisfied w.r.t.S′. Suppose there is a rulea ← β, not¬a, not(nota) ∈ E(P ) such that
S′ |= β ∪ {not¬a, not(nota)} andS′ 6|= a. By construction of the rule, the corresponding
rule in P is also applicable and not applied w.r.t.S. As S is an extended answer set, this
means that there must be an applied ruleX ← β with X = ¬a or X = not a in P

defeating the rulea ← β. By construction of the rules inE(P ) and the construction ofS′,
the corresponding rule inE(P ) is also applied w.r.t.S′, i.e. eitherS′ |= ¬a or S′ |= nota,
contradictingS′ |= {not¬a, not (nota)}. The same reasoning can be done for the rules
nota ← β, nota in E(P ).
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From S an extended answer set ofP we know that(PS)S⋆
= S. Consider the rules

a ← β ∈ P with a an ordinary literal, such thatS |= β∪{a} and thusa ← β \ not(β−) ∈

(PS)S . This rule is represented inE(P ) asa ← β, not¬a, not(nota) and by construction
of S′ we have thata ← β \ not(β−) ∈ E(P )S′

. Thus,S ⊆ E(P )S′⋆
. Clearly, if S |=

β∪{nota} for a rulenota ← β ∈ P , then the corresponding rulenota ← β, nota ∈ E(P )

is also applicable w.r.t.S′ by construction ofS′, thusnota ← β\not(β−) ∈ E(P )S′

,
yielding thatS′ \ S ⊆ E(P )S′⋆

. Finally,S′ ⊆ E(P )S′⋆
and because all rules are satisfied

w.r.t.S′, E(P )S′⋆
= S′.

⇐= Let S′ be an answer set ofE(P ) and letS = S′ ∩ (BP ∪ ¬BP ). We show thatS
is an extended answer set ofP .

First we show that every rule inP is either satisfied or defeated w.r.t.S. Again, con-
straints are clearly satisfied w.r.t.S. Suppose there is a rulea ← β ∈ P such thatS |= β

andS 6|= a. The corresponding rule inE(P ), i.e. eithera ← β, not¬a, not(nota) or
nota ← β, nota, is satisfied w.r.t.S′, yielding that eitherS′ 6|= not¬a, S′ 6|= not(nota) or
S′ 6|= nota. Thus, there is an applied ruleX ← Y ∈ E(P ) with X = ¬a, X = nota or
X = a. By construction of the rules inE(P ) this means that the corresponding rule inP

is also applied w.r.t.S, defeating the rulea ← β.
Finally we have to show that(PS)S⋆

= S, which is quite obvious as the generating, i.e.
applicable and applied, rulesa ← β \ not(β−) ∈ E(P )S′

for E(P )S′⋆
are also in(PS)S

and they clearly do not depend on any literal of the formnota. Thus,(PS)S⋆
= S.

Lemma 9
Let P = 〈R, <〉 be an extended ordered logic program. Every proper extendedanswer set
S′ of Ns(P ) is of the formS′ = S∪{φ(a),¬φ(nota),¬φ(¬a) | a ∈ S}∪{φ(nota) | a ∈

(BR ∪ ¬BR)\S}∪{¬φ(a) | nota ← β ∈ R∧S |= β∪{nota}}, whereS ⊆ BR ∪ ¬BR.

Proof
TakeS′ a proper extended answer set ofNs(P ). Let S = S′ ∩ (BP ∪ ¬BP ).

First considera ∈ S. Fora to be inS′, we must have thatφ(a) ∈ S′, by construction of
the rulesa ← φ(a) in Rc. Combiningφ(a) ∈ S′, with the constraint← φ(a), φ(nota)

and the ruleφ(nota)← , yields that¬φ(nota) ∈ S′ as otherwiseS′ cannot be proper, i.e.
φ(nota)← cannot be defeated.

As φ(a) ∈ S′, there must be an applied ruleφ(a) ← φ(β) ∈ Ns(P ), i.e. φ(β) ∪

{φ(a)} ⊆ S′. Then, also¬φ(¬a) ← φ(β), φ(a) is applicable and yields, combined with
the constraint← φ(a), φ(¬a) and the fact thatS′ is proper,¬φ(¬a) ∈ S′. Thus,X =

{φ(a),¬φ(nota),¬φ(¬a) | a ∈ S} ⊆ S′.
Let Y = (BR ∪ ¬BR) \ S. By construction of the rules inNs(P ), we can never defeat

the rules{φ(nota)← | a ∈ Y }, yielding thatZ = {φ(nota) | a ∈ Y } ⊆ S′.
Finally, one can easily see that the only rules left which canderive something new into

S′, i.e. something inT = S′ \ S \X \Z, are of the form¬φ(a)← φ(β), φ(nota), where
a ∈ (BR ∪ ¬BR) \ S. Thus,T ⊆ {¬φ(a) | a ∈ Y }.

To end, we show thatT = {¬φ(a) | nota ← β ∈ R ∧ S |= β ∪ {nota}}. The⊇
direction is obvious, as the corresponding rules¬φ(a)← φ(β), φ(nota) in Ns(P ) will be
applicable, thus applied by construction of the rules, by construction ofS′ and the fact that
S′ is a proper extended answer set. The⊆ direction is also quite obvious. Take¬φ(a) ∈ T
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with a ∈ (BR ∪ ¬BR) \ S and suppose there is no rulenota ← β in P that is applied
w.r.t. S. Then, by construction of the rules inNs(P ), there is no applied rule inNs(P )

with ¬φ(a) in the head, contradicting thatS′ is a proper extended answer set, asT ⊆ S′.

Lemma 10
Let P = 〈R, <〉 be an extended ordered logic program. Then,S is an extended answer set
of P iff S′ = S ∪ {φ(a),¬φ(nota),¬φ(¬a) | a ∈ S} ∪ {φ(nota) | a ∈ (BR ∪ ¬BR) \

S} ∪ {¬φ(a) | nota ← β ∈ R ∧ S |= β ∪ {nota}} is a proper extended answer set of
Ns(P ).

Proof
=⇒ TakeS an extended answer set ofP and takeS′ as defined. First we show that every

ruler of Ns(P ) is either satisfied or defeated w.r.t.S′.

• Every ruleφ(nota) ← ∈ Rn is either satisfied or defeated w.r.t.S′. Supposeφ(nota) 6∈

S′. Then, by construction ofS′, a ∈ S. As S is an extended answer set ofP , there is a
rule a ← β ∈ P such thatS |= {a} ∪ β. For this rule we have three corresponding rules
in Ns(P ), i.e. φ(a) ← φ(β), ¬φ(¬a) ← φ(β), φ(a) and¬φ(nota) ← φ(β), φ(a). By
construction ofS′ andφ(β) we have thatφ(β) ∪ {φ(a),¬φ(not a)} ⊆ S′, which yields
that¬φ(nota)← φ(β), φ(a) defeatsφ(nota)← .

• The rules of typeφ(a) ← φ(β) are either satisfied or defeated w.r.t.S′. Suppose that
φ(β) ⊆ S′ andφ(a) 6∈ S′, implying thata 6∈ S′, which yields that the corresponding rule
a ← β in P is applicable w.r.t.S by construction of the rules inNs(P ) and the construction
of S′. As a 6∈ S′ we havea 6∈ S, implying that the rulea ← β in P must be defeated w.r.t.
S by an applied rule¬a ← β′ ornota ← β′, asS is an extended answer set ofP . Again by
construction ofS′ and the rules inNs(P ), the ruleφ(¬a) ← φ(β′) or φ(nota) ← φ(β′)

in Ns(P ) is applied w.r.t.S′, making either the rule¬φ(a) ← φ(β′), φ(¬a) or the rule
¬φ(a)← φ(β′), φ(nota) applied, defeatingφ(a)← φ(β).

• The rules of typeφ(nota) ← φ(β) are either satisfied or defeated w.r.t.S′. Suppose that
φ(β) ⊆ S′ andφ(nota) 6∈ S′. This implies thata ∈ S, by construction ofS′. As S is an
extended answer set, there must be a rulea ← β′ ∈ P such thatS |= β′ ∪ {a}. Then,
by construction ofS′, the ruleφ(a) ← φ(β′) ∈ R′ is applied w.r.t.S′, but also the rule
¬φ(nota)← φ(β′), φ(a) ∈ R′ is, defeatingφ(nota)← φ(β).

• The rules left inR′, i.e. rules of type¬φ(¬a) ← φ(β), φ(a); ¬φ(nota) ← φ(β), φ(a)

and¬φ(a)← φ(β), φ(nota), are always satisfied w.r.t.S′ by construction ofS′.
• All the rules inRc are always satisfied w.r.t.S′. By construction ofS′, the constraints
← φ(a), φ(nota) and ← φ(a), φ(¬a) are always satisfied w.r.t.S′, i.e. inapplicable.

Clearly, rules of the forma ← φ(a) will be either applied, or inapplicable. Finally, the
constraints inP are satisfied w.r.t.S, thus the constraints← φ(β) ∈ Rc are satisfied w.r.t.
S′, yielding thatS′ is proper.

The only thing left to proof is thatNs(P )⋆
S′ = S′. First of all, letT = {φ(not a) |

φ(nota) ∈ S′}. Obviously,T ⊆ Ns(P )⋆
S′ asφ(nota)← ∈ Ns(P )S′ for everyφ(nota) ∈

S′.
We know that(RS)S⋆

= S asS is an extended answer set ofP . A rulea ← β ∈ R with
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a an ordinary literal that is kept in(RS)S is of the forma ← β \ notβ−17. For all those
rules in(RS)S we have that{φ(nota) | a ∈ β−} ⊆ T , and by construction of the rules in
Ns(P ), the construction ofS′, the fact thatT can be derived immediately inNs(P )⋆

S′ and
the fact that(RS)S⋆

= S, this yields that{φ(a) | a ∈ S} ⊆ Ns(P )⋆
S′ , implying that also

S ⊆ Ns(P )⋆
S′ by the rulesa ← φ(a) in Rc.

For every applied ruleφ(a) ← φ(β) ∈ Ns(P ) with a ∈ S, we have that¬φ(¬a) ←

φ(β), φ(a) and¬φ(nota) ← φ(β), φ(a) are satisfied w.r.t.S′ and thus are inNs(P )S′ ,
yielding that{¬φ(¬a),¬φ(nota) | a ∈ S} ⊆ Ns(P )⋆

S′ .
Finally, consider the applied rulesnota ← β ∈ P . By construction ofS′ and the rules

φ(nota)← φ(β) and¬φ(a)← φ(β), φ(nota) in Ns(P ), both rules are satisfied w.r.t.S′,
thus inNs(P )S′ . Fromnota ← β applied w.r.t.S we have thatS |= β∪{nota} and by con-
struction ofS′, both rules inNs(P )S′ are applicable w.r.t.S ∪{φ(a),¬φ(nota),¬φ(¬a) |

a ∈ S} ∪ {φ(nota) | a ∈ (BR ∪ ¬BR) \ S}, which is already shown to be inNs(P )⋆
S′ .

Thus,{¬φ(a) | nota ← β ∈ R ∧ S |= β ∪ {not a}} ⊆ Ns(P )⋆
S′ . As a conclusion,

S′ ⊆ Ns(P )⋆
S′ andS′ = Ns(P )⋆

S′ by the fact that each rule is satisfied or defeated w.r.t.
S′.
⇐= TakeS′ a proper extended answer set ofNs(P ). From Lemma 9 we know that

S′ is of the formS′ = S ∪ {φ(a),¬φ(not a),¬φ(¬a) | a ∈ S} ∪ {φ(not a) | a ∈

(BR ∪ ¬BR)\S}∪{¬φ(a) | nota ← β ∈ R∧S |= β∪{nota}}, whereS ⊆ BR ∪ ¬BR.
The only thing we have to show is thatS is an extended answer set ofP .

By construction, all constraints in← β ∈ P are satisfied w.r.t.S as the constraints
← φ(β) ∈ Rc are satisfied w.r.t.S′. Every rulea ← β in P , with a an extended literal,

is either satisfied or defeated w.r.t.S. Suppose not, i.e.S |= β ∧ S 6|= a and there is no
defeater w.r.t.S in P for a ← β. By construction of the rules inNs(P ), the corresponding
rule φ(a) ← φ(β) ∈ Ns(P ) is applicable w.r.t.S′, but not applied by construction ofS′.
As S′ is a proper extended answer set, the ruleφ(a) ← φ(β) must be defeated w.r.t.S′,
i.e. there must be an applied rule¬φ(a)← β′, φ(X ) in Ns(P ) with X = ¬a or X = nota
whena is an ordinary literal andX = â whena is an extended literal. This yields that the
corresponding rule inP is also applied w.r.t.S, defeatinga ← β ∈ P , a contradiction.

Finally, we show that(RS)S⋆
= S. For every applied ruleφ(a)← φ(β) ∈ Ns(P ) w.r.t.

S′ anda an ordinary literal, we have that{a | φ(nota) ∈ φ(β)} ∩ S = ∅ by construction
of S′ and thus ofS. This implies thata ← β \ notβ− ∈ (RS)S andβ \ not β− ⊆ S.
We know thatNs(P )⋆

S′ = S′ and that{φ(a) | a ∈ S} are only produced by the applied
rules of the formφ(a) ← φ(β) with a an ordinary literal, starting from{φ(nota) | a ∈

(BR ∪ ¬BR) \ S}.
Now, combining the above with the construction of the rules in Ns(P ) yields thatS ⊆

(PS)S⋆
. As every rule inP is either applied or defeated w.r.t.S we haveS = (PS)S⋆

.

Theorem 20
Let P = 〈R, <〉 be an extended ordered logic program. Then,M is a preferred answer set
of P iff there exists a proper preferred answer setM ′ of Ns(P ), such thatM = M ′ ∩

(BR ∪ ¬BR).

17 Constraints, i.e.← β, in (RS)S are not important in here, as they do not play a role in(RS)S⋆ becauseS is
an extended answer set.
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Proof
=⇒ TakeS a preferred answer set ofP and takeS′ as defined in Lemma 10. By that

same lemma we get thatS′ is a proper extended answer set ofNs(P ). SupposeS′ is not
preferred, then there exists a proper extended answer setS′′ 6= S′ of Ns(P ) such that
S′′ ⊑ S′. Let T = S′′ ∩ (BP ∪ ¬BP ). From Lemma 10 we know thatT is an extended
answer set ofP . As bothS′ andS′′ are proper, we have thatNs(P )S′ \ Ns(P )S′′ and
Ns(P )S′′ \Ns(P )S′ only contain rules fromR′ andRn.

SupposeNs(P )S′ \ Ns(P )S′′ contains a ruler from R′. Then,S′′ ⊑ S′ implies that
there exists a ruler′ ∈ Ns(P )S′′ \Ns(P )s′ such thatr′ < r. From the proof of Lemma 10
we know that only rules of the typeφ(a) ← φ(β) ∈ R′, with a an extended literal, can
be defeated and we also know from the same proof that the rulesin P corresponding with
the defeated rules inR′ w.r.t.S′ (S′′) are also defeated w.r.t.S (T ), yielding thatT ⊑ S, a
contradiction.

SupposeNs(P )S′\Ns(P )S′′ contains only rules fromRn, which implies thatPS\PT =

∅. ThenS′′ ⊑ S′ yields thatNs(P )S′′ \ Ns(P )S′ must contain at least a rule fromR′

to counter theRn rules inNs(P )S′ \ Ns(P )S′′ . As a result,PS 6= PT , implying that,
combined withPS \ PT = ∅, we haveT ⊑ S, a contradiction.

Thus,S′ is a proper preferred answer set ofNs(P ) andS = S′ ∩ (BP ∪ ¬BP ).
⇐= TakeS′ a proper preferred answer set ofNs(P ). Let S = S′ ∩ (BP ∪ ¬BP ).

Again from Lemma 10 we know thatS is an extended answer set ofP . SupposeS is not
preferred. Then, there exists an extended answer setT of P such thatT ⊑ S, which implies
PS 6= PT . TakeT ′ as described by Lemma 10 and we get thatT ′ is a proper extended
answer ofNs(P ) with the same defeated rules inR′ as the corresponding defeated rules
in P . The same holds for defeated rules w.r.t.S andS′. ThenT ⊑ S impliesT ′ ⊑ S′, a
contradiction.

Lemma 11
LetP be an LPOD.S is answer set ofP iff S′ = S∪{napa1×...×an←β | a1 × . . .× an ←

β ∈ P ∧ S 6|= β} is a proper extended answer set ofL(P ).

Proof
=⇒ TakeS an answer set ofP , yielding that there exists a split programP ′ of P such

thatS is an answer set ofP ′. TakeS′ as defined. We first show that every rule inL(P ) is
either satisfied or defeated w.r.t.S′.

Obviously, all rules inPr corresponding with normal rules inP are satisfied as these
rules are contained in every split program. The rulesai ← β, not{a1 , . . . , an}\ai for
every1 ≤ i ≤ n for each ordered disjunctive rule are clearly satisfied w.r.t. S′ as every
split program contains an option that is satisfied w.r.t.S, thus also w.r.t.S′. Furthermore,
the rulesnapr ← not l andnapr ← l in Pr are also satisfied w.r.t.S′ by construction of
S′, i.e. when an ordered disjunctive ruler is not applicable w.r.t.S, we havenapr ∈ S′

making the rules clearly satisfied, while in the caser is applicable, none of the rules are
applicable.

The rulesnotnapr ← ∈ Pd for which napr 6∈ S′ are clearly satisfied, while the ones
for which napr ∈ S′ are clearly defeated by an applied rulenapr ← l or napr ← not l ,
this by construction ofS′. Further, the rulesnotai ← β, not{a1 , . . . , ai−1} ∈ Pd for
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whichS′ |= β ∪not{a1, . . . , ai−1} andai ∈ S′ are defeated by the corresponding applied
ruleai ← β, not{a1 , . . . , ai−1 } ∈ Pi.

Finally, if a rulea ← β ∈ P1 ∪ . . . ∪ Pn is applicable but not applied, it is defeated by
a rulenota ← β ∈ Pd, by construction ofPd.

The only thing left to show is(L(P )S′)S′⋆
= S′. By construction ofL(P ) we get that

P ′ ⊆ L(P ). This yields, as all rules inP ′ are satisfied w.r.t.S, thatP ′S ⊆ (L(P )S′)S′

.
As a result,S ⊆ (L(P )S′)S′⋆

. Clearly, for each unapplicable ordered disjunctive rule
r = a1 × . . .× an ← β, i.e. ∃l ∈ β · S 6|= l, we have thatnapr ← not l (when l is a
literal) ornapr ← l (whenl is a naf-literal) is inL(P )S′ , yielding thatS′ ⊆ (L(P )S′)S′⋆

.
As all rules are satisfied or defeated w.r.t.S′, this results inS′ = (L(P )S′)S′⋆

.
⇐= TakeS′ a proper extended answer set ofL(P ) and letS = S′∩(BP ∪ ¬BP ). Con-

siderL(P )S′ , i.e. all satisfied rules inL(P ) w.r.t. S′. TakeP ′ ⊆ L(P )S′ in the following
way:

1. Take all rules inPr corresponding with normal rules inP . As S′ is proper and the sat-
isfaction of the selected rules does not change w.r.t.S, every normal rule inP is also in
P ′.

2. Take every applicable and applied ruler from thePi’s. By construction ofL(P ) at most
one option for every ordered disjunctive rule is taken, as options inPj with j > i are not
applicable, because they containnot H(r) in the body; and optionsr′ in Pj with j < i

must be defeated, otherwiser would not be applicable because it containsnotH(r′) in the
body.

3. For every ordered disjunctive rule that is not applicablew.r.t. S′ (or S) take an arbitrary
option to be inP ′.

Clearly,P ′ as constructed above, is a split program ofP .
The rulesci ← β, not ({c1 , . . . , cn} \ {ci}) ∈ Pr that are applicable and applied are

not needed to produce theS part in(L(P )S′)S′⋆
, as also the ruleci ← β, not{c1 , . . . , ci−1} ∈

Pi is applicable and applied, thus in(L(P )S′)S′

. Furthermore, the rules withnapr in the
head are also not needed to deriveS. Thus, all rules needed to produceS in L(P ) are also
in P ′, yielding thatP ′S

⋆
= S, makingS an answer set ofP .

Lemma 12
Let P be a LPOD and letS 6= T be proper extended answer sets forL(P ). Then, the
following is equivalent:

1. S ⊑ T ,

2. L(P )S 6= L(P )T and∀r ∈ L(P )T \ L(P )S , ∃r′ ∈ L(P )S \ L(P )T · r′ < r ,

3. L(P )S 6= L(P )T and∃k · Satk
L(P )(T ) ⊂ Satk

L(P )(S) ∧ ∀j < k · Sat
j

L(P )(T ) =

Sat
j

L(P )(S) .

whereSatk
L(P )(S) denotes the set of rules inPk ⊆ L(P ) that are satisfied w.r.t.S.

Proof
By definition(1)⇔ (2) holds.

(2)⇒ (3) First, it can never happen thatL(P )T \L(P )S = ∅. Suppose it is, than

together withL(P )T 6= L(P )S , it impliesL(P )T ⊂ L(P )S . We have three cases:
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• r = ai ← β, not{a1 , . . . , ai−1} ∈ Pi with r ∈ L(P )S \L(P )T yields T |= β ∪

not{a1, . . . , ai−1} andT 6|= ai. By virtue of Lemma 11 we have thatT ∩ (BP ∪ ¬BP )

is an LPOD answer set, thus we must have a satisfied, w.r.t.T , option r′ = aj ←

β, not{a1 , . . . , aj−1 } ∈ Pj with j > i. For this rule, the corresponding ruler′′ =

notaj ← β, not{a1 , . . . , aj−1 } ∈ Pd is defeated w.r.t.T . Further, all rulesnotak ←

β, not{a1 , . . . , ak−1} ∈ Pd with k ≤ j are satisfied w.r.t.T , thus also w.r.t.S. Now
considerS which satisfies the ruler. We get two cases:

— ∃k ≤ i ·ak ← β, not{a1 , . . . , ak−1} ∈ Pk is applied w.r.t.S. However, this implies
the rulenotak ← β, not{a1 , . . . , ak−1} ∈ Pd is defeated w.r.t.S, a contradiction.

— S 6|= β, i.e. the ordered disjunctive rules corresponding with the rulesr, r′ andr′′

is not applicable w.r.t.S. Then, Lemma 11 yields thatnaps 6∈ T , while naps ∈ S.
The former implies that the rulenotnaps ← ∈ Pd is satisfied w.r.t.T and while it
should also be satisfied byS, the latter clearly shows its defeated, a contradiction.

• r = notai ← β, not{a1 , . . . , ai−1 } ∈ Pd with r ∈ L(P )S \L(P )T yields that there also
must be a ruler′ = aj ← β, not{a1 , . . . , aj−1 } ∈ Pj with r′ ∈ L(P )S\L(P )T , which is
handled in the previous case.

• r = notnaps ← ∈ Pd with r ∈ L(P )S \L(P )T yields thats is applicable w.r.t.S and
not applicable w.r.t.T . However,s applicable w.r.t.S implies at least one optionai ←

β, not{a1 , . . . , ai−1} ∈ Pi of s will be applied w.r.t.S, defeating the rulet = notai ←

β, not{a1 , . . . , ai−1} ∈ Pd. However,s not applicable w.r.t.T impliest is satisfied w.r.t.
T , yieldingt ∈ L(P )T \L(P )S, a contradiction.

As L(P )T\L(P )S 6= ∅, S ⊑ T implies thatL(P )S\L(P )T 6= ∅. Take the most specific
ruler′ ∈ L(P )S \ L(P )T . Clearly,r′ < r for everyr ∈ L(P )T \ L(P )S . As S andT are
proper we must haver′ ∈ Pk for a certaink ∈ [1 . . . n]. As r′ is the most specific rule in
L(P )S \L(P )T , we have∀j < k · (L(P )S \L(P )T )∩Pj = (L(P )T \L(P )S)∩Pj = ∅,
which is equivalent with∀j < k · Sat

j

L(P )(T ) = Sat
j

L(P )(S). As r′ is the most specific
rule in L(P )S \ L(P )T , every ruler ∈ L(P )T \ L(P )S must belong to aPi with i > k

(or toPd), which yields that(L(P )T \ L(P )S) ∩ Pk ⊂ (L(P )S \ L(P )T ) ∩ Pk; and as a
resultSatk

L(P )(T ) ⊂ Satk
L(P )(S).

(3)⇒ (2) Take ak so that (3) holds. From∀j < k · Sat
j

L(P )(T ) = Sat
j

L(P )(S) it

follows that∀j < k · (L(P )S \ L(P )T ) ∩ Pj = (L(P )T \ L(P )S) ∩ Pj = ∅. From
Satk

L(P )(T ) ⊂ Satk
L(P )(S), we get(Satk

L(P )(S)\Satk
L(P )(T )) ⊂ (L(P )S \L(P )T ) and

(L(P )T \L(P )S)∩Pk = ∅, which directly yields thatr′ < r for everyr′ ∈ Satk
L(P )(S)\

Satk
L(P )(T ) and everyr ∈ L(P )T \ L(P )S .

Theorem 22
An interpretationS is a preferred LPOD answer set of a LPODP iff there exists a proper
preferred answer setS′ of L(P ) such thatS = S′ ∩ (BP ∪ ¬BP ).

Proof
=⇒ TakeS a preferred LPOD answer set ofP . From Lemma 11 we have that there exists

a proper extended answer setS′ of L(P ) such thatS = S′ ∩ (BP ∪ ¬BP ). SupposeS′

is not preferred, i.e. there exists a proper extended answersetT ′ 6= S′ of L(P ) such that
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T ′ ⊑ S′. Again, by virtue of Lemma 11, we have thatT = T ′ ∩ (BP ∪ ¬BP ) is an LPOD
answer set ofP .

Applying Lemma 12 toT ′ ⊑ S′ w.r.t. L(P ) yields

∃k · SatkL(P )(S
′) ⊂ SatkL(P )(T

′) ∧ ∀j < k · Sat
j

L(P )(S
′) = Sat

j

L(P )(T
′) . (5)

By construction ofL(P ) we have thatSat1L(P )(S
′) = S1(P ) \ {a ← β ∈ P} and

Sat
j

L(P )(S
′) \ Sat

j−1
L(P )(S

′) = Sj(P )18 (and the same forT andT ′). Combined with (5)
this yields

∃k · Sk(P ) ⊂ T k(P ) ∧ ∀j < k · Sj(P ) = T j(P ) . (6)

But, (6) implies thatT is LPOD-preferred uponS for P , a contradiction.
⇐= Take S′ a proper preferred answer set ofL(P ). By Lemma 11,S = S′ ∩

(BP ∪ ¬BP ) is an LPOD answer set ofP . SupposeS is not LPOD preferred, i.e. there
exists an LPOD answer setT such thatT <b S. This yields

∃k · Sk(P ) ⊂ T k(P ) ∧ ∀j < k · Sj(P ) = T j(P ) . (7)

Again from Lemma 11 we have that there must exist a proper extended answer setT ′

of L(P ) such thatT = T ′ ∩ (BP ∪ ¬BP ). By construction ofL(P ), for every ordered
disjunctive ruler that is satisfied to degreek, the corresponding options inP1, . . . , Pk−1

are defeated, while the corresponding options inPk, . . . , Pn are satisfied, yielding that (it
also hold forT andT ′)

Sat1L(P )(S
′) = S1(P ) \ {a ← β ∈ P} , (8)

SatkL(P )(S
′) = Satk−1

L(P )(S
′) + Sk(P ) . (9)

Combining (8), (9) and (7) results in

∃k · SatkL(P )(S
′) ⊂ SatkL(P )(T

′) ∧ ∀j < k · Sat
j

L(P )(S
′) = Sat

j

L(P )(T
′) . (10)

Using (10) with Lemma 12 yieldsT ′ ⊑ S′, a contradiction.

Lemma 2
Let D , D1 andD2 be databases over the same Herbrand base.∆D(D1) ⊆ ∆D(D2) iff
∆(D, D1) ⊆ ∆(D, D2).

Proof
To show the “only if” part, assume thatp ∈ ∆(D, D1) = (D+\D1

+) ∪ (D1
+\D+). We

consider two possibilities:

1. If p ∈ D+\D1
+ thenp ∈ D and¬p ∈ D1. Hence, by definition,¬p ∈ ∆D(D1) Since

∆D(D1) ⊆ ∆D(D2), ¬p ∈ D2\D and thusp ∈ D+\D2
+ ⊆ ∆(D, D2).

2. If p ∈ D1
+ \D+ thenp ∈ ∆D(D1) ⊆ ∆D(D2). Sincep is an atom, this implies that

p ∈ D2
+\D+ ⊆ ∆(D, D2).

18 This is not completely correct as rules inSat
j

L(P )
(S′) \ Sat

j−1
L(P )

(S′) are options from ordered disjunctive

rules, whileSj(P ) contains ordered disjunctive rules. However, as only one option for such a rule can be in
the former, there is a one-to-one mapping between the elements in the former and the elements in the latter.
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To show the “if” part, assume thatp ∈ ∆D(D1) = D1\D. We consider two cases.

1. If p is an atom, thenp ∈ D1
+\D+ ⊆ ∆(D, D1) ⊆ ∆(D, D2). Thusp ∈ D+\D2

+ or
p ∈ D2

+\D+. The former is impossible becausep 6∈ D+. The latter implies thatp ∈
(D2\D) = ∆D(D2).

2. If p is a negative literal, then¬p ∈ (D+\D1
+) ⊆ ∆(D, D1). Thus¬p ∈ ∆(D, D2) and,

because¬p ∈ D, ¬p ∈ D+\D2
+. Consequently,p ∈ (D2

+\D+) ⊆ ∆D(D2).

Lemma 13
Let D be a database and letC be a consistent set of constraints withLC the set of literals
occurring inC. For anyC-repairR of D, we have thatR\LC = D\LC, i.e. D andR

agree onBD\BLC
.

Proof
Straightforward. Suppose e.g. thatD andR do not agree onl 6∈ LC , i.e.l ∈ R and¬l ∈ D.
Sincel does not occur in any constraint,R′ = (R\{l})∪¬l |= C and, moreoverR′ ≤D R,
contradicting thatR is a repair.

Theorem 23
LetD be a database and letC be a consistent set of constraints withBC ⊆ BD. Each repair
of D w.r.t. C is a preferred answer set ofP (D, C).

Proof
Let R be a repair ofD w.r.t. C. By definition,BR = BD andR is consistent. On the other
hand,P (D, C)R obviously contains a ruled : a← for eacha ∈ R∩D and a rulen : ¬a←

for eacha ∈ R\D. ThusP (D, C)⋆
R = R.

We next show thatR satisfies or defeats each rule inP (D, C). By definition, and the con-
struction ofP (D, C), all c-rules are satisfied. On the other hand, anyn-rulen : a←which
is not satisfied is defeated by an appliedd-rule d : ¬a←. As to thed-rules, Lemma 13
implies that each ruled : a← wherea does not occur inC is applied.

The remaining case concernsd-rulesd : a← wherea occurs inC anda 6∈ R, i.e. the
rule is not satisfied. We consider two possibilities: either¬a occurs inC and thus, by the
construction ofP (D, C), there exists a satisfiedc-rule c : ¬a← α, defeatingd : a←, or
¬a does not occur inC. The latter case is impossible since then, by Lemma 13,R should
agree withD on¬a, contradicting our assumption that¬a ∈ R\D.

Hence,R is an extended answer set.
To show thatR is minimal w.r.t⊑, assume that, on the contrary, there exists an extended

answer setM ⊑ R of P (D, C) such thatM 6= R. Thus, by Definition 6,

∀r ∈ P (D, C)R\P (D, C)M · ∃r
′ ∈ P (D, C)M \P (D, C)R · r

′ < r . (11)

Note thatP (D, C)R \P (D, C)M 6= ∅ (otherwise,M = R would follow). Sincec-rules
cannot be defeated, anyr as in (11) must have a labeld or n. By definition,R satisfies all
c-rules and thus anyr′ satisfying (11) must also be ad or n rule. Combining these obser-
vations yields that anyr andr′ satisfying (11) must be ann-rule and ad-rule, respectively.
But this implies that∆D(M) ⊂ ∆D(R), contradicting the fact thatR is aC-repair ofD.
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Lemma 14
Let D be a database and letC be a consistent set of constraints withBC ⊆ BD. Each
preferred answer setM of P (D, C) satisfiesC, i.e.M |= C.

Proof
Clearly, asC is consistent, there must exist a proper extended answer setI, i.e.I |= C. By
Lemma 1, each preferred answer set must be proper, from whichthis lemma follows.

Theorem 24
Let D be a database and letC be a consistent set of constraints withBC ⊆ BD. Each
preferred answer set ofP (D, C) is aC-repair ofD.

Proof
Let M be a preferred answer set ofP (D, C). From Lemma 14 it follows thatM |= C.
Assume that, on the contrary,M is not aC-repair ofD, i.e. there exists aC-repairR such
that∆D(R) ⊂ ∆D(M) (Definition 32). Letl be a literal in∆D(M)\∆D(R). Thusl ∈M

while¬l ∈ D∩R. By construction,P (D, C) contains and-ruler = d : ¬l← in PR\PM .
SinceM is preferred and, by Theorem 23,R is an extended answer set,M ⊑ R implies
the existence of a ruler′ < r with r′ ∈ PM \PR. But any such ruler′ must be ac-rule
which, by definition, is satisfied byR, a contradiction.
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