
Integrating Description Logics and Answer Set
Programming

S. Heymans and D. Vermeir?

Dept. of Computer Science
Vrije Universiteit Brussel, VUB

Pleinlaan 2, B1050 Brussels, Belgium
{sheymans,dvermeir}@vub.ac.be

Abstract. We integrate an expressive class of description logics (DLs) and an-
swer set programming by extending the latter to support inverted predicates and
infinite domains, features that are present in most DLs. The extended language,
conceptual logic programming (CLP) proves to be a viable alternative for in-
tuitively representing and reasoning nonmonotonically, in a decidable way, with
possibly infinite knowledge. Not only can conceptual logic programs (CLPs) sim-
ulate finite answer set programming, they are also flexible enough to simulate
reasoning in an expressive class of description logics, thus being able to play the
role of ontology language, as well as rule language, on the Semantic Web.

1 Introduction

Description logics (DLs) [2] and answer set programming [10, 19] are well-established
knowledge representation mechanisms. We integrate them by adding predicate inverses
to disjunctive logic programs (DLPs) and extending the answer set semantics by allow-
ing for an infinite domain, without introducing function symbols. Both extensions to
answer set programming are inspired by their presence in most DLs, effectively inte-
grating the flexible and intuitive way of representing knowledge in logic programming
with DLs features, making elegant reasoning with infinite knowledge possible.

However, simply extending answer set programming leads to undecidability, no-
tably of satisfiability checking. We therefore restrict the syntactic structure of DLPs,
obtaining conceptual logic programs (CLPs). Satisfiability checking can then be de-
cided by reducing it to checking satisfiability w.r.t. simpler DLPs with finite answer set
programming techniques.

CLPs can simulate (disjunction-free) logic programs as well as expressive classes
of DLs, such as SHIQ∗. SHIQ∗ is a slight modification of SHIQ [17] with tran-
sitive closure of roles instead of transitivity of roles. SHIQ is regarded as the formal
specification of the ontology language OIL [15, 8], which can be used to express on-
tologies1on the Semantic Web [4]. Other, more expressive, ontology languages are, for

? This work was partially funded by the Information Society Technologies programme of the
European Commission, Future and Emerging Technologies under the IST-2001-37004 WASP
project.

1 Like DL knowledge bases or database schema’s, ontologies are models of a domain, providing
an agreed and shared understanding [20].

example, DAML+OIL [3] and, more recently, OWL [21] which also include support
for data types and individuals.

Although, satisfiability checking w.r.t. a SHIQ∗ knowledge base can be intuitively
reduced to satisfiability checking w.r.t. a CLP the reverse is not true, i.e. there are CLP
rules that cannot be translated to SHIQ∗. Moreover, we believe that, in many cases,
CLPs are more intuitive, modular and easier to use than description logics.

Consider the following example,

restore(X)← crash(X), yest(X,Y), BackupSucceeded(Y) (1)

BackupSucceeded(X)← ¬crash(X), yest(X,Y), not(BackupFailed(Y))(2)

BackupFailed(X)← not(BackupSucceeded(X)) (3)

← yest
−(X, Y1), yest

−(X, Y2), Y1 6= Y2 (4)

← yest(X, Y1), yest(X, Y2), Y1 6= Y2 (5)

yest(X,Y) ∨ not(yest(X,Y))← (6)

crash(X) ∨ not(crash(X))← (7)

¬crash(X) ∨ not(¬crash(X))← (8)

where a system that has crashed on a particular day, can be restored on that day if a
backup of the system on the day before succeeded. Backups succeed, if the system does
not crash and it cannot be established that the backups at previous dates failed.

Rules (1) and (2) express the above knowledge, and are called tree rules, due to their
tree-like structure, i.e. a tree with root X and leaf Y connected trough yest. Rules (4)
and (5) ensure that for a particular today there can be only one yesterday and only one
tomorrow, where yest− denotes the inverse of yest. Both rules also have a tree structure
(with root X and leafs Y1 and Y2), and, since the conclusion part of the rule is empty,
we call them tree constraints. The last three rules are so-called free rules and express
that on any day a crash may or may not have occurred. In general, free rules express
that certain facts may freely be added to the model, subject to restrictions implied by
other rules.

The main point of attention in this example is that all answer sets, claiming a restore
on a particular date, should also assure that on all previous dates the backup succeeded,
explicitly demanding for an infinite domain, and an infinite domain only. Furthermore,
reasoning with CLPs is clearly nonmonotonic due to the presence of negation as failure,
i.e. the “not” in front of literals.

The attempt to integrate DLs with logic programming is not new. [1] presents, with-
out considering decidability issues, a translation from the DL ALCQI to answer set
programs, using, unlike in the present approach, artificial function symbols to accom-
modate for an infinite Herbrand universe. [11] simulates reasoning in DLs through sim-
ple datalog programs. This necessitates heavily restricting the usual DL constructors:
e.g. negation or number restrictions cannot be expressed. While our approach can ex-
press those constructions and, as such, makes the possible interweaving of ontologies
and rules more complete, the approach in [11] has the advantage that existing LP-
reasoning engines can be used. An alternative approach is to simply add datalog-like
programs to coexist with DL theories, as in [6, 7], thus exploiting the strengths of both
knowledge representation mechanisms. This contrasts with our approach which aims to
import the advantages of DLs into an extension of answer set programming.

Other approaches that connect rules to ontologies are, for example, [9], where a
mapping of a set of descriptions in the languages RDF, RDF-S or DAML+OIL to first-
order predicate calculus is specified, or [18], where DAMLJessKB enables the querying
of information in DAML files, by using Jess as a forward chaining production system.

The remainder of this paper is organized as follows: Section 2 extends the answer
set programming semantics to support inverses and infinite domains. Section 3 restricts
the programs to DLPs with a tree structure in order to enforce the tree-model property
and decidability of reasoning with CLPs. A simulation of finite answer set programming
and a particular expressive DL can be found in Sect. 4. Sect. 5 contains conclusions and
directions for further research.

2 Answer Set Programming with Infinity

We give some basic definitions about disjunctive logic programs (DLPs) and answer
sets [10, 19], and extend them to take into account infinite domains and inverses.

We call individual names constants and write them as lowercase letters, variables
will be denoted with uppercase letters. Variables and constants are terms. Atoms are
defined as being of the form p1(t1), p2(t1, t2), p2

−(t1, t2), with p1 a unary predicate,
and p2 a binary predicate, t1 and t2 are terms. We assume p−

− to be defined as p for
a binary predicate p, and for atoms a, we assume a− is a with the predicate and the
arguments inverted in case of binary (possibly inverted) predicates, i.e. p(t1, t2)

− =
p−(t2, t1), and p(t1)

−
= p(t1) for unary predicates. Note that we restrict to unary and

binary predicates; inverting atoms does not seem to make sense for predicates of greater
arity.

Ground atoms are atoms without variables. A literal is an atom or an atom preceded
by ¬, i.e. l is a literal if l = a or l = ¬a for an atom a. We define (¬a)− as ¬(a−)
for an atom a. A ground literal is a literal without variables. An extended literal is a
literal l or something of the form not(l), with l a literal. A ground extended literal is an
extended literal without variables. For a set X of literals, ¬X = {¬l |l ∈ X}, where
we define ¬¬a as a. A set of ground literals X is consistent if X ∩ ¬X = ∅. For a
set X of extended literals, we define X− = {l |not(l) ∈ X}, i.e. the set of underlying
literals.

We use Greek letters to represent sets of (unary or binary, possibly negated and/or
inverted) predicates. Attaching variables then allows us to write e.g. α(X) for
{a(X)|a ∈ α}, β(X, Y) for {b(X, Y)|b ∈ β}, or not(α)(X) for {not(a(X))|a ∈ α}.
Furthermore, we assume the existence of a binary predicate 6=, with the usual interpre-
tation.

A disjunctive logic program (DLP) is a finite set of rules α ← β where α and β

are finite sets of extended literals. We call programs where for each rule β− ∪ α− =
∅, programs without negation as failure (naf). Programs without naf such that for all
rules β contains at most one element, i.e. no disjunction in the head, are called simple
programs. Programs that do not contain variables are ground. For a program P and a
(possibly infinite) non-empty set of constants H, such that every constant appearing in
P is in H, we call PH the grounded program obtained from P by substituting every
variable in P by every possible constant in H. Note that PH may contain an infinite

number of rules (if H is infinite). An infinite DLP must be a grounded version of a
finite one.

The universe of a grounded program PH is the (possibly infinite) non-empty set of
constantsHPH

appearing in PH . Note thatHPH
= H. The base of a grounded program

PH is the (possibly infinite) set BPH
of ground atoms that can be constructed using the

predicates in PH and their inverses, with the constants inH.
An interpretation I of a grounded DLP P is any consistent set of literals that is a

subset of BP ∪ ¬BP . An interpretation I of a grounded DLP P without naf satisfies a
rule α ← β if α ∩ I 6= ∅ whenever β ⊆ I . Or, intuitively, if the conjunction of literals
in the body of a rule is true, the disjunction of the literals in the head must be true. An
interpretation I is a model of a grounded DLP P without naf if it satisfies every rule
in P and p(t1, t2) ∈ I ⇐⇒ p−(t2, t1) ∈ I for all literals p(t1, t2) in BP ∪ ¬BP .
Furthermore, it is a minimal model if there is no model J ⊂ I of P .

For a grounded DLP P and an interpretation I , the Gelfond-Lifschitz transformation
[19], is the program P I , obtained by deleting in P

– each rule that has not(l) in its body with l ∈ I ,
– each rule that has not(l) in its head with l 6∈ I , and
– all not(l) in the bodies and heads of the remaining rules.

An interpretation of a DLP P (not grounded) is a tuple (I,HI), such that I is an inter-
pretation of the grounded PHI

. An interpretation (I,HI) of a DLP P is an answer set
of P if I is a minimal model of P I

HI
.

A DLP P is consistent if P has an answer set. For a unary p (p possibly negated),
appearing in P , we say that p is satisfiable w.r.t. P if there exists an answer set (I,HI)
of P such that p(a) ∈ I for an a ∈ HI ; if HI is finite we call p finitely satisfiable.
Checking this satisfiability for a (possibly negated) unary predicate is called satisfiabil-
ity checking.

Although we allow for infinite domains, we can motivate the presence of literals in
a minimal model of a simple program in a finite way. We express the motivation of a
literal more formally by means of an operator T that computes the closure of a set of
literals w.r.t. a program P .

For a DLP P and an answer set (M,HM) of P such that P M
HM

is a simple program,
we define the operator TP M

HM

: BP M

HM

∪ ¬BP M

HM

→ BP M

HM

∪ ¬BP M

HM

2 as follows.

TP M

HM

(B) = B ∪ {a, a−|a← β ∈ P M
HM
∧ β ⊆ B}

We define T0(B) as B, and T n+1(B) as T n(T (B)). The operator gives the immediate
consequences of a set B according to P M

HM
.

Theorem 1. Let P be a DLP and (M,HM) an answer set of P , with P M
HM

a simple
program. Then ∀a ∈M · ∃n <∞ · a ∈ T n(∅)

Proof Sketch. Assume ∃a ∈M · ∀n <∞ · a 6∈ T n(∅). We write down all r : a′ ←
β ∈ P M

HM
with a′ = a or a′ = a− such that β ⊆ M and such that there exist a2 ∈ β

2 We omit the subscript if it is clear from the context.

such that ∀n <∞ · b 6∈ T n(∅). Since such r can always be chosen, we can repeat this
procedure for all b ad infinitum. This way we can define a strict subset M′ of M , i.e.
M without a, a− and all b with their inverses (intuitively, we throw away all the literals
that are causing a to be not finitely deducible). It can be shown that M′ is a model of
P M
HM

. A contradiction with the minimality of M . ut
The previous theorem allows to find a finite foundation for a literal in an answer set
(M,HM). It proves useful in the decidability proof of satisfiability checking, as well as
in the DLs simulation.

3 Conceptual Logic Programs

Satisfiability checking in the above context of answer set programming with infinity is
undecidable3. Hence we will restrict arbitrary DLPs, such that we regain the decidability
of satisfiability checking while being careful so as to maintain a sufficient degree of
expressiveness.

Inspired by modal logics (and DLs in particular), we restrict arbitrary DLPs to con-
ceptual logic programs as to obtain DLPs such that if a unary predicate is satisfied by an
answer set, it can be satisfied by an answer set with a tree structure, i.e. CLPs have the
tree-model property. In [22] this tree-model property is held responsible for the robust
decidability of modal logics. Confirming this, the tree-model property proves to be of
significant importance to the decidability of satisfiability checking in CLPs.

A CLP is defined as a collection of several kinds of rules: free rules, i.e. rules that
express that it does not matter whether a literal is in the answer set or not, provided there
are no other rules prohibiting or enforcing the presence of that literal, a collection of
tree constraints, and tree rules, both general rules, that are suitably restricted to ensure
the tree-model property, i.e. they have a tree structure.

Formally, a (finite) tree T is a (finite) subset of N
∗
0

4 such that if x · c ∈ T for x ∈ N
∗
0

and c ∈ N0, we have that x ∈ T . Elements of T are called nodes and the empty word ε

is the root of T . For a node x ∈ T we call x · c, c ∈ N0, successors of x. By convention,
x · 0 = x and (x · c) · −1 = x (ε · −1 is undefined). If every node x in a tree has k

successors we say that the tree is k-ary. We call the maximum number of successors for
a node in a tree, the rank of that tree. A labeled tree over an alphabet Σ is a tuple (T, V)
where T is a tree and V : T → Σ is a function, labeling the nodes of T with elements
from the alphabet. We extend the definitions of free tree DLPs from [13] by allowing
for more general occurrences of inequalities, as well as the general tree structure also
for constraints and rules with a binary literal in the head, instead of only for rules with
a unary literal in the head.

Definition 1. A conceptual logic program (CLP) is a set of rules that does not contain
constants and such that every rule is of one of the following types:

3 Similar to the simulation in Section 4, it can be shown that satisfiability checking in the DL
SHIQ [17], extended such that arbitrary roles, i.e. roles that are transitive or have transitive
subroles, are allowed in number restrictions, can be reduced to checking satisfiability in an
extended DLP. Since satisfiability checking for the former is undecidable [17], it remains so
for the latter.

4
N0 = N \ {0}

– free rules a ∨ not(a) ← with a a (binary or unary) literal. E.g. a rule such as
p(X)∨not(p(X))← indicates that ground literals of the form p(c) can be accepted
(or rejected) without further motivation, subject to restrictions imposed by the other
rules in the program.

– tree rules a(X)← β with a(X) a unary literal and β a finite set of extended literals
with the following restrictions:
• there exists a finite tree T such that there is a bijection φ : T → Vars, with

Vars the variables in a(X)← β, such that y is a successor of x in T iff there
exists a literal f(φ(x), φ(y)) in β,

• if β contains a literal of the form not(f(U, Z)) then β must also contain a
positive (without “not”) literal g(U, Z),

• there may be inequalities Yi 6= Yj in β if φ−1(Y1) and φ−1(Y2) have the same
predecessor in T (they are siblings). We call T the tree representation of the
rule.

– tree rules f(X, Y) ← β with the same tree restrictions on β as above, and addi-
tionally at least one positive g(X, Y) in β,

– tree constraints ← β with the same tree restrictions on β as for tree rules with a
unary literal in the head.

Consider for example the following tree rule, expressing that a top film is a film that did
well at the box office and received a good review of an expert magazine.

topF ilm(Film)← film(Film), boxOffice(Film, Number), high(Number),

goodReview(Film,Reviewer), writes(Reviewer,Magazine), expert(Magazine)

Graphically, one sees that this rule has indeed a tree structure.
Film

goodReview

Number Reviewer

Magazine

writes

boxOffice

Note that we also allow rules of the form a(X) ← in CLPs, since they can be
replaced by a(X) ∨ not(a(X))← and← not(a(X)). Furthermore, one does not need
to have that the X in the head of a tree rule is the root of the tree representation.

In a rapidly evolving environment such as the Semantic Web, it is important to be
able to revise or withdraw conclusions when additional information becomes available.
Such nonmonotonicity is provided by negation as failure, i.e. the allowance for “not” in
front of literals. Assume, for example, that we have that top films for which we cannot
establish that they are released in the US are low budget films.

lowBudget(Film)← topF ilm(Film), not(releasedInUS(Film))

If x is then a top film, with nothing known about its release status, all answer sets will
indicate that x is a low budget production. However, if we learn that all top films get a
chance to make it also in the US, i.e. our knowledge gets enriched with

releasedInUS(Film)← topF ilm(Film)

we are no longer able to deduce that x is a low budget film.
An important factor in the decidability of satisfiability checking is the assessment

of the tree-model property for CLPs. We define tree-satisfiability as satisfiability such
that the involved answer set has a tree structure. Formally, a unary predicate p (possibly
negated) in a DLP P is tree-satisfiable w.r.t. P if there exists an answer set (M,HM)
and a labeling function V such that (HM , V : HM → 2Pred(P)), with Pred(P) the
predicates in P , is a tree with bounded rank such that

– p ∈ V (ε), and
– p1 ∈ V (x) iff p1(x) ∈M , for a unary predicate p1 (possibly negated), and
– p2 ∈ V (xi) iff p2(x, xi) ∈ M or p2

−(xi, x) ∈ M , for a binary predicate p2

(possibly inverted and/or negated).

A DLP P then has the tree-model property if the following property holds: if a unary
predicate p (possibly negated) is satisfiable w.r.t. P then p is tree-satisfiable w.r.t. P .
For example the predicate restore from the example program in the introduction is tree-
satisfiable w.r.t. that program, since it has an answer set

{restore(x), crash(x), BackupFailed(x), yest(x, y), yest−(y, x),

BackupSucceeded(y),¬crash(y), yest(y, z), yest−(z, y),

BackupSucceeded(z),¬crash(z), yest(z, u), yest−(u, z), . . .}

and this answer set has a tree-structure:
{restore, crash,BackupFailed}

{yest, BackupSucceeded,¬crash}

{yest, BackupSucceeded,¬crash}

Furthermore, this is the case for every CLP.

Theorem 2. Every CLP has the tree-model property.

Proof Sketch. Assume P is a CLP. We can assume that P is such that every X in the
head of a rule is the root of the tree representation of that rule, and such that the tree
representation is a tree of one level deep [14]. We show that P has the tree-model prop-
erty, from which we can deduce that every (general) CLP has the tree-model property
[14].

Take a unary predicate p (possibly negated) of the CLP P to be satisfiable, i.e. there
exists an answer set (M,HM) of P such that p(a) ∈M .

First note that every tree rule in P has a tree representation that is of bounded rank,
let m be the maximum rank of the tree representations of all rules, and define n to be the
product of m with the number of unary predicates (possibly negated) in P , We define a
θ : {1, . . . , n}∗ → HM , such that (dom(θ), t : dom(θ) → 2Pred(P)) is a labeled tree of
bounded rank. We define t such that

t(xi) = {p1|p1(θ(xi)) ∈M} ∪ {p2|p2(θ(x), θ(xi)) ∈M ∨ p2
−(θ(xi), θ(x)) ∈M}

Define θ(ε) = a and assume we have already considered, as in [23], every member of
{1, . . . , n}k, as well as xi1, . . . , xi(j − 1) for xi ∈ {1, . . . , n}k.

For every p1 ∈ t(xi), p1 not free, xi ∈ dom(θ), p1 unary, we have that p1(θ(xi)) ∈
M and, since M is minimal, there is a rule

r1 :p1(θ(xi))← α(θ(xi)), γl(θ(xi), el), εl(el) ,

such that body(r1) ⊆M . In the case that γl 6= 0 we proceed as follows.
If there exists a rule5 (either a tree constraint or a tree rule) with a body

α(X), not(β(X)), γ1(X, Y1), . . . , γn(X, Yn),

not(δ1(X, Y1)), . . . , not(δn(X, Yn)), Yk 6= Yl, ε1(Y1), . . . , εn(Yn)

such that there exist n−1 nodes yi corresponding to Yi, with yi ∈ {xi1, . . . , xi(j−
1), xij, . . . , xi(j + (l − 1))} or yi = x such that

– yi 6= yj if Yi 6= Yj in the body,
– α ⊆ t(xi),
– β ∩ t(xi) = ∅,
– for all yi,
• if yi = x, then γi ⊆ t(xi), δi ∩ t(xi) = ∅, and εi ⊆ t(yi), where γi is γi with

all binary literals inverted,
• if yi 6= x, then γi ⊆ t(yi), δi ∩ t(yi) = ∅, and εi ⊆ t(yi),

– for the one remaining Yj , j 6= i, we have that γj ⊆ {f |f(θ(xi), el) ∈ M}, δj ∩
{f |f(θ(xi), el) ∈M} = ∅, and εj ⊆ {q|q(el) ∈M}

and we have that the body cannot be made true w.r.t. M and θ(xi) corresponding to
X , θ(yi), i 6= j corresponding to Yi and el corresponding to Yj , then θ(xi(j + l)) is
undefined, else θ(xi(j + l)) = el.

Define M′ = {p1(x)|p1 ∈ t(x)} ∪ {p2(x, xi), p2
−(xi, x)|p2 ∈ t(xi)} andHM ′ =

dom(θ). This model clearly makes p tree-satisfiable, if (M′,HM ′) is an answer set of
P , which is the case. ut
The decidability proof of satisfiability checking of unary predicates w.r.t. a CLP uses
then a reduction to a finite number of simple CLPs for which satisfiability can be
checked with normal finite answer set programming. The details can be found in [14].

4 Simulating Description Logics and Finite Answer Set
Programming

CLPs can simulate several expressive DLs as well as answer set programming with a
finite (Herbrand) universe and without disjunction in the head (i.e. datalog programs,
where not()-literals may appear in the body of a clause). E.g. the program q(X) ←
f(c, b, c) has {b, c} as its Herbrand universe. This universe is finite (if it is assumed that
a DLP consists of a finite number of rules), contrary to the answer set programming

5 Note that the tree rules/constraints are trees of one level deep.

introduced in Section 2 where the universe is a superset (possibly infinite) of {c, b}.
However, one can translate q(X)← f(c, b, c) into a CLP by grounding it with its Her-
brand universe, thus obtaining another finite DLP, and subsequently, a CLP by attaching
a variable to it. For the above example, this yields the clauses q(b)(X)← f(c, b, c)(X)
and q(c)(X)← f(c, b, c)(X), with the grounded literals now considered as unary pred-
icates. One obtains the following theorem.

Theorem 3. M is an answer set of a logic program P iff (M ′, {a}), with ’a’ a constant,
is an answer set of the CLP P ′ where M ′ = {l(a)|l ∈M} and P ′ = {r(X)|r ∈ P M

HM
},

with r(X) defined such that every literal l in r is replaced by l(X).

Moreover, several DLs that cannot be simulated by finite answer set programming,
because they do not have the finite model property, i.e. some DL knowledge bases have
only infinite models, can be simulated by CLPs. Such a DL is for example SHIQ [16],
which is the DL that can provide the formal semantics of the ontology language OIL
[15], with transitive closure of roles instead of transitivity of roles, which we called
SHIQ∗.

We define the syntax of SHIQ∗ concept expressions as follows.

D1, D2 → A|¬D1|D1 uD2|D1 tD2|∃R.D1|∀R.D1|(≤ n Q.D1)|(≥ n Q.D1)

Q→ P |P−

R→ Q|Q∗

with A a concept name and P a role name. The semantics of a SHIQ∗ concept expres-
sion is given by an interpretation I = (∆I , ·I) which consists of a non-empty (possibly
infinite) domain ∆I , and an interpretation function ·I defined as follows.

A
I ⊆ ∆

I for concept names A

P
I ⊆ ∆

I ×∆
I for role names P

P
−I

= {(y, x)|(x, y) ∈ P
I} for role names P

(¬D1)
I = ∆

I \D
I

1

(D1 uD2)
I = D

I

1 ∩D
I

2

(D1 tD2)
I = D

I

1 ∪D
I

2

(∃R.D1)
I = {x|∃y : (x, y) ∈ R

I ∧ y ∈ D
I

1 }

(∀R.D1)
I = {x|∀y : (x, y) ∈ R

I ⇒ y ∈ D
I

1 }

(≤ n Q.D1)
I = {x|#{y|(x, y) ∈ Q

I ∧ y ∈ D
I

1 } ≤ n}

(≥ n Q.D1)
I = {x|#{y|(x, y) ∈ Q

I ∧ y ∈ D
I

1 } ≥ n}

(R∗)I = R
I∗

i.e. the reflexive transitive closure of RI

A terminological axiom is of the form C1 v C2, with C1 and C2 arbitrary concept
expressions. An interpretation I satisfies a terminological axiom C1 v C2 if CI

1 ⊆
CI

2 . A role axiom is of the form R1 v R2, with R1 and R2 roles (possibly inverted
or transitive closures). An interpretation I satisfies a role axiom R1 v R2 if RI

1 ⊆
RI

2 . A knowledge base Σ is a set of terminological and role axioms. An interpretation

I is a model of Σ if I satisfies every axiom in Σ. A SHIQ∗ concept expression
C is satisfiable w.r.t. Σ if there exists a model I of Σ such that C has a non-empty
interpretation, i.e. CI 6= ∅. It is straightforward to simulate satisfiability checking in
SHIQ∗ with CLPs.

Consider for example the small fragment of an OWL DL6 ontology in Figure 1
which expresses that sales items are the items that have at least one price. The DL

<owl:Class rdf:ID="SalesItem">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Item"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasPrice"/>
<owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger">1
</owl:minCardinality>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

Fig. 1. An OWL DL example ontology

knowledge base corresponding to the ontology in Figure 1 consists of the axioms7

SalesItem v Item u ∃hasPrice

Item u ∃hasPrice v SalesItem

The corresponding CLP makes SalesItem, Item, hasPrice, and ¬hasPrice free:

SalesItem(X) ∨ not(SalesItem(X))←
Item(X) ∨ not(Item(X))←

hasPrice(X, Y) ∨ not(hasPrice(X, Y))←
¬hasPrice(X, Y) ∨ not(¬hasPrice(X, Y))←

and contains rules defining the negation of concept expressions appearing in the knowl-
edge base.8

¬SalesItem(X)← not(SalesItem(X))
¬Item(X)← not(Item(X))

¬∃hasPrice(X)← not(∃hasPrice(X))
¬(Item u ∃hasPrice)(X)← not((Item u ∃hasPrice)(X))

6 OWL DL [21] is the most expressive fragment of OWL that corresponds to a DL.
7 ∃hasPrice corresponds to the concept expression ∃hasPrice.> where > is the top concept,

i.e. >I = ∆I for every interpretation I.
8 Extending CLP to directly support “true negation” (¬) is possible and would simplify the

translation.

as well as rules defining the intersection and the exists restriction ∃hasPrice:

(Item u ∃hasPrice)(X)← Item(X), ∃hasPrice(X)
∃hasPrice(X)← hasPrice(X, Y)

Finally, we express both DL axioms directly as follows,

← SalesItem(X), not((Item u ∃hasPrice)(X))
← not(SalesItem(X)), (Item u ∃hasPrice)(X)

which are the only two rules that are strictly necessary to express the knowledge in the
OWL ontology; the other rules simulate the DLs semantics and can be automatically
derived.

Formally, we define Φ(C, Σ) to be the CLP, obtained from the SHIQ∗ knowledge
base Σ and the concept expression C as follows.

clos(C, Σ) Φ(C, Σ)

concepts A A(X) ∨ not(A(X))← (1)
role names P P (X, Y) ∨ not(P (X, Y))← (2)

¬P (X, Y) ∨ not(¬P (X, Y))← (3)
expressions D

D = ¬E ¬E(X)← not(E(X)) (4)
D = E u F E u F (X)← E(X), F (X) (5)
D = E t F E t F (X)← E(X) (6)

E t F (X)← F (X) (7)
D = ∃Q.E ∃Q.E(X)← Q(X, Y), E(Y) (8)
D = ∃Q∗.E ∃Q∗.E(X)← E(X) (9)

∃Q∗.E(X)← Q(X, Y), ∃Q∗.E(Y) (10)
D = ∀R.E ∀R.E(X)← ¬∃R.¬E(X) (11)
D = (≤ n Q.E) (≤ n Q.E)(X)← ¬(≥ n + 1 Q.E)(X) (12)
D = (≥ n Q.E) (≥ n Q.E)(X)← Q(X, Y1), . . . , Q(X,Yn),

E(Y1), . . . , E(Yn), Y1 6= Y2, . . .(13)
C1 v C2 ∈ Σ ← C1(X), not(C2(X)) (14)
R1 v R2 ∈ Σ ← R1(X, Y), not(R2(X, Y)) (15)

The closure clos(C, Σ), appearing in the above table, of a concept expression, C

and the SHIQ∗ knowledge base Σ, is defined as follows:

– for every concept expression D in {C} ∪Σ we have D ∈ clos(C, Σ),
– for every D in clos(C, Σ), we have one of the following

D = ¬D1, D1 ∈ clos(C, Σ)
D = D1 tD2, {D1, D2} ⊆ clos(C, Σ)
D = D1 uD2, {D1, D2} ⊆ clos(C, Σ)
D = ∃R.D1, {R, D1} ⊆ clos(C, Σ)
D = ∀R.D1, {D1, ∃R.¬D1} ⊆ clos(C, Σ)
D = (≤ n Q.D1), then {(≥ n + 1 Q.D1)} ⊆ clos(C, Σ)
D = (≥ n Q.D1), then {Q, D1} ⊆ clos(C, Σ)

– for all R∗ ∈ clos(C, Σ), R ∈ clos(C, Σ),
– for all D ∈ clos(C, Σ), ¬D ∈ clos(C, Σ).

Theorem 4. A SHIQ∗ concept expression C is satisfiable w.r.t. a SHIQ∗ knowledge
base Σ iff C(X) is satisfiable w.r.t. Φ(C, Σ).

Proof Sketch. ⇒ C is satisfiable w.r.t. Σ, so there exists a model I = (∆I , ·I) with
CI 6= ∅. We construct the answer set A = (M,HM) out of this interpretation with
HM = ∆I and M as follows

M = {C(a) |a ∈ CI , C ∈ clos(C, Σ)} ∪ {¬C(a) |a 6∈ CI , C ∈ clos(C, Σ)}

∪ {Q(a, b), Q−(b, a) |(a, b) ∈ QI , Q ∈ clos(C, Σ)}

∪ {¬Q(a, b),¬Q−(b, a) |(a, b) 6∈ QI , Q ∈ clos(C, Σ)}

It is then easy to show that (M,HM) is an answer set of Φ(C, Σ).
⇐ Let M be a minimal model of Φ(C, Σ)

M

HM
with C(a) ∈ M , and define an

interpretation I = (∆I , ·I), with ∆I = HM , and AI = {a |A(a) ∈ M}, for concept
names A, QI = {(a, b) |Q(a, b) ∈M}, for role names or an inverse Q.
I is defined on concept expressions as usual, and one can show that I is a model of

Σ such that CI 6= ∅. ut
Note that while every SHIQ∗ knowledge base can be rewritten, by Theorem 4,

as an equivalent CLP, not every CLP can be written as a SHIQ∗ knowledge base
expressing the same knowledge. Consider for example the rule

g(X, Y)← a(X), f(X, Y), b(Y)

stating that g is exactly the projection of f on both its first and second coordinate. One
direction (the minimality) can be simulated by the three axioms > v ∀g−.a, > v ∀g.b

and g v f . The other direction would demand for a more expressive DL including
product of concept expressions and intersection of roles [5].

5 Conclusions and Directions for Further Research

We presented conceptual logic programming (CLP) as a language that unifies both an-
swer set programming and expressive description logics, exemplified by SHIQ∗. This
was achieved by, on the one hand, allowing inverse predicates and infinite domains and,
on the other hand, suitably restricting the form of clauses so as to keep the satisfiability
problem decidable.

Because ontology languages such as OIL, DAML+OIL and a large fragment of
OWL, obtain their formal semantics through a correspondence with a description logic,
CLP is useful to represent and reason about ontologies in a rule-based manner which
also supports fine grained modularity, where ontologies can be extended by simply
adding intuitive (business) rules. In addition, reasoning using CLP is nonmonotonic
(through negation as failure), an important feature in view of the evolving nature of
knowledge that is available on the Semantic Web.

Future work includes extending CLP, e.g. by supporting constants and further relax-
ing the restrictions on tree rules, possibly even dropping the reliance on the tree model
property to guarantee satisfiability. In another direction, CLP could be equipped with

a preference order on rules, thus introducing another source for nonmonotonic reason-
ing [12], which would be useful for resolving conflicts resulting from the integration of
knowledge from different schema’s/ontologies. Finally, we intend to confirm the theo-
retical results with an implementation of CLP.

References

[1] G. Alsaç and C. Baral. Reasoning in Description Logics using Declarative Logic Program-
ming. http://www.public.asu.edu/ guray/dlreasoning.pdf, 2002.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook. Cambridge University Press, 2003.

[3] S. Bechhofer, C. Goble, and I. Horrocks. DAML+OIL is not Enough. In Proceedings of
the First Semantic Web Working Symposium (SWWS’01), pages 151–159. CEUR, 2001.

[4] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, pages
34–43, May 2001.

[5] A. Borgida. On the Relative Expressiveness of Description Logics and predicate logics.
Artificial Intelligence, 82(1-2):353–367, 1996.

[6] M. Cadoli, L. Palopoli, and M. Lenzerini. Datalog and Description Logics: Expressive
Power. In Proceedings of the Sixth International Workshop on Database Programming
Languages (DBPL’97), number 1369 in Lecture Notes in Computer Science, pages 281–
298. Springer-Verlag, 1998.

[7] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog and
Description Logics. J. of Intelligent and Cooperative Information Systems, 10:227–252,
1998.

[8] D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann, and M. Klein. OIL in a
Nutshell. In R. Dieng et al., editor, Knowledge Acquisition, Modeling, and Management,
Proceedings of the European Knowledge Acquisition Conference (EKAW-2000), Lecture
Notes in Artificial Intelligence. Springer-Verlag, 2000.

[9] R. Fikes and D. McGuinness. An Axiomatic Semantics for RDF, RDF-S, and DAML+OIL.
http://www.w3.org/TR/daml+oil-axioms, December 2001. W3C Note.

[10] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In
Robert A. Kowalski and Kenneth Bowen, editors, Proceedings of the Fifth International
Conference on Logic Programming, pages 1070–1080, Cambridge, Massachusetts, 1988.
The MIT Press.

[11] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combining
Logic Programs with Description Logic. In Proceedings of Twelfth International World
Wide Web Conference (WWW 2003), pages 48–57, 2003.

[12] S. Heymans and D. Vermeir. A Defeasible Ontology Language. In Robert Meersman
and Zahir Tari et al., editors, Confederated International Conferences: CoopIS, DOA and
ODBASE 2002, number 2519 in Lecture Notes in Computer Science, pages 1033–1046.
Springer, 2002.

[13] S. Heymans and D. Vermeir. Integrating Ontology Languages and Answer set Program-
ming. In Fourteenth International Workshop on Database and Expert Systems Applications,
pages 584–588, Prague, Czech Republic, September 2003. IEEE Computer Society.

[14] S. Heymans and D. Vermeir. Ontology Reasoning using an Extension of Answer Set Pro-
gramming. Technical report, Vrije Universiteit Brussel, Dept. of Computer Science, 2003.

[15] I. Horrocks. A Denotational Semantics for Standard OIL and Instance OIL.
http://www.ontoknowledge.org/oil/downl/semantics.pdf, 2000.

[16] I. Horrocks and U. Sattler. A Description Logic with Transitive and Converse Roles
and Role Hierarchies. LTCS-Report 98-05, LuFg Theoretical Computer Science, RWTH
Aachen, Germany, 1998.

[17] I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Expressive Description Log-
ics. In Harald Ganzinger, David McAllester, and Andrei Voronkov, editors, Proceedings
of the 6th International Conference on Logic for Programming and Automated Reasoning
(LPAR’99), number 1705, pages 161–180. Springer-Verlag, 1999.

[18] J. Kopena. DAMLJessKB.
http://plan.mcs.drexel.edu/projects/legorobots/design/software/DAMLJessKB/, October
2002.

[19] V. Lifschitz. Answer Set Programming and Plan Generation. Artificial Intelligence, 138(1-
2):39–54, 2002.

[20] M. Uschold and M. Grüninger. Ontologies: Principles, Methods, and Applications. Knowl-
edge Engineering Review, 11(2):93–155, 1996.

[21] F. van Harmelen, J. Hendler, I. Horrocks, and L. A. Stein D. L. McGuinness, P. F. Patel-
Schneider. Web Ontology Language (OWL) Reference Version 1.0. W3C Working Draft
- http://www.w3.org/TR/owl-ref/, February 2003.

[22] M. Y. Vardi. Why is Modal Logic so Robustly Decidable? Technical Report TR97-274,
Rice University, April 12, 1997.

[23] M. Y. Vardi. Reasoning about the Past with Two-Way Automata. In Proceedings of the
25th Int. Coll. on Automata, Languages and Programming (ICALP ’98), pages 628–641.
Springer, 1998.

