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Abstract

We extend answer set programming (ASP) with, possibly infinite, open domains. Since
this leads to undecidable reasoning, we restrict the syntaxof programs, while carefully
guarding knowledge representation mechanisms such as negation as failure and inequali-
ties. Reasoning with the resulting extended forest logic programs (EFoLPs) can be reduced
to finite answer set programming, for which reasoners are available.

We argue that extended forest logic programming is a useful tool for uniformly repre-
senting and reasoning with both ontological and rule-basedknowledge, as they can capture
a large fragment of the OWL DL ontology language equipped with DL-safe rules. Fur-
thermore, EFoLPs enable nonmonotonic reasoning, a desirable feature in locally closed
subareas of the Semantic Web.
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1 Introduction

Answer set programming (ASP) [21] is a logic programming paradigm that cap-
tures knowledge by programs whose answer sets express the intended meaning of
this knowledge. The answer set semantics presumes that all relevant domain ele-
ments are present in the program. Such a closed domain assumption is problematic
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if one wishes to use ASP for ontological reasoning since ontologies describe knowl-
edge in terms of concepts and interrelationships between them, and are thus mostly
independent of constants.

E.g., consider the knowledge that managers drive big cars, that one is either a man-
ager or not, and that Felix is definitely not a manager. This isrepresented by the
programP :

bigCar(X ) ← Manager(X )

Manager(X ) ∨ not Manager(X ) ←

¬Manager(felix ) ←

Grounding with the only present constant,felix , yields the program

bigCar(felix ) ← Manager(felix )

Manager(felix ) ∨ not Manager(felix ) ←

¬Manager(felix ) ←

which has a single answer set{¬Manager(felix )} such that one wrongfully con-
cludes that there are never managers that drive big cars: theconclusions of the
program depend on the present instance data.

We resolve this by introducing, possibly infinite,open domains. Under theopen
answer set semanticsthe example has an open answer set

(H = {felix , heather},

M = {¬Manager(felix ),Manager(heather), bigCar(heather)}) ,

whereH is a universefor P that extends the constants present inP andM is an
answer set ofP grounded withH. One concludes that it is possible that there are
persons that are managers and thus drive big cars, corresponding to the intended
semantics of the program. The open answer set semantics enables data independent
reasoning: an ontology engineer does not need to introduce all significant con-
stants in the program, which allows her to concentrate on modeling the ontological
knowledge only. Note the use of disjunction and negation as failure in the head of
Manager(X ) ∨ not Manager(X ) ← . Such rules will be referred to asfree rules
since they allow for the free introduction of literals; answer sets are, consequently,
not subset minimal.

The support for the presence of anonymous individuals, i.e., elements that are not
constants in the program, allows to bridge the semantics of logic programming and
description logics[5]: open answer set programming enables both a nonmonotonic
semantics (typical for logic programming paradigms) and the use ofopen domains,
one of the key features for conceptual modeling, as present in classical logics.
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The catch is that reasoning, i.e., satisfiability checking of a predicate, with open
domains is, in general, undecidable. In order to regain decidability, we restrict
the syntax of programs while retaining useful knowledge representation tools such
as negation as failure and inequality. Moreover, the result, (local) extended forest
logic programs (EFoLPs), ensures a reduction of reasoning to finite, closed, ASP by
virtue of the forest-model property and the bounded finite model property. EFoLPs
are thus amenable for reasoning with existing answer set solvers such asDLV [41]
andSMODELS [50].

Reasoning with both ontological knowledge, in the form of a description logic (DL)
[5] knowledge base, and rule-based knowledge has recently gained in interest in the
Semantic Web community. The purpose of adding rules to ontological knowledge
is to have additional expressiveness. E.g., [45] extends a DL knowledge base with
DL-safe rules, i.e., Horn clauses where variables must appear in non-DL-atoms
in the body of rules. DL-safe rules can express triangular knowledge that is not
expressible with DLs alone:uncle(a, c) ← brother(a, b), parent(b, c). Note that
DL-safe rules can contain variables but, by DL-safeness, the rules correspond to
their grounded version where the grounding is done w.r.t. the present constants and
nominals in the rules and DL knowledge base. It does not take into account anony-
mous domain elements, which is a serious limitation. On the other hand allowing
for a grounding with anonymous elements would immediately yield undecidability.

Reasoning with DL knowledge bases and DL-safe rules is monotonic. However,
nonmonotonic reasoning may be useful in applications that involve well-defined
closed subareas of the Semantic Web, as illustrated in the following example. As-
sume a business is setting up its website for processing customer feedback. It de-
cides to commit to an ontologyO which defines that if there are no complaints for
a product, it is a good product.

good product(X ) ← not complaint(X )

The business has its particular business rules, e.g.,

i : invest(tps , 10K )← not good product(tps)

saying that if its particular top selling producttps cannot be shown to be a good
product, then the business has to invest 10K intps . Finally, the business maintains
a repository of dynamically changing knowledge, originating from user feedback
collected on the site, e.g., at a certain time the repositorycontains

R1 ≡ {complaint(tps)← } ,

with a complaint fortps.

If the business wants to know whether to invest more intps it needs to checkO ∪
{i} ∪ R1 |= invest(tps , 10K ), i.e., whether the ontology, combined with its own
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business rules, and the information repository, demand foran investment or not.

One can useextended forest logic programming (EFoLP)to express the above
knowledge. Intuitively, any model ofO∪{i}∪R1, must verifycomplaint(tps), and
good product(X ) ← not complaint(X ) will not trigger andgood product(tps)
will be false, which in turn, with rulei, allows to conclude that the business should
indeed invest.

Evaluating the same query with an updated repository

R2 ≡ {complaint(tps)← , good product(tps)← }

containing a survey result saying thattps is a good product, no matter what com-
plaints of individual users there may be, leads to

O ∪ {i} ∪R2 6|= invest(tps , 10K ) ,

such that no further investments are necessary. Adding knowledge thus invalidates
previous conclusions making reasoning nonmonotonic; similar scenarios can easily
be imagined in any well-defined environment with dynamically changing knowl-
edge.

EFoLPs are defined as pairs(Q,R) consisting of, on the one hand, aforest logic
program (FoLP)Q capable of expressing conceptual knowledge, as in, e.g., DL
knowledge bases, and, on the other hand, a finite arbitrary programR which al-
lows to relate constants/individuals in arbitrary ways. AnEFoLP answer setof
such a(Q,R) is defined as an open answer set ofQ ∪ R′, whereR′ is the pro-
gramR grounded with constants fromQ ∪ R. On the semantical level, an EFoLP
corresponds to a FoLP with a finite set of ground arbitrary rules. Syntactically,
however, the pair notation allows for a more compact representation. Intuitively, an
EFoLP consists of a syntactically restricted part allowingopen domain reasoning
and an arbitrary part where reasoning is on the present constants only. In particular,
EFoLPs can simulate reasoning in the DLALCHOQ(t,u), a DL closely related
to OWL [9], equipped with DL-safe rules, Moreover, EFoLPs are capable, as indi-
cated above, of nonmonotonic reasoning as well, since they allow for negation as
failure both in the FoLP part as in the arbitrary rule part.

Note that, although we allow for negation as failure, (E)FoLPs still have to satisfy
rather strict syntactical restrictions to ensure the forest-model property. E.g., the
aboveuncle relationship cannot be expressed with variables that can beground
by anynomous elements. We do allow for arbitrary rules in EFoLPs, however, their
variables must be grounded with constants (either from the program or from the DL
knowledge base), which makes their usefulness rather limited. The alternative, i.e.,
loosening up the syntactical restrictions or allowing grounding with anonymous
elements in the arbitrary rules, easily leads to undecidability.

The remainder of the paper is organized as follows. In Section 2, we extend ASP
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with open domains, and in Section 3, we define (local) EFoLPs,reduce reasoning
to normal ASP, and establish complexity results. In Section4, we show the EFoLP
simulation of an expressive class of DLs equipped with DL-safe rules. Section 5
relates other work to our approach. Finally, Section 6 contains conclusions and
directions for further research.

2 Open Answer Set Programming

In Subsection 2.1, we introduce the open answer set semantics; Subsection 2.2
argues the undecidability of reasoning under the open answer set semantics, and
Subsection 2.3 defines the class ofacyclicprograms, which will be useful for the
simulation of DLs in Section 4.

2.1 Basic Definitions and Results

A termis either aconstantor avariable, and is denoted by a string of letters where
a constant starts with a lower-case letter and a variable with an upper-case letter. An
atomis of the forma(t) or f(s, t) wherea is a unary predicate name,f is a binary
predicate name, ands and t are terms. Aliteral is an atom or an atom preceded
with the classical negation symbol¬. We assume¬¬a ≡ a for an atoma; for a set
of literalsα, ¬α ≡ {¬l|l ∈ α}.

An extended literalis a literal or a literal preceded by thenegation as failure (naf)
symbolnot. We will often denote a set of unary extended literals, ranging over a
common terms, asα(s), e.g.,{a(s), not b(s)} may be denoted as{a, not b}(s).
A set of binary extended literals can be similarly denoted asα(s, t). The positive
part of a set of extended literalsβ is β+ ≡ {l | l ∈ β, l literal}, the negative part is
β− ≡ {l | not l ∈ β}, e.g., forβ = {a, not ¬b, not c}, we have thatβ+ = {a} and
β− = {¬b, c}. Furthermore, we assume the existence of a binary predicate6=, with
the usual interpretation.

A disjunctive extended logic program(DLP) is a countable set of rulesα ← β

whereα andβ are finite sets of extended literals and|α+| ≤ 1; as usual,α is
supposed to be a disjunction of extended literals andβ a conjunction. In contrast
to the DLP we define here, classical DLP allows forα to be an arbitrary set of
extended literals; our extra condition ensures that the GL-reduct, defined below, is
disjunction-free, which avoids the use of an extra NP oraclein satisfiability check-
ing, see Section 3.3. Ifα = ∅, we call the rule aconstraint. The setα is thehead
of the rule whileβ is called thebody, denoted, for a ruler, as head(r) and body(r)
respectively. As usual, atoms, (extended) literals, rules, and programs that do not
contain variables areground. A set of ground literalsX isconsistentif X∩¬X = ∅.
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Note that programs withnot in the head can be rewritten as equivalent programs
without not in the head [39]. Since the former programs have a non-minimal se-
mantics, useful for introducing the types in conceptual models, while the latter pro-
grams have not, they are more appropriate in the context of conceptual knowledge
representation.

For a DLPP , letHP be the constants inP . A (possibly infinite) non-empty count-
able set of constantsH such thatHP ⊆ H, is called auniversefor P . We denote
PH the ground programobtained fromP by substituting every variable inP by
every possible constant inH such that the inequalities are true (and subsequently
removed). For a programP and its constantsHP , we will denotePHP

often simply
asground(P).

Example 1 The programP

sel(I , S ) ∨ not sel(I , S ) ← av(i) ←

av(I ) ← sel(I , S )

expresses that an item is sold by a seller or not, an item is available if it has a seller,
and we have a particular available itemi. The constants inP areHP = {i}; some
of the universes forP areH1 = {i, s} or an infiniteH2 = {i, x1, x2, . . .}.

Let LP be the set of literals that can be formed from a grounded program P ,
preds(P ) are the predicate names inP , andupreds(P ) andbpreds(P ) the unary
and binary predicate names respectively; unless specified otherwise,¬p, for a pred-
icate namep, is also considered to be a predicate name.

An interpretationI of a groundP is any consistent subset ofLP . For a ground
literal l, we writeI |= l, if l ∈ I, which extends toI |= not l if I 6|= l, and, for a
set of ground extended literalsX, I |= X if I |= x for everyx ∈ X. A ground rule
r : α ← β is satisfiedw.r.t. I, denotedI |= r, if I |= l for somel ∈ α whenever
I |= β, i.e., r is appliedwhenever it isapplicable. A ground constraint← β is
satisfied w.r.t.I if I 6|= β. For a ground programP , I is amodelof P if I satisfies
every rule inP . We define theGL-reduct[42] w.r.t. I asP I , whereP I contains
α+ ← β+ for α ← β in P , β− ∩ I = ∅ andα− ⊆ I. I is ananswer setof a
groundP if I is the subset minimal model ofP I . An open interpretationof P is
a pair(H,M) whereH is a universe forP andM is an interpretation ofPH . An
open answer setof P is then an open interpretation(H,M) with M an answer set
of PH. We denote this as(H,M) |= P .

Example 2 Considering the programP from Example 1, we have that, with a uni-
verseH = {i, s, x} for P , (H,M1 = {av(i), sel(x , s), av(x )}) and (H,M2 =
{av(i)}) are some open answer sets ofP . SinceM1 contains a literalsel(x , s), the
GL-reductPM1

H containssel(x , s) ← , which motivates the presence ofsel(x , s)
in M1. On the other hand, sincesel(x , s) 6∈ M2, sel(x , s) ∨ not sel(x , s) ← is

6



satisfied and is not in the GL-reduct. Intuitively,sel(I , S ) ∨ not sel(I , S ) ← can
be used to freely introducesel -literals, provided no other rules prohibit this, e.g., a
constraint← sel(x , s) would make sure that no answer set containssel(x , s). We
call a predicatef free if f (X ,Y ) ∨ not f (X ,Y )← or f (X ) ∨ not f (X )← is in
the program, or is silently assumed to be in it, for a binary orunaryf respectively.
Similarly, a ground literall is free if we havel ∨ not l ← .

In the following, we usually omit the “open” qualifier and assume that programs are
finite unless they are the result of grounding with an infiniteuniverse. A program
P is consistentif it has an answer set. For a unary predicatep, appearing inP , p is
satisfiablew.r.t. P if there exists an answer set(H,M) of P such thatp(a) ∈ M
for somea ∈ H. Consistency checking can be reduced to satisfiability checking
by introducing some new predicate: for a programP and a programP ′ = P ∪
{p(X ) ∨ not p(X )← } with p not appearing inP , we have thatP is consistent iff
p is satisfiable w.r.t.P ′. For a ground literalα, we haveP |= α if for all answer sets
(H,M) of P ,α ∈M . Checking whetherP |= α is calledquery answering. We can
reduce query answering to consistency checking, i.e.,P |= α iff P ∪ {not α ← }
is not consistent.

There are programs such that a predicate is only satisfiable w.r.t. that program by
an infinite open answer set.

Example 3 The program

r1 : restore(X ) ← crash(X ), y(X ,Y ), backSucc(Y )

r2 : backSucc(X ) ← ¬crash(X ), y(X ,Y ), not backFail(Y )

r3 : backFail(X ) ← not backSucc(X )

r4 : ← y(Y1 ,X ), y(Y2 ,X ),Y1 6= Y2

r5 : y(X ,Y ) ∨ not y(X ,Y ) ←

r6 : crash(X ) ∨ not crash(X ) ←

r7 : ¬crash(X ) ∨ not ¬crash(X ) ←

represents the knowledge that a system that has crashed on a particular day, can
be restored on that day if a backup of the system on the day before succeeded.
Backups succeed, if the system does not crash and it cannot beestablished that the
backups at previous dates failed. Rulesr1, r2, andr3 express the above knowledge,
andr4 ensures that for a particular today there can be only one tomorrow (y stands
for yesterday). Every open answer set(H,M) of this program that makesrestore
satisfiable, i.e., such that there is arestore(x ) ∈ M for x ∈ H, must be infinite. An
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example of such an answer setM is (we omitH if it is clear fromM)

{restore(x), crash(x), backFail(x), y(x, x1),

backSucc(x1),¬crash(x1), y(x1, x2)

backSucc(x2),¬crash(x2), y(x2, x3), . . .}

One sees that everybackSucc literal with elementxi enforces a newy-successor
xi+1 since none of the previously introduced universe elements can be used without
violating ruler4.

Although we allow for infinite universes, we can finitely motivate the presence of
literals in answer sets. We express the motivation of a literal more formally by an
immediate consequence operatorT that computes the closure of a set of literals
w.r.t. a GL-reduct. For a DLPP and an interpretation(H,M) of P , TPM

H

: LPM
H

→

LPM
H

is defined asT (B) ≡ B ∪ {a|a ← β ∈ PM
H ∧ β ⊆ B}, where we omit-

ted the subscript fromTPM
H

. Additionally, we haveT 0(B) ≡ B, andT n+1(B) ≡

T (T n(B)). We usually writeT n instead ofT n(∅).

Theorem 4 LetP be a DLP and(H,M) an open answer set ofP . Then,∀a ∈M ·
∃n <∞ · a ∈ T n.

PROOF. Assume∃a1 ∈M · ∀n <∞·a1 6∈ T n. One can then construct an infinite
sequence{a1, a2, . . .} ⊆ M such that∀i · ∀n <∞ · ai 6∈ T n. The constructed
answer setM ′ ≡ M \{a1, a2, . . .} is a model ofPM

H , contradicting the minimality
of M . 2

More detail than theT -operator is provided by thesupportof a literala in an answer
set(H,M), which explicitly indicates the literals that support the presence ofa in
the answer set. For the leastn such thata ∈ T n, we inductively define the support
S k(a) on a certain level1 ≤ k ≤ n asSn(a) ≡ {a} andS k(a) ≡ {β | b ←
β ∈ PM

H , β ⊆ T k, β 6⊆ T k−1, b ∈ S k+1(a)}, 1 ≤ k < n. The support fora is
S (a) ≡ ∪nk=1S

k(a).

Example 5 For Example 3,{crash(x ), y(x , x1 ),¬crash(x1 ), y(x1 , x2 )} ⊆ T 1,
backSucc(x1 ) ∈ T 2, andrestore(x ) ∈ T 3, such that

S (restore(x)) = S 3(restore(x)) ∪ S 2(restore(x)) ∪ S 1(restore(x))

= {restore(x )} ∪ {crash(x ), y(x , x1 ), backSucc(x1 )}

∪ {¬crash(x1 ), y(x1 , x2 )} .

indicates which literals were responsible for the presenceof restore(x ) in the an-
swer set.
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2.2 Undecidability

Satisfiability checking for DLPs under the open answer set semantics is undecid-
able since the undecidabledomino problem[6] can be reduced to it. In the domino
problem, one has a finite set of domino typesD = {D1, . . .Dm} and two re-
lations indicating which domino types may be placed side by side horizontally,
H ⊆ D × D, and vertically,V ⊆ D × D. The domino problem is the search for
a tiling, compatible withH andV , of the planeN × N, i.e., at : N × N → D s.t.
(t(m,n), t(m+ 1, n)) ∈ H and(t(m,n), t(m,n + 1)) ∈ V for everym,n ∈ N.

We omit the detail of the reduction but note the representation of the plane since
this already unveils an important source of undecidability. The planeN × N can
be represented by predicatesh andv , whereh(X, Y ) andv(X, Y ) indicate thatY
is X + 1 for X along the horizontal (resp. vertical) axis. Every tile has only one
h-successor, such that we have a← h(X, Y1), h(X, Y2), Y1 6= Y2, and every tile has
at least one such successor:h1(X)← h(X, Y ) and← not h1(X). The same holds
for v. Furthermore, taking one step in the vertical direction followed by a horizontal
step should be the same as the opposite action:seq(X ,Z ) ← h(X ,Y ), v(Y ,Z );
seq(X ,Z )← v(X ,Y ), h(Y ,Z ); ← seq(X ,Z1 ), seq(X ,Z2 ),Z1 6= Z2 .

Checking for a compatible tiling can then be done by introducing unary predicates
for each domino type, checking the compatibility locally ateach tile, and making
sure that each tile can be reached. The main problem, however, are the 2seq-rules
which express composition of binary predicates; without those, we would have a
DLP for which satisfiability checking is decidable.

2.3 Acyclic Programs

For the translation of description logics to open answer setprogramming in Sec-
tion 4, we need the additional terminology ofacyclic programs, i.e., programs that
do not allow recursion through positive literals.

Formally, adependency graphDGP for a DLP P is defined by edges between
predicatesa andb such thata → b iff there is a ruleα ← β ∈ P such thata is
a predicate fromα+ andb is a predicate fromβ+. A DLP P is positively acyclic,
acyclic for short, ifDGP does not contain cycles. An important distinction with
stratified programs [7] is that recursion through negated literals is still allowed.

A useful property of acyclic programs, as we will see in Section 4, is that they can
be rewritten such that there appear no positive unary literals in the body anymore;
one replaces them by a double negation. Formally, for an acyclic programP , we
defineφ(P ) as the programP with rulesr : α ← β, γ, for α 6= ∅ andβ the unary
literals of body(r), replaced byα ← not β ′, γ and b ′(X ) ← not b(X ), for all
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b′(X) ∈ β ′ whereβ ′ = {b′(X) | b(X) ∈ β}.

Theorem 6 LetP be an acyclic program andp ∈ upreds(P ). p is satisfiable w.r.t.
P iff p is satisfiable w.r.t.φ(P ).

PROOF. For the “only if” direction, assumep is satisfiable w.r.t.P , i.e., there is
an open answer set(H,M) of P such thatp(a) ∈ M . One can show that(H,M ′)
with M ′ = M ∪ {b′(x) | b(x) 6∈M, b′ ∈ φ(P )} is an answer set ofφ(P ).

For the “if” direction, assumep is satisfiable w.r.t.φ(P ), i.e., there is an open an-
swer set(H,M) of φ(P ) such thatp(a) ∈ M . DefineM ′ = M \{b′(x)}, then
(H,M ′) is an answer set ofP andp(a) ∈M ′. 2

Example 7 Take the programP

a(X ) ← b(X ), f (X ,Y ), not c(Y )

b(X ) ∨ not b(X ) ←

f (X ,Y ) ∨ not f (X ,Y ) ←

The dependency graph of this program is{a → b, a → f} such thatP is acyclic.
The translationφ(P ) is then

a(X ) ← not b ′(X ), f (X ,Y ), not c(Y )

b ′(X ) ← not b(X )

b(X ) ∨ not b(X ) ←

f (X ,Y ) ∨ not f (X ,Y ) ←

which has, among others, the answer set({x, y}, {a(x), b(x), f(x, y), b′(y)}), cor-
responding to an answer set({x, y}, {a(x), b(x), f(x, y)}) of P .

Theorem 6 is in general not valid for programs that are not acyclic.

Example 8 Consider the programP

a(X )← a(X )

This is not an acyclic program andφ(P ) is the program

a(X ) ← not a ′(X )

a ′(X ) ← not a(X )
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with an answer set({x}, {a(x)}), which does not correspond to any answer set of
P .

3 Extended Forest Logic Programs

In Subsection 3.1, we introduce theforest-model propertyand define a syntactically
restricted class of programs,forest logic programs (FoLPs)[28], satisfying this
property. We show in Subsection 3.2 that a particular type ofFoLPs, FoLPs with
the local model property, has thebounded finite model property, which enables a
reduction to finite ASP. Subsection 3.3 identifies an upper bound for the complexity
of reasoning. Finally, in Subsection 3.4, we extend FoLPs with an arbitrary finite set
of rules that can only be grounded with constants present in the program, resulting
in EFoLPs [29], and show that properties such as the forest-model property and the
bounded finite model property remain valid.

3.1 Forest-model Property

As seen in the previous section, open answer set programmingis rather powerful,
even to the extent that satisfiability checking in the general case is undecidable. As
in modal logics, the so-calledtree-model propertywill prove to be a critical factor
in showing decidability of satisfiability checking [53]. Roughly, a program has the
tree-model property if one has that if there are answer sets that make a predicate
satisfiable there must also be answer sets with a tree-structure that make the pred-
icate satisfiable. A generalization of this property is theforest-model property: if
there is an answer set that makes a predicate satisfiable, then there is an answer set
that has the form of a set of trees, a forest. A similar property arises for DLs that
include nominals, e.g.,SHOQ(D)[34].

For ax ∈ N
∗
0, i.e., a finite sequence of natural numbers, we denote the concatenation

of a numberc ∈ N to x asx · c, or, abbreviated, asxc. Formally, a(finite) treeT is
a (finite) subset ofN∗

0 such that ifx · c ∈ T for x ∈ N
∗
0 andc ∈ N0, we have that

x ∈ T . Elements ofT are called nodes and the empty wordε is the root ofT . For
a nodex ∈ T we callx · c ∈ T , c ∈ N0, successorsof x. By convention,x · 0 = x

and(x · c) · −1 = x (ε · −1 is undefined). If every nodex in a tree hask successors
we say that the tree isk-ary. E.g.T1 = {ε, ε1, ε2, ε11} is a finite tree with root
ε, two successorsε1 andε2, andε11 a successor ofε1; T1 will also be written as
{ε, 1, 2, 11}. A labeled treeover an alphabetΣ is a tuple(T, t) whereT is a tree
andt : T → Σ is a labeling function; usually we will identify the tree(T, t) with
t and we will writetx for trees where the root is identified withx: if the root in
T1 is a constanta, we write it as{a, a1, a2, a12}, and a labeling function forT1 is
denoted asta. A forestF is a finite multi-set{tx1, . . . , txn

}, with eachtxi
: Txi

→ Σ
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a labeled tree such thatTxi
andTxj

are mutually disjoint fortxi
6= txj

.

Example 9 Consider the programP representing the knowledge that a company
can be trusted for doing business with if it has the ISO 9000 quality certificate and
at least two different trustworthy companies are doing business with it:

trust(C ) ← t bus(C ,C1 ), t bus(C ,C2 ),C1 6= C2 , qual(C , iso9000 )

← t bus(C ,D), not trust(D)

with t bus andqual free predicates, andiso9000 a constant. The first rule states
a sufficient condition on the trust of someC: if differentC1 andC2 are doingtrust-
worthy businesswith C (t bus(C ,C1 ), t bus(C ,C2 )) andC has the ISO 9000
quality certificate (qual(C , iso9000 )), thenC can be trusted as well (trust(C )).
Moreover, using the minimality of open answer sets, this single rule also expresses
that in order forC to be trusted it should be doing trustworthy business with differ-
ent companies and have the ISO 9000 quality label.1 The constraint encodes the
inherent property oft bus (doing trustworthy business) that ifC is doing trustwor-
thy business withD, thenD must be a trusted company.

An answer set, e.g.,

M = {trust(x1 ), t bus(x1 , x2 ), t bus(x1 , x3 ),

qual(x1 , iso9000 ), trust(x2 ), . . .}

is such that for every trusted companyxi in M , i.e., trust(xi ) ∈ M , there must
be t bus(xi , xj ), t bus(xi , xk) and trust(xj ), trust(xk ) with xj 6= xk; additionally,
every trusted company has theiso9000 quality label. This particular answer set
has a forest shape, as can be seen from Fig. 1: we call it a forest-model. The forest
in Fig. 1 consists of two trees, one with rootx1 and one, a single node tree, with
root iso9000 . The labels of a nodex in a tree, e.g.,{trust} for x2, encode which
literals are in the corresponding answer set, e.g.,trust(x2 ) ∈M , while the labeled
edges indicate relations between domain elements. The dashed arrows, describing
relations between anonymous domain elementsx ∈ H\HP , and constants, appear
to be violating the forest structure; their labels can, however, be stored in the la-
bel of the starting node, e.g.,qual(x2 , iso9000 ) can be kept in the label ofx2 as
qual iso9000 . Since there are only a finite number of constants, the numberof differ-
ent labels in a forest is still finite. In particular, we have that the roots of the trees in
a forest-model may be arbitrarily interconnected. To be formally correct, the forest

1 Note that adding extra rules withtrust as the head predicate may change the meaning of
trust, i.e., the body of the current rule is not necessarily applied (one could apply the body
of an added rule). This differs from other Knowledge Representation formalisms such as
Description Logics, where one can express modular sufficient and necessary conditions (by
equivalence axioms). Such a modular expression does not seem to be possible with (open)
answer set programming.
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Fig. 2. Formal Forest-Model

should not have any labeled edges; we solve this by keeping the label on an edge
from x to y in the label ofy, and assume that binary predicates in labels refer to
edge labels from the predecessor node to the current node, e.g., for t bus(x1 , x2 )
we keept bus in the label ofx2.

Definition 10 A p ∈ upreds(P ) is forest-satisfiablew.r.t.P if there exists an open
answer set(H,M) and a forestF = {tε} ∪ {ta | a ∈ HP} where thetx :
Hx ≡ dom(tx) → 2preds(P )∪{fa|a∈HP∧f∈bpreds(P )} are labeled trees with bounded
arity such thatH = ∪xHx andp ∈ tε(ε). Furthermore,z · i ∈ Hx, i > 0, iff there
is somef(z, z · i) ∈M . For y ∈ Hx, q ∈ upreds(P ), f ∈ bpreds(P ), we have that

• q(y) ∈M iff q ∈ tx(y), and
• f(y, u) ∈M iff (u = y · i ∧ f ∈ tx(u)) ∨ (u ∈ HP ∧ fu ∈ tx(y)).

We call(H,M) a forest-modeland a DLPP has theforest-model propertyif the
following property holds: ifp ∈ upreds(P ) is satisfiable w.r.t.P thenp is forest-
satisfiable w.r.t.P . The label of a nodez ∈ Hx is L(z) = {q | q ∈ tx(z), q ∈
upreds(P )}; for nodesz andu we have thatz < u if z is some prefix ofu, ≤ is
defined as usual.

Example 11 The forest-model of Example 9, drawn according to Definition10, is
then as in Fig. 2.

In effect, a forest-model is a set of trees, with arbitrary connections from elements
to constants. As a consequence, the connections between constants, i.e., the roots
of the trees, may form an arbitrary graph. A particular classof programs with this
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forest-model property areforest logic programs(FoLPs).

Definition 12 A FoLP is a DLP such that a rule is of one of the following types:

• free rules l ∨ not l ← for a literal l, which allow for the free addition of the
literal l, if not prohibited by other rules,

• unary rulesa(s)← β(s),∪mγm(s , tm),∪mδm(tm),∪i 6=j ti 6= tj , such that, if
γm 6= ∅ thenγ+

m 6= ∅, and, in casetm is a variable: ifδm 6= ∅ thenγm 6= ∅,
• binary rulesf (s , t)← β(s), γ(s , t), δ(t) with γ+ 6= ∅ if t is a variable,
• constraints← a(s).

wherei andj are within the range ofm.

We write unary rules, for compactness, as

a(s)← β(s), γm(s , tm), δm(tm), ti 6= tj ,

with variables assumed to be pairwise different.

The program in Example 9 is a FoLP, while theseq-rules from Subsection 2.2 are
not FoLP rules, which is consistent with the undecidabilityof the domino sim-
ulation and the decidability of (local) FoLPs, cf. infra. Intuitively, the syntacti-
cal restrictions on the rules in a FoLP are designed to ensurethe forest-model
property, and, to a lesser extent, the bounded finite model property (cf. infra),
while ensuring a high degree of expressiveness, e.g., to simulate expressive DLs,
see Section 4. E.g.,q(s) ← not f (s , t),¬q(t) is not allowed, since one cannot
transform an answer set to a forest-model: assuming¬q is free, we have that
({x, y}, {q(x),¬q(y)}) is an answer set, however, it is impossible to make a tree
out of this, since we need at least two domain elements, but wedo not have a binary
predicate to connect them. A similar reason makesq(s)← ¬q(t) impossible ift is
variable. However, whent is a constant, one does not need an explicit connection
between thes-node andt-node sincet is the root of its own tree, and thus not part of
the tree fors. The latter implies thatq(X ) ← f (X ,Y ), p(Y ), e(a) for a constant
a is allowed.

Moreover,f (X ,Y ) ← v(X ) is not allowed, since this may impose connections
betweenx andy withouty being a successor ofx, f (X , a)← v(X ) for a constant
a on the other hand is allowed. The idea of ensuring such connectedness of models
in order to have desirable properties, like decidability, is similar to the motivation
behind theguarded fragmentof predicate logic [3].

We can ease the syntactical restrictions on FoLPs by allowing for more general bod-
ies, e.g., by unfolding them, resulting in bodies with a tree-like structure. Compli-
cated constraints← β can be simulated by a unary rulea(s)← β and a constraint
← a(s).

A unary ruler : a(s) ← β(s), γm(s , tm), δm(tm), ti 6= tj is a live rule if there is a
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γm 6= ∅ with tm a variable. A unary predicatea is live if there is a live ruler with
a in head(r) anda is not free. The intuition behind a live predicatea is that a new
individualy might need to be introduced in order to makea(x) true for an existing
x. We denote the set of live predicates for a programP with live(P ). A degreefor
the liveliness of a ruler, i.e., how many new individuals might need to be intro-
duced to make the head true, isdegree(r) = |{m | γm 6= ∅ ∧ tm a variable}|. The
degree of a live predicatea in P is degree(a) = max{degree(r) | a ∈ head(r)}.
E.g., if we only have a ruler : a(X ) ← f (X ,Y1 ), g(X , c) thena is live and
degree(r) = degree(a) = 1.

FoLPs indeed have the forest-model property.

Theorem 13 Forest logic programs have the forest-model property.

PROOF. Take a FoLPP andp ∈ upreds(P ) s.t.p is satisfiable, i.e., there exists
an open answer set(H,M) with p(u) ∈ M . Letn =

∑
a∈live(P ) degree(a), i.e., the

sum of the degrees of the live predicates. We will defineθx : {x}·{1, . . . , n}∗ →H
as functions from the full tree with branchingn and rootx ∈ {ε} ∪ HP if u 6∈ HP

andx ∈ HP else. The labeled treestx : dom(θx) → 2preds(P )∪{fa|a∈HP∧f∈bpreds(P )}

are then defined bytx(z · i) = {q | q(θx(z · i)) ∈ M} ∪ {f | f(θx(z), θx(z · i)) ∈
M} ∪ {fa | f(θx(z · i), a) ∈M}.

Initially, we assume dom(θx) = ∅, i.e.,θx is not defined anywhere. The functionθx
is constructed as follows: takeθx(x) = x if x 6= ε and elseθx(x) = u ∈ H\HP , and
assume we have already considered, as in [54], every member of {x} · {1, . . . , n}k,
as well asz ·1, . . . ,z ·(m−1) for z ∈ {x}∪{1, . . . , n}k andz ∈ dom(θx). For every
live q ∈ tx(z), we have thatq(θx(z)) ∈ M andq(θx(z)) ∈ T n, and sinceM is an
answer set we have that there is aq(θx (z )) ← β+(θx (z )), γ+

m(θx (z ), ym), δ+
m(ym),

with the body true inM and inT n−1. If for all i eitherγi = ∅ or yi ∈ HP , i.e., we
do not have a live rule, then we continue with the nextq ∈ tx(z), otherwise, fori,
γi 6= ∅ andyi 6∈ HP , if there is azj ∈ {z · 1, . . . , z · (m − 1)} with θ(zj) = yi
thenθ remains undefined onz · (m + i), otherwiseθ(z · (m + i)) = yi. Note that
tx(z) 6= ∅, sinceθx is defined onz.

One can show that(∪xdom(tx), {q(z) | q ∈ tx(z)} ∪ {f(z, z · i) | f ∈ tx(z · i)} ∪
{f(z, a) | fa ∈ tx(z)}) is an open answer set ofP such thatF = ∪x{tx} is a forest
satisfying the conditions from Definition 10.2

3.2 Bounded Finite Model Property

Satisfiability checking w.r.t. the FoLPs in [31] was shown tobe decidable by a
reduction to two-way alternating tree automata [54]. However, the current definition
of FoLPs includes constants, which were not allowed in [31],such that the automata
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reduction cannot be readily applied. Moreover,while automata provide an elegant
characterization, there are few implementations available, e.g., [32] implements a
specific type, looping alternating automata, using a translation to description logics.

An alternative approach is to identify a particular class ofFoLPs, satisfying the
local model property, that allow for satisfiability checking with existing answer
set solvers such asDLV [41] or SMODELS [50], since they have thebounded finite
model property. This property enables the transformation of an (infinite) answer
set into a finite one, and, more specifically, it establishes abound on the number of
domain elements that are needed for such a construction.

FoLPs with the local model property are such that they are satisfiable by forest-
models where the presence of each literal in such a model is locally motivated by
the involved node, a successor of the node, and/or a constant.

Definition 14 Let P be a FoLP and for a literall, HS(l) the domain elements in
S (l), the support ofl. A forest-model(H,M) of P is locally supportedif
∀l = q(x) ∈M ∨ l = f(x, y) ∈M ·
(HS(l) ⊆ {x, xi} ∪ HP ) ∧ (∀f(z, a) ∈ S (l), a ∈ HP · z 6= xi), i.e., the support for
a literal involves only the domain elementx under consideration, successorsx·i, or
constants.p ∈ upreds(P ) is locally satisfiablew.r.t.P if there is a locally supported
forest-model, alocal modelfor short,(H,M) such thatp(ε) ∈ M for a root ε in
H. A FoLPP has thelocal model propertyif the following holds: ifp ∈ upreds(P )
is satisfiable w.r.t.P then it is locally satisfiable.

In the above definition, the extra condition,∀f(z, a) ∈ S (l), a ∈ HP ·z 6= xi, makes
sure that constants do not sneak around the locality by providing support for a literal
atx viaxi. As we will indicate below, cutting a tree at anximay removef(xi, a). If
f(xi, a) were then in the support of a literal inx, that literal would end up without
support in the cut tree.

Example 15 Take the program from Example 9. The forest-model in Fig. 1 isa
locally supported forest-model, e.g., a support

S (trust(x1)) = {trust(x1), t bus(x1, x2), t bus(x1, x3), qual(x1 , iso9000 )}

such that no other domain elements than the domain element under consideration,
its immediate successors or constants motivate the presence of a literal.

Infinite forest-models can be turned into finite answer sets:cut every path in the
forest from the moment there are duplicate labels and copy the connections of the
first node in such a duplicate pair to the second node of the pair. Intuitively, when we
reach a node that is in a state we already encountered, we proceed as that previous
state, instead of going further down the tree. Thiscutting is similar to the blocking
technique for DL tableaux [5], but the minimality of answer sets makes it non-trivial
and only valid for FoLPs with the local model property, as we indicate below.
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Fig. 3. Bounded Finite Model

Example 16 Considering the forest-model in Fig. 1, we can cut everything below
x2 andx3 since they have the same label asx1. Furthermore, sincet bus(x1 , x2 ),
t bus(x1 , x3 ), and qual(x1 , iso9000 ), we have thatt bus(xi , x2 ), t bus(xi , x3 ),
and qual(xi , iso9000 ) for i = 2 and i = 3, resulting in the answer set depicted
in Fig. 3.

Formally, a FoLPP has thebounded finite model propertyif the following holds:
if p ∈ upreds(P ) is satisfiable w.r.t.P then there is a finite answer set(H,M) of
P and a nonnegative integerk, defined as a function ofP , such thatp(x) ∈ M and
|H| < k. The bounded finite model property is similar to thesmall model property
found in the temporal logic CTL [19] where a CTL formula is satisfiable iff it is
satisfiable by a model that has a number of states at most exponential in the length
of the formula.

Theorem 17 Let P be a FoLP with the local model property. Then,P has the
bounded finite model property.

PROOF. Assumep is satisfiable w.r.t.P . SinceP has the local model property,
there is a locally supported forest-model(H,M) with p(ε) ∈ M . H is a multi-set
of trees∪xHx with rootsx, for x ∈ {ε} ∪ HP , where possiblyε is somea ∈ HP .
Letm be the number of different labels in the forest-model. For a pathP of length
at leastm + 1 in a Hx, definezP ∈ Hx as the minimal node (w.r.t. the prefix
relation<) s.t. ∃y < zP · y 6∈ HP ∧ L(y) = L(zP). Denote this uniquey with
zP . Since we have a finite numberm of different labels, we must have that for
every pathP of lengthm there are two nodes with the same label, moreover, in
the worst case we only need a path of lengthm + 1 to make sure thatzP is not a
constant. Note thatzP norzP can be a constant, since constants may be introduced
by rules containing no variables in the head, which, consequently, cannot be used to
motivate the presence of literals at anonymous nodes: it might be that a rulet(a)←
introducest in the label of some constanta, however, such a rule cannot be used
to motivate the presence oft lower in the tree. Below the root, we would not have
this problem ast there would be motivated by a rule with headt(X), which can be
matched against any lower node.

DefineH′
x = {z ∈ Hx | (z ∈ P ∧ |P| > m ⇒ z ≤ zP}, i.e., cut the treeHx
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at zP for every pathP that has length at leastm + 1, and letH′ = ∪xH′
x. Define

M ′ = {q(z) | z ∈ H′, q(z) ∈ M} ∪ {f(z, y) | z ∈ P ⇒ z < zP , f(z, y) ∈
M} ∪ {f(zP , y) | f(zP , y) ∈M}.

From Theorem 13, we have that the branching of aHx is at most

n ≡
∑

a∈live(P )

degree(a) ,

such that the number of nodes inH′
x is at most

∑m+1
i=0 ni. We have thatH′ contains

at mostc + 1 treesH′
x, wherec ≡ |HP |, such that the cardinality ofH′ is at most

(c+ 1)
∑m+1
i=0 ni. Note thatm ≤ 2u with u = |upreds(P )| such that the cardinality

ofH′ is at most

k ≡ (c+ 1)
2u+1∑

i=0

ni , (1)

wherek is calculated as a function ofP only.

Further note thatp(ε) ∈ M ′, such that it only remains to show that(H′,M ′) is an
answer set. 2

The local model property is a necessary property, i.e., the described cutting tech-
nique does not work for arbitrary FoLPs.

Example 18 Consider rulesa(X ) ← f (X ,Y ), a(Y ) anda(X ) ← b(X ) with b
andf free predicates. A forest-model of this program is

{a(ε), f(ε, 1), a(1), f(1, 11), a(11), b(11)} .

Sinceε and1 have the same label we cut the tree at1. In the resulting structure
{a(ε), f(ε, 1), a(1), f(1, 1)}, a(ε) nor a(1) are motivated, asb(11) is no longer
present. The resulting structure is thus not minimal.

FoLPs with the local model property solve this by making surethat a literala(x )
is always motivated byx itself, successorsy of x, or constants, such that, upon
cutting, no motivating literals for literals higher up in the tree are cut away.

Satisfiability checking w.r.t. FoLPs with the local model property can then be done
by standard answer set solvers. Intuitively, we introduce alarge enough number of
constants, such that every bounded finite model, that is guaranteed to exist by the
local model property, can be mapped to these constants.

Theorem 19 LetP be a FoLP with the local model property.p ∈ upreds(P ) is sat-
isfiable w.r.t.P iff there is a0 ≤ h ≤ k and an answer setM of ψh(P ) containing
a p-atom, wherek is as in(1) andψh(P ) ≡ P ∪ {cte(xi)← | 1 ≤ i ≤ h}.
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PROOF. For the “only if” direction, assumep is satisfiable w.r.t.P , such that, by
Theorem 17, there is an open answer set(H′,M ′) of P , with |H′| ≤ k. Defineh ≡
|H′| − |cts(P )|, i.e., the number of anonymous elements inH′. Define a bijection
F : H′ → Hψh(P ) such thatF (a) = a for a ∈ HP . DefineM ≡ {a(F (x)) | a(x) ∈
M ′} ∪ {f(F (x), F (y)) | f(x, y) ∈ M ′} ∪ {cte(xi) | 1 ≤ i ≤ h}. Intuitively,
we identify the forestH′ with the constants inψh(P ). One can show thatM is an
answer set ofψh(P ).

For the “if” direction, assume there exists an answer setM of ψh(P ) containing a
p-atom. DefineH′ ≡ Hψh(P ), one can show that(H′,M ′ ≡ M\{cte(xi) | 1 ≤ i ≤
h}) is an open answer set ofP . 2

Note that standard answer set solvers such asDLV or SMODELS do not allow nega-
tion as failure in the head, but this can be solved with the transformation of such
programs to programs withoutnot in the head [39] .

The local model property is a semantic property which makes Theorem 19 non-
trivial to use. However, a particular syntactic class of FoLPs that have the local
model property arelocal FoLPs.

Definition 20 A local FoLP is a FoLP where rules

a(s)← α(s), γm(s , tm), βm(tm), ti 6= tj

and
f (s , t)← α(s), γ(s , t), β(t)

are such that for everyb ∈ β+
(m), eitherb(t(m)) ∨ not b(t(m))←∈ P or for all rules

r : b(s)← body(r), body(r)+ = ∅.

Example 21 The program from Example 9 is a local FoLP while the program from
Example 18 is not. Note that the latter example does not have the local model
property either; in Example 23, we give a non-local program that does have the
local model property.

Intuitively, local FoLPs can motivate ana(s) (f(s, t)) in an answer set, by descend-
ing at most one level in the tree, where one can locally provea(s) (f(s, t)), i.e.,
without the need to go further down the tree. Of course, in thelevel belows one
may need to check more literals which could amount to going further down the
tree, but whilst doing this one does not need to remember which literals need to
be proved above in the tree. In a way a local FoLP has limited memory: it only re-
members the previous (predecessor) state. A similar intuition applies to algorithms
that check satisfiability of certain modal logics. E.g., [27] (Theorem 6.11) defines
a PSPACEalgorithm for checking satisfiability of the modal logicKn, based on a
marking that assignssatisfiableto a state depending solely on the label of that state
and the marking of the successors. Such an algorithm makes the decision to mark
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a statesatisfiablein a local way. Analogously, predicates in the label of a nodein
a forest-model are motivated by looking at the label of the node and labels of the
successor nodes. Note that the algorithm in [27] is an extension for Kn (a modal
logic with n agents) of the modal logicK (for one agent) in [40].

Theorem 22 Every forest-model of a local FoLP is locally supported, and, as a
consequence, local FoLPs have the local model property.

There are FoLPs with the local model property that are not local FoLPs, making
the syntactical restriction less expressive than the semantical characterization.

Example 23 Take the FoLP

a(X ) ← f (X ,Y ), b(Y )

a(X ) ← c(X )

b(X ) ← c(X )

← b(X )

with f andc free. This program is not local asb in the first rule does not satisfy the
necessary conditions. However, every predicate is satisfiable by a locally supported
forest-model such that the program has the local model property. Intuitively, the
first rule, which is problematic for syntactical locality, will never be applicable in
an open answer set since the constraint← b(X ) prohibits this. The example sug-
gests that finding a syntactical characterization that corresponds to the semantical
characterization (local iff local model property) is not trivial: the local supported-
ness of the forest-model is guaranteed by non-applicability of certain rules, which
seems hard to enforce syntactically in general.

3.3 Complexity

Let P be a FoLP. We verify the complexity of checking whether thereexists an
answer setM of ψh(P ) for some0 ≤ h ≤ k wherek andψh(P ) are as in Theorem
19. We distinguish between two cases:

• If FoLP rules have a degree bounded bym, independent of a particular FoLP,
then the size ofground(ψh(P)) is polynomial in the size ofψh(P ), since every
rule in ψh(P ) introduces at mostO(|Hψh(P )|

m+1) rules inground(ψh(P)). In-
deed, each FoLP rule then contains at mostm+1 variables, each of which can be
instantiated with a constant fromψh(P ). Since checking whether there exists an
answer setM of ψh(P ) is in NP in the size ofground(ψh(P)) [14,7], we have
that checking whether there exists an answer setM of ψh(P ) is in NP in the size
of ψh(P ) as well.
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• If the degree is not bounded, we use a result from [16] to statethat checking
whetherM is an answer ofψh(P ) is in ΣP

2 w.r.t. the size ofψh(P ). 2 Indeed, the
arities of predicates inψh(P ) are bounded by2 since FoLPs allow only for unary
and binary predicates.

Thus, for a fixedh, checking whetherψh(P ) has an answer set is in NP for a FoLP
with bounded degree and inΣP

2 in general.

Satisfiability checking of a predicate w.r.t.P can then be done by starting with
h = 0 and checking whetherψh(P ) has an answer set containing ap-atom. If
this is the case, we are done (by Theorem 19), otherwise, we repeat the check for
h = 1, and so on. If finallyh = k has been checked, i.e.,ψh(P ) had no answer
sets containing ap-atom, one can conclude, by Theorem 19, that the predicate is
not satisfiable. This procedure thus involves at mostk+ 1 calls to an NP oracle for
FoLPs with bounded degree or to anΣP

2 oracle in general.

We have that

k = (c+ 1)
2u+1∑

i=0

ni = (c+ 1)
(1− n2u+2)

(1− n)
,

with u = |upreds(P )|, c = |cts(P )|, andn the rank ofP such thatk is double
exponential in the size ofP and the above procedure to check satisfiability runs in
2-EXPTIMENP for FoLPs with bounded degree and the local model property orin
2-EXPTIMEΣP

2 for arbitrary FoLPs with the local model property.

Theorem 24 LetP be a FoLP with the local model property. Satisfiability check-
ing w.r.t. P is in 2-EXPTIMEΣP

2 for a non-bounded degree of FoLP rules or in
2-EXPTIMENP otherwise.

3.4 Extended Forest Logic Programs

Consider a FoLP defining when one cheats one’s spouse, i.e., if one is married
to someone that is different than the person one is dating. Wehave a specialized
rule saying when one is cheating one’s spouse with the spouse’s friend Jane. Fur-
thermore, some justice is introduced by a constraint ensuring that cheaters date
cheaters.

cheats(X ) ← marr(X ,Y1 ), dates(X ,Y2 ),Y1 6= Y2

cheats j (X ) ← marr(X ,Y ), friend(Y , jane), dates(X , jane),Y 6= jane

← cheats(X ), dates(X ,Y ), not marr(X ,Y ), not cheats(Y )

2 Recall thatΣP
2 = NPNP.
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Fig. 4. Forest-Model

with marr , friend anddates free predicates. An (infinite) answer set of this pro-
gram that satisfiescheats j is depicted in Fig. 4. One sees thatx cheats his spouse
with Jane sincex dates Jane but is married tox1. Furthermore, by the constraint,
we must have that Jane is also a cheater, and thus, by minimality of answer sets,
we must have that Jane is married to somejane1 and datesjane2, who in turn
must be cheating, resulting in an infinite answer set. In manycases, there is in-
teresting knowledge that cannot be captured within the rather strict tree format of
FoLP rules. For example, in addition, we may have a rule representing that if Leo is
married to Jane, Jane dates Felix, and Leo himself is not cheating, then Leo dislikes
Felix: dislikes(leo, felix ) ← marr(leo, jane), dates(jane, felix ), not cheats(leo).
This ground rule does not have a tree structure, but relates the three constants in
an arbitrary graph-like manner. We extend FoLPs by allowingfor a component
with arbitrary DLP rules that may only be grounded with the combined program’s
constants.

Definition 25 Anextended forest logic program (EFoLP)P is a pair(Q,R) where
Q is a FoLP andR is a finite DLP. We denoteQ with clp(P ) andR with e(P ). An
EFoLP answer setof (Q,R) is an open answer set ofQ ∪ RH(Q∪R)

. Satisfiability
checking and query answering w.r.t.(Q,R) are modified accordingly.

To avoid confusion with EFoLP answer sets and open answer sets, we assume an
EFoLPP is a FoLPQ extended with a ground DLPR, i.e.,P = Q ∪ R, under an
open answer set semantics. It is easy to see that the EFoLP answer set semantics
of an EFoLP can be reduced to the open answer set semantics of aFoLP with an
arbitrary ground part.

Note thate(P ) can be full-fledged DLP, i.e., with negation as failure. Moreover,
predicates ine(P ) may be defined in the FoLPclp(P ), as is the case formarr ,
dates andcheats. Vice versa, we may have predicates appearing in the FoLP part
that are defined in the ground rule part, e.g.,dislikes could appear in the FoLP part
as adislikes(X ,Y ) literal.

EFoLPs still have the forest-model property, since, intuitively, graph-like connec-
tions between constants are allowed in a forest, which is allthe ground parte(P )
of an EFoLPP can ever introduce. Proofs in this subsection are adaptations from
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their FoLP counterparts and have been omitted.

Theorem 26 Extended forest logic programs have the forest-model property.

The forest-model of the cheats example is depicted in Fig. 5.The cutting of infinite
answer sets to finite ones, as defined in Subsection 3.2, cannot be applied to arbi-
trary EFoLPs. As in the FoLP case, we need a local model property. Unfortunately,
the local model property as defined for FoLPs will not do. Take, for example, a rule

doesnt care(felix ) ← marr(leo, jane), dates(jane, felix ), cheats(leo)

where Felix does not care about dating the married Jane if herhusband Leo is
cheating as well. Together with thecheats rule from the cheating example, one has
thatdoesnt care(felix ) is in an answer set ifmarr(leo, jane), dates(jane, felix ),
cheats(leo), marr(leo, leo1 ), anddates(leo, leo2 ) for successorsleo1 andleo2 of
leo are in the answer set. Thus, although the cheats rule in itself does not violate
the local model property, adding a ground rule does so, sincesupports may also
involve successors of constants whereas the local model property definition for
FoLPs allows only the constants themselves in the support.

Although the local model property for FoLPs is not suitable,it can be safely relaxed
by allowing also successors of constants in the support. Indeed, cutting of forest-
models never removes any successors of constants and, moreover, a successor of
a constant is never considered as a candidate for the second node in a duplicate
pair since, by definition, the root in a constant tree is not taken into account as a
candidate for the first node in a duplicate pair. Thus the successors of constants
remain unmodified in the cut forest.

Definition 27 A forest-model(H,M) of an EFoLPP is locally supportedif
∀l = q(x) ∈M ∨ l = f(x, y) ∈M ·
(HS(l) ⊆ {x, xi} ∪ {a, ai | a ∈ HP})∧
(∀f(z, a) ∈ S (l), a ∈ HP · z 6= xi), p ∈ upreds(P ) is locally satisfiablew.r.t. P
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if there is a locally supported forest-model, alocal modelfor short,(H,M) such
that p(ε) ∈ M for a root ε in H. An EFoLPP has thelocal model propertyif the
following holds: ifp ∈ upreds(P ) is satisfiable w.r.t.P then it is locally satisfiable.

EFoLPs with the local model property then have the desired bounded finite model
property.

Theorem 28 Let P be an EFoLP with the local model property. Then,P has the
bounded finite model property.

Thanks to this property we can reduce reasoning with EFoLPs to normal answer
set programming by introducing a sufficiently large bound.

Theorem 29 Let P be an EFoLP with the local model property.p ∈ upreds(P )
is satisfiable w.r.t.P iff there is a0 ≤ h ≤ k and an answer setM of ψh(P )
containing ap-atom, wherek andψh(P ) are as in Theorem 19.

The other direction is trivial: there is a normal answer setM of a programP con-
taining ap(a) ∈ HP iff p is satisfiable w.r.t. to the EFoLP(∅, P ). Indeed, by defini-
tion of EFoLPs, the second component in the pair has a normal answer set seman-
tics. By [14,7], the normal answer set semantics for DLPs isNEXPTIME-complete.
Furthermore,(∅, P ) has the local model property such that we have the following
lower complexity bound.

Theorem 30 LetP be an EFoLP with the local model property. Satisfiability check-
ing w.r.t.P is NEXPTIME-hard.

A lower EXPTIME bound for reasoning with FoLPs will be established in Section 4.
Similar to the complexity upper bound for FoLPs with the local model property, one
can deduce the following upper bounds for EFoLPs with the local model property
(where extra complexity is due to the unbounded grounding ofthe arbitrary rule
part).

Theorem 31 LetP be an EFoLP with the local model property. Satisfiability check-
ing w.r.t.P is in 2-EXPTIMENEXPTIME.

As was the case for FoLPs, the local model property for EFoLPsis a semantical
characterization, which makes it non-trivial to recognizeEFoLPs satisfying this
property. We identify a class of EFoLPs, based on their syntactic structure, that
have the local model property.

Definition 32 A local EFoLP P is an EFoLP whereclp(P ) is a local FoLP.

Local EFoLPs have the local model property, i.e., the arbitrary rules have no influ-
ence on the locality.

Theorem 33 Local EFoLPs have the local model property.
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4 Nonmonotonic Ontological and Rule-based Reasoning with Extended For-
est Logic Programs

In Subsection 4.1, we simulate reasoning in an expressive DLwith FoLP; Subsec-
tion 4.2 shows that the extension of this DL with DL-safe rules can be simulated
by EFoLP, and discusses some of the advantages of EFoLPs for representing and
reasoning with conceptual and rule-based knowledge.

4.1 Ontological Reasoning with FoLPs

Description logics (DLs) [5] play an important role in the deployment of the Se-
mantic Web, as they provide the formal semantics of (part of)ontology languages
such as OWL [9]. Usingconceptandrole namesas basic building blocks,termi-
nological and role axiomsin such DLs define subset relations between complex
conceptandrole expressionsrespectively. The semantics of DLs is given by inter-
pretationsI = (∆I , ·I) where∆I is a non-empty domain and·I is an interpretation
function.

ALCHOQ(t,u) is a particular DL with syntax and semantics as in Table 1; con-
cept namesA are the base concept expressions,P is a role name, establishing the
base role expression, ando is an individual.D andE are arbitrary concept ex-
pressions, andR andS are arbitrary role expressions. Individuals are interpreted
as elements in∆I , concept expressions as subsets of∆I and role expressions as
binary relations on∆I . DLs are named according to their constructs:AL is the ba-
sic DL [49], andALCHOQ(t,u) adds negation of concept expressions (C), role
hierarchies (H), individuals (or nominals) (O), qualified number restrictions (Q),
and conjunction (u) and disjunction (t) of roles.

The unique name assumption– if o1 6= o2 thenoI1 6= oI2 – ensures that different
individuals are interpreted as different domain elements.Note that OWL does not
have the unique name assumption [51], and thus different individuals can point
to the same resource. However, the open answer set semanticsgives an Herbrand
interpretation to constants, i.e., constants are interpreted as themselves, and for
consistency we assume that also DL nominals are interpretedthis way. Thus, from
a Semantic Web point of view, we assume all individuals are URI’s that point to a
unique resource.

For concept expressionsD andE, terminological axiomsD v E are satisfied by
an interpretationI if DI ⊆ EI . Role axiomsR v S are interpreted similarly. An
axiomX ≡ Y stands forX v Y andY v X. A knowledge baseΣ is a set of
terminological and role axioms;I is amodelof Σ if I satisfies every axiom inΣ.
A concept expressionC is satisfiablew.r.t. Σ if there exists a modelI of Σ such
thatCI 6= ∅.

25



Table 1
Syntax and SemanticsALCHOQ(t,u)

concept names AI ⊆ ∆I

role names P I ⊆ ∆I ×∆I

individuals {o}I = {oI} ⊆ ∆I

conjunction of concepts (D u E)I = DI ∩ EI

disjunction of concepts (D t E)I = DI ∪ EI

conjunction of roles (R u S)I = RI ∩ SI

disjunction of roles (R t S)I = RI ∪ SI

existential restriction (∃R.D)I = {x|∃y : (x, y) ∈ RI ∧ y ∈ DI}

universal restriction (∀R.D)I = {x|∀y : (x, y) ∈ RI ⇒ y ∈ DI}

qualified number restriction (≤ n R.D)I = {x|#{y|(x, y) ∈ RI ∧ y ∈ DI} ≤ n}

(≥ n R.D)I = {x|#{y|(x, y) ∈ RI ∧ y ∈ DI} ≥ n}

As an example, the human resources department has an ontology specifying the
company’s structure: (a)Personnel consists ofManagement , Workers andjohn,
(b) john is the boss of some manager, and (c) managers only take ordersfrom other
managers and they are the boss of at least threeWorkers. This corresponds to the
followingALCHOQ(t,u) knowledge baseΣ:

Personnel ≡ Manag tWorkers t {john}

{john} v ∃boss .Manag

Manag v (∀t orders.Manag) u (≥ 3 boss .Workers)

A model of thisΣ is I = ({j, w1, w2, w3, m}, ·I), with ·I defined byWorkersI =
{w1, w2, w3}, ManagI = {m}, {john}I = {j}, PersonnelI = {j, w1, w2, w3, m},
bossI = {(j,m), (m,w1), (m,w2), (m,w3)}, t ordersI = ∅.

We can rewriteΣ as an equivalent FoLPP . The axioms inΣ correspond to the
constraints

← Personnel(X ), not (Manag tWorkers t {john})(X )

← (Manag tWorkers t {john})(X ), not Personnel(X )

← {john}(X ), not (∃boss .Manag)(X )

← Manag(X ), not ((∀t orders.Manag) u (≥ 3 boss .Workers))(X )

in P , where the concept expressions are used as predicates, and indicating, in
case of the first constraint, that if the answer set contains somePersonnel(x ) then
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it must also contain(Manag tWorkers t {john})(x ). Those constraints are the
kernel of the translation; we still need, however, to simulate the DL semantics by
rules that define the different DL constructs.

The predicate(Manag tWorkers t {john}) is defined by rules

(Manag tWorkers t {john})(X ) ← Manag(X )

(Manag tWorkers t {john})(X ) ← Workers(X )

(Manag tWorkers t {john})(X ) ← {john}(X )

and thus, by minimality of answer sets, if(Manag tWorkers t {john})(x ), there
must either be aManag(x ), aWorkers(x ), or a{john}(x ). The other way around,
if one has aManag(x ), aWorkers(x ), or a{john}(x ), one must have
(Manag tWorkers t {john})(x ). This behavior is exactly what is required by the
t-construct.

The predicate(∃boss .Manag) is defined by

(∃boss .Manag)(X )← boss(X ,Y ),Manag(Y )

such that, if the literal(∃boss .Manag)(x ) is in the answer set, there is ay such that
boss(x , y) andManag(y) are in the answer set and vice versa.

The predicate((∀t orders.Manag) u (≥ 3 boss .Workers)) is defined by

((∀t orders.Manag) u (≥ 3 boss .Workers))(X )←

(∀t orders.Manag)(X ), (≥ 3 boss .Workers)(X )

and the body predicates by the rules

(∀t orders.Manag)(X ) ← not (∃t orders.(¬Manag))(X )

(≥ 3 boss .Workers)(X ) ← boss(X ,Y1 ), boss(X ,Y2 ), boss(X ,Y3 ),

Workers(Y1 ),Workers(Y2 ),Workers(Y3 ),

Y1 6= Y2 ,Y2 6= Y3 ,Y1 6= Y3

and

(∃t orders.(¬Manag))(X ) ← t orders(X ,Y ), (¬Manag)(Y )

(¬Manag)(X ) ← not Manag(X )

Finally, we need to introduce free rules for all concept and role names. Intuitively,

27



concept names and roles names are types and thus contain someinstances or not.

Workers(X ) ∨ not Workers(X ) ←

Personnel(X ) ∨ not Personnel(X ) ←

Manag(X ) ∨ not Manag(X ) ←

boss(X ,Y ) ∨ not boss(X ,Y ) ←

t orders(X ,Y ) ∨ not t orders(X ,Y ) ←

The individual{john} is taken care of by introducing a constantjohn in the pro-
gram with the rule{john}(john)← . The only possible value ofX in a{john}(X )
is thenjohn.

The DL modelI corresponds to the open answer set(H,M) with H = (∆I \
{j}) ∪ {john} andM = {C(x) | C ∈ upreds(P ), x ∈ CI} ∪ {R(x, y) | R ∈
bpreds(P ), (x, y) ∈ RI}, with a slight abuse of notation, i.e., usingC andR as
predicates and DL expressions. Formally, we define theclosureclos(C,Σ) of a
concept expressionC and a knowledge baseΣ as the smallest set satisfying the
following conditions:

• for every concept (role) expressionD (R) in {C} ∪ Σ, we have thatD(R) ∈
clos(C,Σ),

• for everyD in clos(C,Σ), we distinguish the following cases:

D = ¬D1 ⇒ D1 ∈ clos(C,Σ)

D = D1 tD2 ⇒ {D1, D2} ⊆ clos(C,Σ)

D = D1 uD2 ⇒ {D1, D2} ⊆ clos(C,Σ)

D = ∃R.D1 ⇒ {R,D1} ⊆ clos(C,Σ)

D = ∀R.D1 ⇒ {D1, ∃R.¬D1} ⊆ clos(C,Σ)

D = (≤ n Q.D1) ⇒ {(≥ n+ 1 Q.D1)} ⊆ clos(C,Σ)

D = (≥ n Q.D1) ⇒ {Q,D1} ⊆ clos(C,Σ)

• for R t S ∈ clos(C,Σ), {R, S} ⊆ clos(C,Σ),
• for R u S ∈ clos(C,Σ), {R, S} ⊆ clos(C,Σ).

The FoLPΦ(C,Σ) that simulates satisfiability checking ofC w.r.t. Σ is then con-
structed by introducing for concept namesA, role namesP , and individualso in
clos(C,Σ), rulesA(X ) ∨ not A(X ) ← , P(X ,Y ) ∨ not P(X ,Y ) ← , and facts
{o}(o) ←. For every other constructB ∈ clos(C,Σ), we introduce, depending on
the particular construct, a rule withB in the head as in Table 2.

This completes the simulation ofALCHOQ(t,u) using FoLP.
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Table 2
FoLP TranslationΦ(C,Σ)

(¬D)(X) ← not D(X) (D u E)(X) ← D(X), E(X)

(D t E)(X) ← D(X) (D t E)(X) ← E(X)

(∃R.D)(X) ← R(X,Y ),D(Y ) (∀R.D)(X) ← not ∃R.¬D(X)

(R t S)(X,Y ) ← R(X,Y ) (R u S)(X,Y ) ← R(X,Y ), S(X,Y )

(R t S)(X,Y ) ← S(X,Y ) (≤ n R.D)(X) ← not (≥ n + 1 R.D)(X)

(≥ n R.D)(X) ← R(X,Y1), . . . , R(X,Yn),D(Y1), . . . ,D(Yn), Y1 6= Y2, . . .

Theorem 34 AnALCHOQ(t,u) concept expressionC is satisfiable w.r.t. a
knowledge baseΣ iff C is satisfiable w.r.t.Φ(C,Σ).

Proof Sketch. For the “only if” direction, takeC satisfiable w.r.t.Σ, i.e., there
exists a modelI = (∆I , ·I) with CI 6= ∅. We rename the elementoI from ∆I by
o, which is possible by the unique name assumption. We then construct the answer
set(H,M) withH = ∆I andM = {C(x) | x ∈ CI , C ∈ clos(C,Σ)}∪{R(x, y) |
(x, y) ∈ RI , R ∈ clos(C,Σ)}. One can show that(H,M) is an answer set of
Φ(C,Σ).

For the “if” direction, we have an open answer set(H,M) that satisfiesC, i.e.,
C(x) ∈ M for somex ∈ H. Define an interpretation(∆I , ·I), with ∆I = H, and
AI = {y | A(y) ∈ M}, for concept namesA, P I = {(y, z) | P (y, z) ∈ M}, for
role namesP , andoI = o, for o ∈ HΦ(C,Σ). I is defined on concept expressions
and role expressions as in Table 1, and we can show thatI is a model ofΣ such
thatCI 6= ∅. 2

Note that, in general, the resulting FoLPΦ(C,Σ) is not local:(∃R.(AuB)) is trans-
lated as rules(∃R.(A u B))(X ) ← R(X ,Y ), (A u B)(Y ) and (A u B)(X ) ←
A(X ),B(X ), such that there is a positive(A u B)-atom that is not free in a body
and there is a rule with(A u B) in the head and a body that has a non-empty
positive part.Φ(C,Σ) has, however, the convenient property that it is acyclic. Itis
sufficient to note that the body of a rule inΦ(C,Σ) is structurally “smaller” than
the head, e.g.,(A u B) is smaller than(∃R.(A u B)). This permits us to replace
the rule with(∃R.(A u B)) in the head by the two rules(∃R.(A u B))(X ) ←
R(X ,Y ), not (A u B)′(Y ); (A u B)′(X ) ← not (A u B)(X ): we negate(A u
B)(Y ) twice. The resulting FoLP is now local and satisfiability checking w.r.t.
Φ(C,Σ) can be reduced to this replacement, as a consequence of Theorem 6.

From the reduction of reasoning withALCHOQ(t,u) to reasoning with local
FoLPs, we can deduce a lower complexity bound for reasoning with the latter.
Indeed, since satisfiability checking of the sublanguageAL w.r.t. a set of axioms is
EXPTIME-complete [5], we have the following theorem.
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Theorem 35 LetP be a FoLP with the local model property. Satisfiability checking
w.r.t.P is EXPTIME-hard.

TheALCHOQ(t,u) simulation shows the feasibility of Semantic Web reason-
ing with FoLPs, asALCHOQ(t,u) is an expressive DL related to the OWL DL
ontology language. Formally, OWL DL corresponds to the DLSHOIN (D) [37],
which differs fromALCHOQ(t,u) in thatSHOIN (D) additionally allows for
inverted roles (I), data types (D) and transitivity of roles (which distinguishesS
fromALC). However,SHOIN (D), and thus OWL DL, does not support qualified
number restrictions, i.e., it only allows for unqualified number restrictions such as
(≥ n R) instead of qualified ones(≥ n R.D)(X). Furthermore,ALCHOQ(t,u)
adds the role constructst andu.

Putting this in perspective, the loss of transitivity inALCHOQ(t,u) weighs heav-
ier than having qualified number restrictions and role constructors. Indeed, there is
actually no reason why OWL DL should not include qualified number restrictions
(corresponding to the DLSHOIQ(D)). We needed to omit transitivity in order
to be able to translate to EFoLPs with the bounded finite modelproperty. OWL
DL does not have this limitation, i.e., there are concept expressions that have only
infinite models. Note that adding transitivity toALCHOQ(t,u) without restrict-
ing the allowed roles in qualified number restrictions (theycannot be transitive nor
can they have transitive subroles), one immediately has undecidability of reason-
ing [35]. Further note that OWL DL does not make the unique name assumption,
while EFoLPs do. Since the unique name assumption can be asserted in OWL DL,
EFoLPs are strictly weaker in this respect.

4.2 Combined Ontological and Rule-based Reasoning with EFoLPs

The ontology layer for the Semantic Web is becoming a realitywith languages such
as OWL DL, and the rule layer, which provides additional inferencing capabilities
on top of DL reasoning, is gaining interest in the Semantic Web community. For
example, in [45], integrated reasoning of DLs withDL-saferules was introduced.
DL-safe rules are unrestricted Horn clauses where only the communication be-
tween the DL knowledge base and the rules is restricted; theyenable one to express
knowledge inexpressible with DLs alone, e.g., triangular knowledge such as [45]

BadChild(X ) ← GrChild(X ), parent(X ,Y ), parent(Z ,Y ), hates(X ,Z )

saying that a grandchild that hates its sibling is a bad child.

We introduce DL-safe rules as in [45]. For a DL knowledge baseΣ letNC andNR

be the concept and role names inΣ andNP is a set of predicate symbols such that
NC∪NR ⊆ NP . A DL-atomis an atom of the formA(s) orR(s, t) forA ∈ NC and
R ∈ NR. A DL-safe ruleis a rule of the forma ← b1 , . . . , bn wherea, bi are atoms
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and every variable in the rule appears in a non-DL-atom in therule body. ADL-safe
programis a finite set of DL-safe rules. Letcts(Σ, P ) be the set of nominals inΣ
and constants inP .

The semantics of the combined(Σ, P ) for a knowledge baseΣ and a DL-safe pro-
gramP is given by interpretingΣ as a first-order theoryπ(Σ), see, e.g., [12], every
DL-safe rulea ← b1 , . . . , bn as the clausea∨¬b1∨ . . .∨¬bn, and then considering
the first-order interpretation ofπ(Σ) ∪ P . The main reasoning procedure in [45] is
query answering, i.e., checking whether a ground atomα is true in every first-order
model ofπ(Σ) ∪ P , denoted as(Σ, P ) |= α.

We provide an alternative semantics based on DL interpretations as in [33] rather
than on first-order interpretations. However, both semantics are compatible as in-
dicated in [45]. For(Σ, P ) and an interpretationI = (∆I , ·I) of Σ we extend
·I for NP andHP such that for unary predicatesp ∈ NP , pI ⊆ ∆I , for binary
predicatesf ∈ NP , fI ⊆ ∆I × ∆I, andoI ∈ ∆I for o ∈ HP ; such an ex-
tended interpretation is, by definition, an interpretationof (Σ, P ). Furthermore, we
impose the unique name assumption such that ifo1 6= o2, thenoI1 6= oI2 , for el-
ementso ∈ cts(Σ, P ). A binding for an interpretationI of (Σ, P ) is a function
σ : vars(P ) ∪ cts(Σ, P ) → ∆I with σ(o) = oI for o ∈ cts(Σ, P ); it maps con-
stants/nominals and variables to domain elements. A unary atom a(s) is then true
w.r.t. σ andI if σ(s) ∈ aI , and a binary atomf(s, t) is true w.r.t.σ andI if
(σ(s), σ(t)) ∈ fI. A rule r is satisfied byI iff for every bindingσ w.r.t. I that
makes the atoms in the body true, the head is also true. An interpretation of(Σ, P )
is a model if it is a model ofΣ and it satisfies every rule inP . Query answering
(Σ, P ) |= α amounts then to checking whether for every modelI of (Σ, P ), the
ground atomα is true inI.

In Subsection 4.1, we reducedALCHOQ(t,u) satisfiability checking to FoLP sat-
isfiability checking. We can reduce query answering w.r.t.ALCHOQ(t,u) knowl-
edge bases extended with DL-safe rules to query answering w.r.t. EFoLPs. We first
provide some intuition with an example. Take a knowledge baseΣ

∃manuf in.Co u ∃has price v Product ,

expressing that if something is manufactured in some country and it has a price
then it is a product (∃has price is shorthand for∃has price.>, where>I ≡ ∆I

for every interpretationI). We have some facts in a DL-safe programP about the
world we are considering:

is product of (p, c1 ) ← manuf in(p, japan) ←

is product of (p, c2 ) ← Co(japan) ←

saying thatp is a product of companyc1 and companyc2, that p is manufac-
tured in Japan and that Japan is a country. Those facts are trivially DL-safe since
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they do not contain variables. Additionally, we have a DL-safe rule inP saying
that if a product is a product of 2 companies, those companiesare competitors3 ,
r1 : competitors(C1, C2)← Product(P ), is product of(P,C1),
is product of(P,C2). Note that this is indeed a DL-safe rule since every vari-
able occurs in ais product of atom, which is a non-DL-atom in the body of
the rule. The only DL-atom in the rule isProduct(P). A model I of (Σ, P ) is
I = ({japan, c1 , c2 , p, x}, ·I) 4 with ·I : CoI = {japan}, ProductI = {p},
manuf inI = {(p, japan)}, has priceI = {(p, x )},
is product of I = {(p, c1 ), (p, c2 )}, competitorsI = {(c1 , c2 )}.

We translate(Σ, P ) now to an EFoLP: the DL axiom is translated to the con-
straint ← (∃manuf in.Co u ∃has price)(X ), not Product(X ), where we intro-
duce predicates corresponding to the concept expressions.Furthermore, we define
these predicates by the rules

(∃manuf in.Co u ∃has price)(X ) ← (∃manuf in.Co)(X ), (∃has price)(X )

(∃manuf in.Co)(X ) ← manuf in(X ,Y ),Co(Y )

(∃has price)(X ) ← has price(X ,Y )

Furthermore, we introduce the concept and role names by means of free rules,
indicating that a domain element (or a pair of domain elements) is of a certain type
or not.

Product(X ) ∨ not Product(X ) ←

Co(X ) ∨ not Co(X ) ←

manuf in(X ,Y ) ∨ not manuf in(X ,Y ) ←

has price(X ,Y ) ∨ not has price(X ,Y ) ←

This concludes the FoLP part of the translation of(Σ, P ). Formally, we define
Φ(Σ) as theΦ(C,Σ) from Subsection 4.1 whereC is some arbitrary concept from
Σ. The arbitrary DLP part of the EFoLP includes the DL-safe rules.

Since DL-safe rules have a first-order interpretation it maybe that

(c1, c2) ∈ competitorsI

for a modelI of (Σ, P ) without any justification inI: the body ofr1 in P does
not need to be satisfied in order to have(c1, c2) ∈ competitorsI . The answer set
semantics, however, only deducescompetitors(c1 , c2 ) in an answer set if the body

3 Actually, to correspond entirely with the desired semantics, we would need to indicate
that C1 andC2 are different companies. This seems to be not possible with the DL-safe
rules in [45], however, it is with EFoLPs using6=.
4 We takeoI = o, o ∈ cts(Σ, P ), for ease of notation.
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of r1 is satisfied in that answer set, since otherwise the answer set would not be
minimal (one could omitcompetitors(c1 , c2 ) and still have an answer set).

To solve this, we introduce for each heada of a DL-safe rule, a rulea ∨ not a ← ,
competitor(C1 ,C2 ) ∨ not competitor(C1 ,C2 ) ← , such that one has always a
motivation forcompetitor(C1 ,C2 ), mimicking the first-order semantics.

Formally, we defineχ(P ) for a DL-safe programP as the DLPP with free rules

head(r) ∨ not head(r)← ,

for eachr ∈ P .

Theorem 36 For anALCHOQ(t,u) knowledge baseΣ and a DL-safe program
P , we have(Σ, P ) |= α iff (Φ(Σ), χ(P )) |= α.

In [45] the DL SHOIN (D) is considered in the definition of DL-safe rules in-
stead ofALCHOQ(t,u). Decidability of query answering is shown for the DL
SHOIN (i.e., without data types)5 . Using EFoLPs instead of a DL knowledge
base with DL-safe rules on top has the further advantage of nonmonotonicity by
means of negation as failure in both the FoLP part and the DLP part, whereas both
DLs and DL-safe rules are monotonic (DL-safe rules are Horn clauses and thus do
not allow for negation as failure).

Example 37 Add a rule to the company example ontology, expressing that if John
is not married, he works late at the office:

works late(john) ← not married(john)

Adding such a rule to our knowledge will have the effect that every open answer
set includes the literalworks late(john), i.e., John always works late. However,
consecutively adding the newly acquired knowledge that John is actually married
with a rule

married(john) ←

will make sure that John never works late in answers to our current knowledge.
This type ofnonmonotonicityis one of the main strengths of logic programming
paradigms for knowledge representation and is thus useful in Semantic Web rea-
soning as well; it was, e.g., identified in [13] as one of the requirements on a logic
for reasoning on the Web. DLs lack this feature and aremonotonic, e.g., one could
try to translate the above rule as the following DL axiom.

¬Married u {john} v Works late u {john}

5 Note that the proof of this decidability does not use a reduction to disjunctive Datalog;
in order to use such a reduction [45] restricts itself toSHIQ(D).
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However, it is clear that interpretations satisfying this axiom have a choice in
making John work later or not, such that adding that John is married would not
invalidate any previously concluded facts.

Besides the previously illustrated nonmonotonicity, FoLPs are more articulate than
DLs in other aspects.

Example 38 E.g., representing the knowledge that a team must at least6 consist
of a technical expert, a secretary, and a team leader, where the leader and the
technical expert are not the same, can be done by

team(X )← member(X ,Y1 ), tech(Y1 ),member(X ,Y2 ), secret(Y2 ),

leader(X ,Y3 ), Y1 6= Y3

Note that in order for the rule to correspond to our informal definition of a team we
assume no other rules with a head predicateteamexist, i.e., we implicitly use the
minimality of open answer sets. This is clearly not ideal. However, using only satis-
faction of rules to conclude that, ifx is team, then it should satisfy the listed prop-
erties, seems impossible to express with (open) answer set programming. Compare
the rule with, e.g., the rule for number restrictions in Table 2. In number restric-
tions(≥ n R.C) one indicates that there are more thann R-successors that are of
typeC, while FoLPs can constrain different successor relationships (member and
leader) instead of just one (R). Moreover, FoLPs can be very specific about which
successors should be different and which ones may be equal (Y1 may be equal toY2,
but should be different fromY3), or to which different types the successors belong
(tech andsecret) instead of one type (C).

Representing such generalized number restrictions using DLs would be signifi-
cantly harder while arguably less succinct.

Finally, consider some EFoLP(Q,R) whereR is the ground rule

f (a, c)← f (a, b), f (b, c)

Although this rule does not have a tree structure, its groundness suggests that one
can replace it by a DL axiom using nominals:

{a} u ∃f .({b} u ∃h.{c}) v {a} u ∃f .{c}

If (a, b) ∈ fI and (b, c) ∈ fI for a modelI (and assuminga, b, andc are the
elements of{a}I, {b}I, and{c}I respectively), the DL axiom enforces(a, c) ∈ fI.
The DL axiom does not capture the rule’s semantics exactly: open answer sets have
to be minimal such that an open answer set cannot containf(a, c) without applying
the body of the rule fromR. It seems that the satisfaction of ground rules can indeed

6 Note that other entities thanteamcould have these properties, e.g., aclub– in the exam-
ple clubs and teams would then be the same.
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be simulated by DL axioms, however, the minimality of open answer sets cannot
be captured as such. Note that DL-safe rules are not interpreted by such a minimal
model semantics such that it is more likely that they actually could be captured as
DL axioms (provided the particular DL allows for nominals).This is subject for
further research. Writing non-ground DL-safe rules directly as DL axioms seems
to be more intricate, if possible at all.

It is still up to a knowledge engineer to decide whether the minimality property is
required to represent the domain under consideration.

5 Related Work

In [22], the languageL0 of a programP is expanded with an infinite sequence of
new constantsc1, . . . , ck, . . . such thatLk is the expansion ofL0 with c1, . . . , ck. A
pair〈k,B〉 for a nonnegative integerk and a set of ground literalsB in Lk is then a
k-belief setof P iff B is an answer set ofPk, wherePk is the grounding ofP in the
languageLk. Our definition of open answer sets is more general in the sense that
also infinite universes are allowed, while ak-belief set is always finite. Nonetheless,
the other direction is valid: everyk-belief set can be written as an open answer set.

Defining k-belief sets, or open answer sets for that matter, easily leads to unde-
cidability as was argued fork-belief sets in [48]. Interestingly, [48] shows that
reasoning becomes decidable again under the well-founded semantics . Since for
stratified programs this semantics coincides with the answer set semantics, one has
decidability of reasoning fork-belief sets of stratified programs. However, trying to
extend the language of stratified programs with an extra stratum below all others,
containing disjunctions of positive literals, leads to undecidability again [48]. Con-
sidering, in this light,Φ(C,Σ), which basically consists of a stratified part, defining
the DLs constructors, and a disjunctive part, the free rules, we have, however, still
decidability, emphasizing the importance of the forest-model property.

Another approach to infinite reasoning, besides infinite open domains, is presented
in [11], where function symbols are included in the language. Finitary programs
are identified as a class for which ground query answering is decidable, and lead to
elegant formulations of, e.g., plans with unbounded planning length. Formally, they
are defined as programs that are finitely recursive, i.e., every ground atom may only
depend on a finite number of other ground atoms, and such that only a finite number
of odd-cycles may occur in the grounded program. Neither conditions are neces-
sary for FoLPs: the local FoLP containing rulesa(X) ← f(X, Y ), not b(Y ) and
b(X) ← a(X), when grounded with an infinite universe, is not finitely recursive
and contains infinitely many odd-cycles. Since not all finitary programs are FoLPs,
both classes of programs are not directly related, and the forest-model property ap-
pears to be an alternative indication of “finitary” reasoning with possibly infinite
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knowledge. While ground query answering with finitary programs is decidable,
unground query answering is only semi-decidable [11]. Since both are decidable
for FoLPs, FoLPs are arguably more suited for checking consistency of, e.g., on-
tologies. Moreover, checking whether a program is finitary is itself undecidable, in
contrast with FoLPs, which are a syntactic restriction of DLPs.

There are basically two lines of research that try to reconcile description logics with
logic programming. The approaches in [10,24,44,2,38,52] simulate DLs with LP,
possibly with a detour to FOL, while [15,47,17] attempt to unite the strengths of
DLs and LP by letting them coexist and interact.

In [10], the simulation of a DL with acyclic axioms inopen logic programmingis
shown. An open logic program is a program with possibly undefined predicates and
a FOL-theory; the semantics is the completion semantics, which is only complete
for a restrictive set of programs. The opennes lies in the useof undefined predicates,
which are comparable to free predicates with the differencethat free predicates can
be expressed within the FoLP framework. More specifically, open logic program-
ming simulates reasoning in the DLALCN , N indicating the use of unqualified
number restrictions, where terminological axioms consistof non-recursive concept
definitions;ALCN is a subclass ofALCHOQ(t,u).

[24] imposes restrictions on the occurrence of DL constructs in terminological
axioms to enable a simulation using Horn clauses. E.g., axioms containing dis-
junction on the right hand side, as inD v C t D, universal restriction on the
left hand side, or existential restriction on the right handside are prohibited since
Horn clauses cannot represent them. Moreover, neither negation of concept ex-
pressions nor number restrictions can be represented. So-calledDescription Logic
Programsare thus incapable of handling expressive DLs; however, [24]’s forte lies
in the identification of a subclass of DLs that make efficient reasoning through LPs
possible. [44] extends the work in [24], for it simulates non-recursiveALC on-
tologies with disjunctive deductive databases. Compared with, possibly recursive,
ALCHOQ(t,u), those are still rather inexpressive.

In [2], the DLALCQI is successfully translated into a DLP. However, to take into
account infinite interpretations [2] presumes, for technical reasons, the existence of
function symbols, which leads, in general, to undecidability of reasoning.

[38] and [52] simulate reasoning in DLs with a LP formalism byusing an inter-
mediate translation to first-order clauses. In [38],SHIQ− knowledge bases, i.e.,
SHIQ knowledge bases with the requirement that rolesS in (≤ nS.C) have no
subroles, are reduced to first-order formulas, on which basic superposition calcu-
lus is then applied. The result is transformed into a function-free version which is
translated to a disjunctive Datalog program. Note that [38]can deal with transitive
roles which is a clear advantage over our approach in the context of DL simulation.

[52] translatesALCQI concepts to first-order formulas, grounds them with a finite
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number of constants, and transforms the result to a logic program. One can use a
finite number of constants by the finite-model property forALCQI-concept ex-
pressions; in the presence of terminological axioms this isno longer possible. The
resulting program is, however, not declarative anymore such that its main contri-
bution is that it provides an alternative reasoner for DLs, whereas FoLPs can be
used both for reasoning with DLs and for a direct and elegant expression of knowl-
edge. Furthermore, FoLPs are also interesting from a pure LPviewpoint since they
constitute a decidable class of DLPs under the open answer set semantics.

Along the second line of research, anAL-log [15] system consists of two subsys-
tems: a DL knowledge base and a Datalog program, where in the latter variables
may range over DL concept instances, thus obtaining a flow of information from
the structural DL part to the relational Datalog part. This is extended in [47] for
disjunctive Datalog and theALC DL. A further generalization is attained in [17]
where the particular DL can be the expressiveSHOIN (D). The DL knowledge
base is considered as a black box that can be queried from the rules. Moreover,
inferences made by rules can serve as input to the DL knowledge base as well,
leading to a bidirectional flow of information. A disadvantage of this approach, as
was remarked in [45], is that, since one considers only consequences of the DL
knowledge base, i.e., atoms that are true in all models, somemore fine-grained in-
ferences will not be made by the rules. Since reasoning with FoLPs can be reduced
to finite ASP, it can be trivially reduced to the approach in [17] with an empty DL
knowledge base. In [18] the approach of [17] was adapted for the well-founded
semantics instead of the answer set semantics.

In [4], one builds a nonmonotonic rule system on top of the ontology language
DAML+OIL [8], a predecessor of OWL. More specifically, they use defeasible
logic [46] to express rule-based knowledge and argue its use for E-commerce appli-
cations on the Semantic Web. Another approach that combinesDAML+OIL with
rules can be found in [25], wheresituated courteous logic programsin the rule
markup language RuleML [1] provide for the nonmonotonic rule system.

A notable approach, which cannot be categorized in one of thetwo lines of research
described above, although it tends towards the coexisting approach, is the SWRL
[36] initiative. SWRL is aSemantic Web Rule Languageand extends the syntax and
semantics of OWL DL with unary/binary Datalog RuleML [1], i.e., Horn-like rules.
This extension is undecidable [33] but lacks, nevertheless, interesting knowledge
representation mechanisms such as negation as failure.

[23] explains how reasoning with SWRL [36], can be done by iteratively calling
the DL reasonerRACER [26] and the rule-based reasonerJess[20], each feeding
the other with the inferences it made. Since SWRL is undecidable, and such an
iterative procedure is thus incomplete, it shows that intractable worst-case com-
plexity (or even undecidability) should not hold one back todevice practical and
useful combined reasoners. On the other hand, the approach in [23] is quite ad hoc
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and not formally proved to be correct. A similar iterative angle is taken in [43]
where SWRL is extended with negation as failure and equippedwith an answer set
semantics, resulting in a nonmonotonic but undecidable system.

6 Conclusions and Directions for Further Research

We extended the semantics of answer set programming with support for open do-
mains. This extension led to an increase in expressiveness,but also to undecid-
ability of reasoning. This was remedied by syntactically restricting the types of
allowed rules in logic programs, resulting in extended forest logic programs. We
further restricted EFoLPs to local EFoLPs that have the bounded finite model prop-
erty. Lower and upper bounds for the complexity of reasoningwere established.

Furthermore, we showed how EFoLPs can simulate reasoning ina DL that is related
to the OWL DL ontology language together with DL-safe rules.A disadvantage of
the EFoLP approach, however, compared to state-of-the-artDLs, is the inability to
express transitive roles as in, e.g., the DLSHIQ: we restrict ourselves to EFoLPs
with the local model property in order to ensure a bounded finite model property, a
restricting property thatSHIQ does not have.

Since EFoLP is a logic programming paradigm, with, e.g., negation as failure and
the consequential nonmonotonic reasoning, we believe thatEFoLPs may be useful
for reasoning with both rules and ontologies on the SemanticWeb, and this in
such a way that both types of knowledge are fully integrated.We concluded with a
description of related work.

It would be interesting to look for further extensions of theforest-model property of
EFoLPs. Other syntactical classes of open answer set programming, e.g.,guarded
programs[30], can be identified, based on other decidability vehicles like, e.g.,
fixed point logic.
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