Open Answer Set Programming for the Semantic
Web

Stijn Heymang Davy Van NieuwenborghDirk Vermeir®*

aDept. of Computer Science
Vrije Universiteit Brussel, VUB
Pleinlaan 2, B1050 Brussels, Belgium

Abstract

We extend answer set programming (ASP) with, possibly i&jmpen domains. Since
this leads to undecidable reasoning, we restrict the syotarograms, while carefully
guarding knowledge representation mechanisms such asiorega failure and inequali-
ties. Reasoning with the resulting extended forest logigmams (EFoLPs) can be reduced
to finite answer set programming, for which reasoners ariéaine.

We argue that extended forest logic programming is a usebllfor uniformly repre-
senting and reasoning with both ontological and rule-b&sewledge, as they can capture
a large fragment of the OWL DL ontology language equipped iit.-safe rules. Fur-
thermore, EFoOLPs enable nhonmonotonic reasoning, a desifedture in locally closed
subareas of the Semantic Web.

Key words: Answer Set Programming, Semantic Web, Description Lo@gen Domain
Reasoning

1 Introduction

Answer set programming (ASP) [21] is a logic programmingapégm that cap-
tures knowledge by programs whose answer sets expresséne@d meaning of
this knowledge. The answer set semantics presumes thaialant domain ele-
ments are present in the program. Such a closed domain assarnsproblematic

* Corresponding author: Tel. +32 2 6293755, Fax. +32 2 6293525

Email addressessheymans @ub. ac. be (Stijn Heymans),
dvni euwe@ub. ac. be (Davy Van Nieuwenborghldver mei r @ub. ac. be (Dirk
Vermeir).

Preprint submitted to Elsevier Science 20 February 2006

if one wishes to use ASP for ontological reasoning sincelogtes describe knowl-
edge in terms of concepts and interrelationships betwesn,tAnd are thus mostly
independent of constants.

E.g., consider the knowledge that managers drive big daasphe is either a man-
ager or not, and that Felix is definitely not a manager. Thiggesented by the
programp:

bigCar(X) «— Manager(X)
Manager(X) V not Manager(X) «
—Manager(feliz) —

Grounding with the only present constafit;z, yields the program

bigCar(feliz) «— Manager(feliz)
Manager(feliz) V not Manager(feliz) «—
—Manager(feliz) «—

which has a single answer st Manager(feliz)} such that one wrongfully con-
cludes that there are never managers that drive big carcaeusions of the
program depend on the present instance data.

We resolve this by introducing, possibly infinitepen domainsUnder theopen
answer set semantitie example has an open answer set

(H = {feliz, heather},
M = {—Manager(feliz), Manager(heather), bigCar(heather)})

whereH is auniversefor P that extends the constants presenfiand M is an
answer set of” grounded with{. One concludes that it is possible that there are
persons that are managers and thus drive big cars, cordisgaio the intended
semantics of the program. The open answer set semantidesalaba independent
reasoning: an ontology engineer does not need to introdiicggaificant con-
stants in the program, which allows her to concentrate onatmgithe ontological
knowledge only. Note the use of disjunction and negatioradsré in the head of
Manager(X) V not Manager(X) « . Such rules will be referred to dee rules
since they allow for the free introduction of literals; arswgets are, consequently,
not subset minimal.

The support for the presence of anonymous individuals,alements that are not
constants in the program, allows to bridge the semantiasgi€ programming and
description logicg5]: open answer set programming enables both a nonmorwotoni
semantics (typical for logic programming paradigms) argube obpen domains
one of the key features for conceptual modeling, as presasassical logics.

The catch is that reasoning, i.e., satisfiability checkih@ @redicate, with open
domains is, in general, undecidable. In order to regaindadxdlity, we restrict
the syntax of programs while retaining useful knowledgeesgntation tools such
as negation as failure and inequality. Moreover, the refoltal) extended forest
logic programs (EFoLPs)ensures a reduction of reasoning to finite, closed, ASP by
virtue of the forest-model property and the bounded finiteleh@roperty. EFoOLPs
are thus amenable for reasoning with existing answer se¢sosuch asLv [41]
andsMODELS[50].

Reasoning with both ontological knowledge, in the form oéadtiption logic (DL)
[5] knowledge base, and rule-based knowledge has receaitieg in interest in the
Semantic Web community. The purpose of adding rules to ogichl knowledge
is to have additional expressiveness. E.g., [45] extendk kridwledge base with
DL-safe rulesi.e., Horn clauses where variables must appear in noniDins
in the body of rules. DL-safe rules can express triangulawkedge that is not
expressible with DLs aloneincle(a, ¢) < brother(a, b), parent(b, c¢). Note that
DL-safe rules can contain variables but, by DL-safenessyiles correspond to
their grounded version where the grounding is done w.etptlesent constants and
nominals in the rules and DL knowledge base. It does not tatkeaiccount anony-
mous domain elements, which is a serious limitation. On therchand allowing
for a grounding with anonymous elements would immediatefidyundecidability.

Reasoning with DL knowledge bases and DL-safe rules is noommtHowever,
nonmonotonic reasoning may be useful in applications tmailve well-defined
closed subareas of the Semantic Web, as illustrated in tlosving example. As-
sume a business is setting up its website for processingroestfeedback. It de-
cides to commit to an ontolog® which defines that if there are no complaints for
a product, it is a good product.

good_product(X) < not complaint(X)
The business has its particular business rules, e.g.,
i : invest(tps, 10K) < not good_product(tps)

saying that if its particular top selling produgts cannot be shown to be a good
product, then the business has to invest 10kpin Finally, the business maintains
a repository of dynamically changing knowledge, origingtirom user feedback

collected on the site, e.g., at a certain time the repostonyains

Ry = {complaint(tps) — } ,
with a complaint fortps.

If the business wants to know whether to invest moréinit needs to check) U
{i} U Ry = invest(tps, 10K), i.e., whether the ontology, combined with its own

business rules, and the information repository, demandrfonvestment or not.

One can usextended forest logic programming (EFoLR®) express the above
knowledge. Intuitively, any model @@U{:} U R, , must verifycomplaint(tps), and
good_product(X) «— not complaint(X) will not trigger andgood_product(tps)

will be false, which in turn, with rulé, allows to conclude that the business should
indeed invest.

Evaluating the same query with an updated repository
Ry = {complaint(tps) < , good_product(tps) < }

containing a survey result saying thak is a good product, no matter what com-
plaints of individual users there may be, leads to

O U {i} U Ry |~ invest(tps, 10K) ,

such that no further investments are necessary. Adding lealge thus invalidates
previous conclusions making reasoning nonmonotonicjairacenarios can easily
be imagined in any well-defined environment with dynamicatanging knowl-
edge.

EFoLPs are defined as paifQ, R) consisting of, on the one handfarest logic
program (FOLP)(@ capable of expressing conceptual knowledge, as in, e.g., DL
knowledge bases, and, on the other hand, a finite arbitraxgr@am R which al-
lows to relate constants/individuals in arbitrary ways. BROLP answer sebf
such a(@, R) is defined as an open answer settbf) R’, where R’ is the pro-
gram R grounded with constants fro@ U R. On the semantical level, an EFoOLP
corresponds to a FoLP with a finite set of ground arbitrargsulSyntactically,
however, the pair notation allows for a more compact repitasien. Intuitively, an
EFoLP consists of a syntactically restricted part allowipgn domain reasoning
and an arbitrary part where reasoning is on the presentanassinly. In particular,
EFoLPs can simulate reasoning in the BILCHOQ(LJ, 1), a DL closely related
to OWL [9], equipped with DL-safe rules, Moreover, EFoLPs eapable, as indi-
cated above, of nonmonotonic reasoning as well, since thay &r negation as
failure both in the FOLP part as in the arbitrary rule part.

Note that, although we allow for negation as failure, (E)Pslstill have to satisfy
rather strict syntactical restrictions to ensure the fenesdel property. E.g., the
aboveuncle relationship cannot be expressed with variables that cagrdend
by anynomous elements. We do allow for arbitrary rules inlH=) however, their
variables must be grounded with constants (either fromitbhgrpm or from the DL
knowledge base), which makes their usefulness rathem®inithe alternative, i.e.,
loosening up the syntactical restrictions or allowing grdimg with anonymous
elements in the arbitrary rules, easily leads to undeciidabi

The remainder of the paper is organized as follows. In Se@iove extend ASP

with open domains, and in Section 3, we define (local) EFokdthjce reasoning
to normal ASP, and establish complexity results. In Sectione show the EFoLP
simulation of an expressive class of DLs equipped with Die-sales. Section 5
relates other work to our approach. Finally, Section 6 dastaonclusions and
directions for further research.

2 Open Answer Set Programming

In Subsection 2.1, we introduce the open answer set sersaftibsection 2.2
argues the undecidability of reasoning under the open ansgtesemantics, and
Subsection 2.3 defines the classagf/clic programs, which will be useful for the
simulation of DLs in Section 4.

2.1 Basic Definitions and Results

A termis either aconstantor avariable and is denoted by a string of letters where
a constant starts with a lower-case letter and a variableamtupper-case letter. An
atomis of the forma(t) or f(s,t) wherea is a unary predicate namg,is a binary
predicate name, andandt are terms. Aliteral is an atom or an atom preceded
with the classical negation symbel We assume-—a = a for an atonu; for a set

of literals, —a = {~l|l € a}.

An extended literals a literal or a literal preceded by timegation as failure (naf)
symbolnot We will often denote a set of unary extended literals, raggver a
common terms, asa(s), €.9.,{a(s), not b(s)} may be denoted a&, not b}(s).
A set of binary extended literals can be similarly denoted@st). The positive
part of a set of extended literalsis 5+ = {l | | € 3,1 literal}, the negative part is
B~ ={l]notl € (3}, e.q., fors = {a,not —b, not c}, we have thatt™ = {a} and
G~ = {-b, c}. Furthermore, we assume the existence of a binary predicatéth
the usual interpretation.

A disjunctive extended logic progra(®LP) is a countable set of rules — f
where« and 5 are finite sets of extended literals afid™| < 1; as usualy is
supposed to be a disjunction of extended literals aradconjunction. In contrast
to the DLP we define here, classical DLP allows foto be an arbitrary set of
extended literals; our extra condition ensures that the€luct, defined below, is
disjunction-free, which avoids the use of an extra NP oracgatisfiability check-
ing, see Section 3.3. K = (), we call the rule aonstraint The setx is thehead
of the rule whileg is called thebody, denoted, for a rule, as hea¢) and bodyr)
respectively. As usual, atoms, (extended) literals, ruidesl programs that do not
contain variables arground A set of ground literal(is consistenif XN—X = ().

Note that programs withot in the head can be rewritten as equivalent programs
without not in the head [39]. Since the former programs have a non-mirsera
mantics, useful for introducing the types in conceptual et®dvhile the latter pro-
grams have not, they are more appropriate in the contextrafeqiual knowledge
representation.

For a DLPP, let Hp be the constants iff. A (possibly infinite) non-empty count-
able set of constantq such thatHp C H, is called auniversefor P. We denote

P, the ground programobtained fromP by substituting every variable i by
every possible constant iH such that the inequalities are true (and subsequently
removed). For a progratf and its constant® p, we will denoteP,,, often simply
asground(P).

Example 1 The programP

sel(I,S)V not sel(I,S) — av(i) «—
av(l) «— sel(1,5)

expresses that an itemis sold by a seller or not, an item igabla if it has a seller,
and we have a particular available itemThe constants i® are Hp = {i}; some
of the universes foP are H; = {i, s} or an infiniteHy = {i, z1, 2, .. .}.

Let £Lp be the set of literals that can be formed from a grounded prog?,
preds(P) are the predicate names i andupreds(P) and bpreds(P) the unary
and binary predicate names respectively; unless specifietvaise,—p, for a pred-
icate name, is also considered to be a predicate name.

An interpretation/ of a groundP is any consistent subset @f,. For a ground
literal [, we write I |= [, if [€ I, which extends td |~ not [if I [~ 1, and, for a
set of ground extended literal§, I = X if I = x for everyx € X. A ground rule
r: a « (is satisfiedw.r.t. I, denoted! |= r, if I |= [for somel € o whenever
I = 3, i.e.,r is appliedwhenever it isapplicable A ground constraint«— 3 is
satisfied w.r.t/ if I [~ . For a ground progran®, [is amodelof P if I satisfies
every rule inP. We define theGL-reduct[42] w.r.t. I as P!, where P! contains
at «— ptfora «— ginP,3~ NI =(0anda- C I.I is ananswer sebf a
groundP if I is the subset minimal model @f. An open interpretatiorof P is
a pair(H, M) where’H is a universe for? and M is an interpretation of;;,. An
open answer seif P is then an open interpretatidf?, A1) with M an answer set
of Py. We denote this agH, M) = P.

Example 2 Considering the progran® from Example 1, we have that, with a uni-
verseH = {i,s,x} for P, (H, M, = {av(i), sel(z,s), av(z)}) and (H, My =
{av(i)}) are some open answer setsfafSincel/; contains a literalsel(z, s), the
GL-reduct P} containssel(z,s) « , which motivates the presence @f(z, s)
in M;. On the other hand, since&l(z, s) € M,, sel(z,s)V not sel(z,s) «— is

satisfied and is not in the GL-reduct. Intuitivety/(1, S) V not sel(I,S) « can
be used to freely introducel-literals, provided no other rules prohibit this, e.g., a
constraint < sel(z, s) would make sure that no answer set contaiei$z, s). We
call a predicatef free iff (X, Y) V not f(X,Y) «— or f(X) V not f(X) < isin
the program, or is silently assumed to be in it, for a binaryuoary f respectively.
Similarly, a ground literal is free if we have Vv not | — .

In the following, we usually omit the “open” qualifier and asse that programs are
finite unless they are the result of grounding with an infinitéverse. A program
P is consistentf it has an answer set. For a unary predigatappearing inP, p is
satisfiablew.r.t. P if there exists an answer sgt(, M) of P such thaip(a) € M
for somea € H. Consistency checking can be reduced to satisfiability lahgc
by introducing some new predicate: for a prograhand a progran’ = P U
{p(X) V not p(X) < } with p not appearing ir?, we have thaf’ is consistent iff
p is satisfiable w.r.tP’. For a ground literady, we haveP = « if for all answer sets
(H, M) of P, € M. Checking whetheP |~ « is calledquery answeringWe can
reduce query answering to consistency checking,Re= « iff P U {not a «— }
iS not consistent.

There are programs such that a predicate is only satisfiabke thvat program by
an infinite open answer set.

Example 3 The program

T restore(X) < crash(X), y(X,Y), backSucc(Y)

Ty backSucc(X) «— —crash(X), y(X, Y), not backFail(Y')
T3 backFail(X) < not backSucc(X)

Ty (_y(YlaX)ay(ngX)vyl#YQ

5 y(X,Y)Vnot y(X,Y) «

re . crash(X) V not crash(X) «
r7 @ merash(X) V not —erash(X) «—

represents the knowledge that a system that has crashed artiautar day, can
be restored on that day if a backup of the system on the dayebstmceeded.
Backups succeed, if the system does not crash and it canestddadished that the
backups at previous dates failed. Rulgsry, andr; express the above knowledge,
andr, ensures that for a particular today there can be only one towove(y stands
for yesterday. Every open answer sét{, M) of this program that makes:store
satisfiable, i.e., such that there israstore(z) € M for x € H, must be infinite. An

example of such an answer gdtis (we omitH if it is clear from M)

{restore(x), crash(x), backFail(x),y(x, x1),
backSucc(xy), merash(zy), y(z1, x2)
backSucc(zs), ~crash(za), y(xa, x3), ...}

One sees that evemyuckSucc literal with elementr; enforces a newy-successor
x;4+1 Since none of the previously introduced universe elemam$e used without
violating ruler,.

Although we allow for infinite universes, we can finitely matie the presence of
literals in answer sets. We express the motivation of adliterore formally by an
immediate consequence operatfBrthat computes the closure of a set of literals
w.r.t. a GL-reduct. For a DLP and an interpretatio(#t, M) of P, Tpu : Lpy —

Lpy is defined ad'(B) = BU {ala « 8 € Py’ A B C B}, where we omit-
ted the subscript frorfz»,. Additionally, we haver®(B) = B, andT"™(B) =
T(T™(B)). We usually writel™ instead of™ ().

Theorem 4 Let P be a DLP andH, M) an open answer set &f. ThenYa € M -
In<oo-aeTm.

PROOF. Assumeda; € M -Vn < co-ay ¢ T™. One can then construct an infinite
sequencgas, as,...} € M such thatvi - Vn < oo - a; ¢ T™. The constructed
answer sefl/’ = M\{a1, as, ...} is a model of P}/, contradicting the minimality
of M. O

More detail than th&-operator is provided by theupportof a literala in an answer
set(H, M), which explicitly indicates the literals that support thegence of. in
the answer set. For the leassuch that: € T, we inductively define the support
S*(a) on a certain level < k < n asS"(a) = {a} andS*(a) = {B | b —
Be PN 3CTHBZ T b e S*(a)}, 1 < k < n. The support fou is
S(a) = Up_,S*(a).

Example 5 For Example 3{crash(z), y(z, x;), —~crash(z;), y(z;, z2)} C T,
backSucc(z;) € T? andrestore(z) € T3, such that

S(restore(x)) = S*(restore(x)) U S*(restore(x)) U S (restore(z))
= {restore(z)} U {crash(z), y(z, z;), backSucc(x;)}
U {—=crash(z;), y(z;,z2)}

indicates which literals were responsible for the preseofcesstore(z) in the an-
swer set.

2.2 Undecidability

Satisfiability checking for DLPs under the open answer seiasgics is undecid-
able since the undecidabdemino problenj6] can be reduced to it. In the domino
problem, one has a finite set of domino types= {D,,...D,,} and two re-
lations indicating which domino types may be placed side idg iorizontally,
H C D x D, and verticallyV C D x D. The domino problem is the search for
a tiling, compatible withH andV, of the planeN x N, i.e.,at : N x N — D s.t.
(t(m,n),t(m+ 1,n)) € H and(t(m,n),t(m,n + 1)) € V for everym,n € N.

We omit the detail of the reduction but note the represematif the plane since
this already unveils an important source of undecidabilitye planeN x N can
be represented by predicatesindv, whereh(X,Y') andv(X,Y") indicate that”
is X + 1 for X along the horizontal (resp. vertical) axis. Every tile hatyamne
h-successor, such that we have-ah(X, Y)), h(X, Ys), Y] # Y3, and every tile has
at least one such successor(X) <« h(X,Y) and<— not h1(X). The same holds
for v. Furthermore, taking one step in the vertical directiofoleed by a horizontal
step should be the same as the opposite actigiiX, Z) «— h(X,Y),v(Y, Z),
seq(X,Z) —v(X,Y), MY, Z); — seq(X,Z;),seq(X,Zs), Z; # Zs.

Checking for a compatible tiling can then be done by intradigicinary predicates
for each domino type, checking the compatibility locallyeach tile, and making
sure that each tile can be reached. The main problem, hoyareethe 2seq-rules
which express composition of binary predicates; withoos#) we would have a
DLP for which satisfiability checking is decidable.

2.3 Acyclic Programs

For the translation of description logics to open answelpsegramming in Sec-
tion 4, we need the additional terminologyaxyclic programsi.e., programs that
do not allow recursion through positive literals.

Formally, adependency grap®Gp for a DLP P is defined by edges between
predicates: andb such thatu — b iff there is a rulea: «— 3 € P such thatu is

a predicate fromy™ andb is a predicate fron™. A DLP P is positively acycli¢
acyclic for short, if DG p does not contain cycles. An important distinction with
stratified programs [7] is that recursion through negateddls is still allowed.

A useful property of acyclic programs, as we will see in Satd, is that they can
be rewritten such that there appear no positive unary lgénathe body anymore;
one replaces them by a double negation. Formally, for anliagygram P, we
define¢(P) as the progran® with rulesr : o« — 3,~, for « # () and3 the unary
literals of bodyr), replaced byn «— not 3,y and b’(X) «— not b(X), for all

b (X) e/ wherep’ = {V/'(X) | b(X) € G}.

Theorem 6 Let P be an acyclic program ang € upreds(P). p is satisfiable w.r.t.
P iff p is satisfiable w.r.to(P).

PROOF. For the “only if” direction, assume is satisfiable w.r.tP, i.e., there is
an open answer sé€t, M) of P such thaip(a) € M. One can show that, M")
with M = M U{V/(x) | b(z) & M,V € ¢(P)}is an answer set af(P).

For the “if” direction, assume is satisfiable w.r.t¢(P), i.e., there is an open an-

swer set(H, M) of ¢(P) such thatp(a) € M. DefineM’ = M\ {V(z)}, then
(H,M’) is an answer set dP andp(a) € M’'. O

Example 7 Take the progranP

a(X) «— b(X),f(X,Y),not c¢(Y)
b(X) V not b(X) —
(X, Y)Vnot f(X,Y) «

The dependency graph of this progran{is— b,a — f} such thatP is acyclic.
The translationy(P) is then

a(X) — not b'(X),f(X,Y),not ¢(Y)

b'(X) <« not b(X)

b(X)V not b(X) «—
F(X,Y)Vnot f(X,Y) «

which has, among others, the answer(det v}, {a(z), b(x), f(x,y), b (y)}), cor-
responding to an answer sgtz, y}, {a(x), b(z), f(x,y)}) of P.

Theorem 6 is in general not valid for programs that are notlacy

Example 8 Consider the progran®
a(X) «— a(X)
This is not an acyclic program ang(P) is the program
a(X) < not a'(X)

a'(X) «— not a(X)

10

with an answer sef{z}, {a(z)}), which does not correspond to any answer set of
P.

3 Extended Forest Logic Programs

In Subsection 3.1, we introduce tfeest-model propertgnd define a syntactically
restricted class of programfgrest logic programs (FOLPgR8], satisfying this
property. We show in Subsection 3.2 that a particular typEaifPs, FoOLPs with
the local model property, has ti®unded finite model propertwhich enables a
reduction to finite ASP. Subsection 3.3 identifies an uppanddor the complexity
of reasoning. Finally, in Subsection 3.4, we extend FoLRIs am arbitrary finite set
of rules that can only be grounded with constants presetigiptogram, resulting
in EFoLPs [29], and show that properties such as the forestefrproperty and the
bounded finite model property remain valid.

3.1 Forest-model Property

As seen in the previous section, open answer set progranmimrmather powerful,
even to the extent that satisfiability checking in the gelrease is undecidable. As
in modal logics, the so-callemee-model propertwvill prove to be a critical factor
in showing decidability of satisfiability checking [53]. Rghly, a program has the
tree-model property if one has that if there are answer batsmake a predicate
satisfiable there must also be answer sets with a treesteuittat make the pred-
icate satisfiable. A generalization of this property is theest-model propertyif
there is an answer set that makes a predicate satisfiabhethiye is an answer set
that has the form of a set of trees, a forest. A similar prgparises for DLs that
include nominals, e.g§HOQ(D)[34].

Forar € Ni, i.e., afinite sequence of natural numbers, we denote theatamation
of a number € Nto x asx - ¢, or, abbreviated, asc. Formally, a(finite) treeT" is
a (finite) subset oN; such that ifx - ¢ € T for x € N andc € Ny, we have that
x € T. Elements ofl" are called nodes and the empty wart$ the root ofl". For
anoder € Twecallx-c €T, c € Ny, successorsf z. By conventiong - 0 = x
and(x-c¢)-—1 = x (¢ - —1 is undefined). If every nodein a tree hag successors
we say that the tree ik-ary. E.g.T7 = {g,¢1,£2,¢11} is a finite tree with root
¢, two successorsl ande2, ande11 a successor ofl; T will also be written as
{e,1,2,11}. A labeled treeover an alphabeX is a tuple(7',¢) whereT is a tree
andt : T — X is a labeling function; usually we will identify the tré&’, ¢) with
t and we will writet, for trees where the root is identified with if the root in
Ty is a constant, we write it as{a, al, a2, a12}, and a labeling function fdf; is
denoted as,. A forestF is a finite multi-set¢,., ..., t,, }, witheach,, : T, — X

11

a labeled tree such th@}, and7,; are mutually disjoint for,., # ...

Example 9 Consider the progran® representing the knowledge that a company
can be trusted for doing business with if it has the ISO 90Gitycertificate and
at least two different trustworthy companies are doing bess with it:

trust(C) «— t_bus(C, Cy), t_bus(C, Cs), C; # Cs, qual(C,is09000)
— t_bus(C, D), not trust(D)

with ¢_bus and qual free predicates, ancso9000 a constant. The first rule states
a sufficient condition on the trust of someif differentC; andC; are doingtrust-
worthy busineswith C' (t_bus(C, C;), t_bus(C, C5)) and C' has the ISO 9000
quality certificate qual(C', is09000)), thenC' can be trusted as welltfust(C)).
Moreover, using the minimality of open answer sets, thiglsirule also expresses
that in order forC' to be trusted it should be doing trustworthy business witfedi
ent companies and have the ISO 9000 quality labdlhe constraint encodes the
inherent property of _bus (doing trustworthy business) thatdf is doing trustwor-
thy business witlD, then D must be a trusted company.

An answer set, e.g.,

M = {trust(z;), t_bus(z;, x2), t_bus(z;, x3),
qual(zy, is09000), trust(zs), ...}

is such that for every trusted companyin M, i.e., trust(z;) € M, there must
bet_bus(z;, z;), t_bus(z;, z,) and trust(z;), trust(z,) with z; # z;; additionally,
every trusted company has th@9000 quality label. This particular answer set
has a forest shape, as can be seen from Fig. 1: we call it atfoneslel. The forest
in Fig. 1 consists of two trees, one with root and one, a single node tree, with
root is09000. The labels of a node in a tree, e.g.{trust} for x5, encode which
literals are in the corresponding answer set, etgust(z,) € M, while the labeled
edges indicate relations between domain elements. Theedastows, describing
relations between anonymous domain elemergsH \ H », and constants, appear
to be violating the forest structure; their labels can, hoe®e be stored in the la-
bel of the starting node, e.ggual(z2, is09000) can be kept in the label of, as
qual®°?9%? ' Since there are only a finite number of constants, the nuiidiffer-
ent labels in a forest is still finite. In particular, we havet the roots of the trees in
a forest-model may be arbitrarily interconnected. To berfally correct, the forest

I Note that adding extra rules withust as the head predicate may change the meaning of
trust, i.e., the body of the current rule is not necessapliyliad (one could apply the body

of an added rule). This differs from other Knowledge Repmeston formalisms such as
Description Logics, where one can express modular suffieiett necessary conditions (by
equivalence axioms). Such a modular expression does nottgelge possible with (open)
answer set programming.

12

{trust} © T Ytrus T3 L IIITToel 4509000

i

1

_ - _ e /
{trust} dzg {trust} s d ”/:v7

Fig. 1. Forest-Model

{trust qualiso.‘/()()() }
k)
x

o 1509000

{trust, t_bus,qual™°9000} {trust, t_bus, qual?*°9000}
L2 T3

Fig. 2. Formal Forest-Model

should not have any labeled edges; we solve this by keepinigitel on an edge
from z to y in the label ofy, and assume that binary predicates in labels refer to
edge labels from the predecessor node to the current nogle fex ¢ _bus(z;, z2)

we keep _bus in the label ofz,.

Definition 10 Ap € upreds(P) is forest-satisfiablew.r.t. P if there exists an open
answer set(H, M) and a forestF = {t.} U {t, | a € Hp} where thet, :
H, = dom(t,) — 2rreds(P)UiflacHpnfebpreds(P)} gre labeled trees with bounded
arity such that{ = U,/H, andp € t.(¢). Furthermorez - i € H,, ¢ > 0, iff there
issomef(z,z-i) € M.Fory € H,, q € upreds(P), f € bpreds(P), we have that

e q(y) € Miff g €t,(y),and
e flyyu) e Miff (u=y-iAfet,(u)V(ueHpAf*Ety)).

We call(H, M) a forest-modeland a DLP P has theforest-model propertyf the
following property holds: ifp € upreds(P) is satisfiable w.r.tP thenp is forest-
satisfiable w.r.t.P. Thelabel of a nodez € H, is L(z) = {q¢ | q¢ € t.(2),q €
upreds(P)}; for nodesz andu we have that < u if z is some prefix ofi,, < is
defined as usual.

Example 11 The forest-model of Example 9, drawn according to Definitibnis
then as in Fig. 2.

In effect, a forest-model is a set of trees, with arbitrargroections from elements

to constants. As a consequence, the connections betwestaots) i.e., the roots
of the trees, may form an arbitrary graph. A particular claflgsrograms with this

13

forest-model property ar@rest logic programgFoLPs).
Definition 12 A FOLP is a DLP such that a rule is of one of the following types:

e free rules/ Vv not [— for a literal [, which allow for the free addition of the
literal [, if not prohibited by other rules,

e unary rulesa(s) «— 5(s), UnYm(S, tm), Undm(tn), Uiz;t; # t;, such that, if
Ym # 0 thenvyt = (0, and, in casé,, is a variable: if,, # () then-,, # 0,

e binaryrulesf(s,t) < £(s),v(s,t),d(t) with~y™ #£ () if ¢ is a variable,

e constraints < a(s).

wherei andj are within the range ofn.

We write unary rules, for compactness, as

a(s) A 6(3)77m(87 tm)v(sm(tm)> ti 7é tj)

with variables assumed to be pairwise different.

The program in Example 9 is a FoOLP, while the-rules from Subsection 2.2 are
not FOLP rules, which is consistent with the undecidabitifythe domino sim-
ulation and the decidability of (local) FoLPs, cf. infra.tditively, the syntacti-

cal restrictions on the rules in a FOLP are designed to ernthardorest-model
property, and, to a lesser extent, the bounded finite modwgepty (cf. infra),
while ensuring a high degree of expressiveness, e.g., tolaienexpressive DLs,
see Section 4. E.gg(s) < not f(s,t),nq(t) is not allowed, since one cannot
transform an answer set to a forest-model: assumings free, we have that
({z,y},{q(z),~q(y)}) is an answer set, however, it is impossible to make a tree
out of this, since we need at least two domain elements, bdow®t have a binary
predicate to connect them. A similar reason makes < —¢(t) impossible ift is
variable. However, whetis a constant, one does not need an explicit connection
between the-node and-node since is the root of its own tree, and thus not part of
the tree fors. The latter implies thag(X) «— f(X, Y), p(Y), e(a) for a constant

a is allowed.

Moreover,f (X, Y) «— v(X) is not allowed, since this may impose connections
between: andy withouty being a successor af f(X, a) < v(X) for a constant

a on the other hand is allowed. The idea of ensuring such coedieess of models
in order to have desirable properties, like decidabilgysimilar to the motivation
behind theguarded fragmenof predicate logic [3].

We can ease the syntactical restrictions on FOLPs by allpfeinmore general bod-
ies, e.g., by unfolding them, resulting in bodies with aiike structure. Compli-
cated constraints— 3 can be simulated by a unary rulés) < 3 and a constraint
— a(s).

Aunary ruler : a(s) < B(s), Ym(s, tm), om(tn), t: # t; is alive rule if there is a

14

Ym 7 O with ¢,,, a variable. A unary predicateis live if there is a live rule- with

a in headr) anda is not free. The intuition behind a live predicatés that a new
individualy might need to be introduced in order to maKe) true for an existing
x. We denote the set of live predicates for a programith live(P). A degreefor
the liveliness of a rule, i.e., how many new individuals might need to be intro-
duced to make the head true,dgjree(r) = |{m | ym # 0 A t,, a variablg|. The
degree of a live predicatein P is degree(a) = max{degree(r) | a € headr)}.
E.g., if we only have a rule : a(X) «— f(X,Y;),9(X,c) thena is live and
degree(r) = degree(a) = 1.

FoLPs indeed have the forest-model property.

Theorem 13 Forest logic programs have the forest-model property.

PROOF. Take a FOLPP andp € upreds(P) s.t.p is satisfiable, i.e., there exists
an open answer s¢tt, M) with p(u) € M. Letn = > ¢y (p) degree(a), i.e., the
sum of the degrees of the live predicates. We will define{z}-{1,...,n}* - H
as functions from the full tree with branchimgand rootr € {¢} UHp if u & Hp
andz € Hp else. The labeled trees : dom(f,) — 2vreds(P)U{f*lacHpAfEbpreds(P)}
are then defined by, (z - i) = {q | ¢(0.(2-7)) € M} U{f | f(0.(2),0.(z-1)) €
My U{f* | f(0u(z i), a) € M}

Initially, we assume doiid,.) = 0, i.e.,d,. is not defined anywhere. The functiép
is constructed as follows: talle(z) = x if = # ¢ and elsé,.(z) = u € H\Hp, and
assume we have already considered, as in [54], every merhbet o{1, ..., n}*,

aswellas:-1,...,z-(m—1) forz € {z}U{1,...,n}* andz € dom(d,). For every
live ¢ € t.(z), we have that(6,.(z)) € M andq(6.(z)) € T", and sincel/ is an
answer set we have that there ig@,(z)) < 57(0.(2)), 7.5 (0:(2), Ym), 0% (Yim),

with the body true inV/ and in7T~L. If for all i eithery; = () ory; € Hp, i.e., we
do not have a live rule, then we continue with the ngxt ¢,.(z), otherwise, for,

v # 0andy; &€ Hp, ifthereisaz; € {z-1,...,z- (m — 1)} with §(z;) = y;

thend remains undefined on- (m + i), otherwised(z - (m + i)) = y;. Note that
t.(z) # 0, sinced, is defined orr.

One can show thaty, dom(t,), {q(z) | g € t.(2)} U{f(z,2 i) | f € to(z-1)} U

{f(z,a) | f* € t.(2)}) is an open answer set &fsuch thaF = U, {¢, } is a forest
satisfying the conditions from Definition 10.0

3.2 Bounded Finite Model Property

Satisfiability checking w.r.t. the FOLPs in [31] was shownbi decidable by a
reduction to two-way alternating tree automata [54]. Hosvgthe current definition
of FoLPs includes constants, which were not allowed in [8d¢h that the automata

15

reduction cannot be readily applied. Moreover,while awdtanprovide an elegant
characterization, there are few implementations avalablg., [32] implements a
specific type, looping alternating automata, using a tediwsi to description logics.

An alternative approach is to identify a particular clas€~ot.Ps, satisfying the
local model propertythat allow for satisfiability checking with existing answe
set solvers such asLv [41] or SMODELS [50], since they have thieounded finite
model property This property enables the transformation of an (infinitegveer
set into a finite one, and, more specifically, it establishiesuand on the number of
domain elements that are needed for such a construction.

FoLPs with the local model property are such that they ansfedile by forest-
models where the presence of each literal in such a modetadlyanotivated by
the involved node, a successor of the node, and/or a constant

Definition 14 Let P be a FoLP and for a literal, s the domain elements in
S(l), the support of. A forest-mode{H, M) of P is locally supportedf

Vi=gq(x)e MVI= f(x,y) € M -

(Hsw € {z,zi} UHp) A (Vf(z,a) € S(I),a € Hp - z # xi), 1.e., the support for
a literal involves only the domain elementinder consideration, successars, or
constantsp € upreds(P) islocally satisfiablew.r.t. P if there is a locally supported
forest-model, docal modelfor short, (H, M) such thatp(¢) € M for a roote in
H. A FoLP P has thdocal model propertyf the following holds: ifp € upreds(P)

is satisfiable w.r.tP then it is locally satisfiable.

In the above definition, the extra conditiofy;(z, a) € S(1),a € Hp-z # zi, makes
sure that constants do not sneak around the locality by giraysupport for a literal
atx viaxi. As we will indicate below, cutting a tree at anmay removef (zi, a). If
f(zi,a) were then in the support of a literal in that literal would end up without
support in the cut tree.

Example 15 Take the program from Example 9. The forest-model in Fig. 4 is
locally supported forest-model, e.g., a support

S(trust(xy)) = {trust(zy), t_bus(xy, x2), t_bus(x1, x3), qual(zy, is09000)}

such that no other domain elements than the domain elemdet eonsideration,
its immediate successors or constants motivate the pressrecliteral.

Infinite forest-models can be turned into finite answer saisevery path in the
forest from the moment there are duplicate labels and copgdhnections of the
first node in such a duplicate pair to the second node of thielpaiitively, when we
reach a node that is in a state we already encountered, wequr@s that previous
state, instead of going further down the tree. Ttittingis similar to the blocking
technique for DL tableaux [5], but the minimality of answetsmakes it non-trivial
and only valid for FoLPs with the local model property, as weicate below.

16

Fig. 3. Bounded Finite Model

Example 16 Considering the forest-model in Fig. 1, we can cut everyghialow
x9 andzz since they have the same labeligs Furthermore, since_bus(z;, z»),
t_bus(z;,z3), and qual(z;,is09000), we have thatt_bus(z;, zz), t_bus(z;, zs),
and qual(z;, is09000) for i = 2 andi = 3, resulting in the answer set depicted
in Fig. 3.

Formally, a FOLPP has thebounded finite model propertthe following holds:
if p € upreds(P) is satisfiable w.r.tP then there is a finite answer 96{, M) of
P and a nonnegative integky defined as a function d?, such thap(z) € M and
|H| < k. The bounded finite model property is similar to gmeall model property
found in the temporal logic CTL [19] where a CTL formula isis@able iff it is
satisfiable by a model that has a number of states at most expahin the length
of the formula.

Theorem 17 Let P be a FOLP with the local model property. TheR, has the
bounded finite model property.

PROOF. Assumep is satisfiable w.r.tP. Since P has the local model property,
there is a locally supported forest-modei, M) with p(¢) € M. H is a multi-set

of treesU, H ,, with rootsz, for x € {¢} U Hp, where possibly is somea € Hp.
Letm be the number of different labels in the forest-model. Foaih ® of length

at leastm + 1 in a H,, definezp € H, as the minimal node (w.r.t. the prefix
relation<) s.t. 3y < zp -y € Hp N L(y) = L(zp). Denote this unique with

zZp. Since we have a finite number of different labels, we must have that for
every pathP of lengthm there are two nodes with the same label, moreover, in
the worst case we only need a path of length+ 1 to make sure thaty is not a
constant. Note that, norzp can be a constant, since constants may be introduced
by rules containing no variables in the head, which, consetly; cannot be used to
motivate the presence of literals at anonymous nodes: hihigthat a ruleé(a) —
introducest in the label of some constant however, such a rule cannot be used
to motivate the presence ofower in the tree. Below the root, we would not have
this problem ag there would be motivated by a rule with hedd), which can be
matched against any lower node.

DefineH, = {z € H, | (z € PA|P| > m = z < zp}, i.e., cut the treé,

17

at zp for every pathP that has length at least + 1, and letH’ = U, H’. Define
M ={q(2) | = € H,q(z) € M}U{f(z,y) | 2 € P = 2 < 2p, f(2,y) €

From Theorem 13, we have that the branching &f,ais at most

> degree(a) ,

a€live(P)

n

such that the number of nodes’t], is at most_"' n’. We have that{’ contains
at mostc + 1 treesH/,, wherec = |H p|, such that the cardinality ¢f’ is at most
(c+ 1) Xt nt. Note thatm < 2¢ with u = |upreds(P)| such that the cardinality

of H' is at most
2% +1

k=(c+1) Y n, 1)

=0
wherek is calculated as a function @t only.

Further note thap(c) € M’, such that it only remains to show th@t’, M) is an
answer set. O

The local model property is a necessary property, i.e., @sembed cutting tech-
nique does not work for arbitrary FoLPs.

Example 18 Consider rulesa(X) «— f(X,Y),a(Y) anda(X) «— b(X) with b
and f free predicates. A forest-model of this program is

{a(e), f(g,1),a(1), f(1,11),a(11),b(11)} .

Sincee and 1 have the same label we cut the treelaln the resulting structure
{a(e), f(g,1),a(1), f(1,1)}, a(e) nor a(1) are motivated, a$(11) is no longer
present. The resulting structure is thus not minimal.

FoLPs with the local model property solve this by making ghe a literala(z)
is always motivated by itself, successorg of x, or constants, such that, upon
cutting, no motivating literals for literals higher up iretltree are cut away.

Satisfiability checking w.r.t. FOLPs with the local modebperty can then be done
by standard answer set solvers. Intuitively, we introdutz@ge enough number of
constants, such that every bounded finite model, that isagteed to exist by the
local model property, can be mapped to these constants.

Theorem 19 Let P be a FoLP with the local model properfy< upreds(P) is sat-

isfiable w.r.t.P iff there is a0 < h < k and an answer se¥/ of ¢, (P) containing
ap-atom, where: is as in(1) andvy,(P) = P U {cte(z;) «— | 1 <i < h}.

18

PROOF. For the “only if” direction, assumeg is satisfiable w.r.tP, such that, by
Theorem 17, there is an open answer($¢t M) of P, with |H'| < k. Defineh =
|H'| — |cts(P)|, i.e., the number of anonymous elementgdh Define a bijection
F:H — Hy,p) suchthatF'(a) = afora € Hp. DefineM = {a(F(z)) | a(z) €
M} U{f(F(x), F(y)) | flz,y) € M} U{cte(x;) | 1 <@ < h}. Intuitively,
we identify the fores#{’ with the constants i, (). One can show that/ is an
answer set ofy, (P).

For the “if” direction, assume there exists an answer\gatf v, (P) containing a
p-atom. Definei’ = H,, (), one can show thdt’, M’ = M\ {cte(x;) [1 <@ <
h})is an open answer set 6f. O

Note that standard answer set solvers suabLaisor SMODELS do not allow nega-
tion as failure in the head, but this can be solved with thesfi@mation of such
programs to programs withouobtin the head [39] .

The local model property is a semantic property which makesofem 19 non-
trivial to use. However, a particular syntactic class of Pelthat have the local
model property aréocal FOLPs

Definition 20 A local FoLP is a FoLP where rules

a(s) «— Q(S),Vm(sa tm)aﬁm(tm)a ti 7& tj

and

f(s,8) = als),7(s, 1), 5(t)
are such that for every € 37, eitherb(t () V not b(t(y)) <€ P or for all rules
7 : b(s) < body(r), bodyr)" = 0.

Example 21 The program from Example 9 is a local FOLP while the prograomfr

Example 18 is not. Note that the latter example does not haedaocal model

property either; in Example 23, we give a non-local progrdrattdoes have the
local model property.

Intuitively, local FOLPs can motivate arts) (f(s,t)) in an answer set, by descend-
ing at most one level in the tree, where one can locally prage (f(s,t)), i.e.,
without the need to go further down the tree. Of course, inidkiel belows one
may need to check more literals which could amount to goimthé&r down the
tree, but whilst doing this one does not need to rememberhwiiterals need to
be proved above in the tree. In a way a local FOLP has limitechomg: it only re-
members the previous (predecessor) state. A similar iotugtpplies to algorithms
that check satisfiability of certain modal logics. E.g.,][EFheorem 6.11) defines
a PspACEalgorithm for checking satisfiability of the modal logi¢,, based on a
marking that assigrsatisfiableto a state depending solely on the label of that state
and the marking of the successors. Such an algorithm makegettision to mark

19

a statesatisfiablein a local way. Analogously, predicates in the label of a niode
a forest-model are motivated by looking at the label of thédenand labels of the
successor nodes. Note that the algorithm in [27] is an exierier K, (a modal
logic with n agent$ of the modal logick™ (for one agent) in [40].

Theorem 22 Every forest-model of a local FOLP is locally supported, aad a
consequence, local FOLPs have the local model property.

There are FoLPs with the local model property that are nall&oLPs, making
the syntactical restriction less expressive than the stoahcharacterization.

Example 23 Take the FOLP

=
1

fX,Y),0(Y)
(X)
(X)
(X)

)

a(X)
b

=
1

b

T

with f andc free. This program is not local dsin the first rule does not satisfy the
necessary conditions. However, every predicate is satisfiay a locally supported
forest-model such that the program has the local model ptgpmtuitively, the
first rule, which is problematic for syntactical localityjlixnever be applicable in
an open answer set since the constraint b(X) prohibits this. The example sug-
gests that finding a syntactical characterization that esponds to the semantical
characterization (local iff local model property) is notuial: the local supported-
ness of the forest-model is guaranteed by non-applicglmficertain rules, which
seems hard to enforce syntactically in general.

3.3 Complexity

Let P be a FoLP. We verify the complexity of checking whether thexests an
answer seb/ of ¢, (P) for some0 < h < k wherek andy,(P) are as in Theorem
19. We distinguish between two cases:

e If FOLP rules have a degree bounded+hy independent of a particular FOLP,
then the size ofiround (¢, (P)) is polynomial in the size ofy, (P), since every
rule in ¢, (P) introduces at mos(|H,, »|™"") rules in ground (,(P)). In-
deed, each FoLP rule then contains at mest1 variables, each of which can be
instantiated with a constant froth), (P). Since checking whether there exists an
answer sef\/ of ¢, (P) is in NP in the size ofjround(¢,(P)) [14,7], we have
that checking whether there exists an answensetf ¢, (P) is in NP in the size
of ¢, (P) as well.

20

¢ If the degree is not bounded, we use a result from [16] to stetechecking
whether)M is an answer ofy, (P) is in X5 w.r.t. the size of);,(P).? Indeed, the
arities of predicates i, (P) are bounded b® since FoLPs allow only for unary
and binary predicates.

Thus, for a fixech, checking whethey,,(P) has an answer set is in NP for a FOLP
with bounded degree and Xf, in general.

Satisfiability checking of a predicate w.r®. can then be done by starting with

h = 0 and checking whethey,(P) has an answer set containingpaatom. If

this is the case, we are done (by Theorem 19), otherwise, peatehe check for

h = 1, and so on. If finallyh = k has been checked, i.e;,(P) had no answer
sets containing a-atom, one can conclude, by Theorem 19, that the predicate is
not satisfiable. This procedure thus involves at nkostl calls to an NP oracle for
FoLPs with bounded degree or to afy oracle in general.

We have that
2441 (1-— 2“+2)

k:(c—i-l)goni:(c—i-l)ﬁ,

with u = |upreds(P)|, ¢ = |cts(P)|, andn the rank of P such thatt is double
exponential in the size aP and the above procedure to check satisfiability runs in
2-EXPTIMEN? for FOLPs with bounded degree and the local model properiy or
2-EXPTIME™: for arbitrary FOLPs with the local model property.

Theorem 24 Let P be a FOLP with the local model property. Satisfiability check
ing W.r.t. P is in 2-EXPTIME™2 for a non-bounded degree of FOLP rules or in
2-EXPTIMEN? otherwise.

3.4 Extended Forest Logic Programs

Consider a FoLP defining when one cheats one’s spouse,fiaeiis married
to someone that is different than the person one is datingh&Ve a specialized
rule saying when one is cheating one’s spouse with the s{gousnd Jane. Fur-
thermore, some justice is introduced by a constraint enguhat cheaters date
cheaters.

cheats(X) «— marr(X, Y;), dates(X, Ys), Y, # Yo
cheats j(X) < marr(X, Y), friend(Y, jane), dates(X, jane), Y # jane
— cheats(X), dates(X, Y'), not marr(X, Y), not cheats(Y)

2 Recall thatf = NPNP.

21

{cheats, cheats_j}

xT

marr

_ -~ friend

rlg -~

Fig. 4. Forest-Model

with marr, friend anddates free predicates. An (infinite) answer set of this pro-
gram that satisfiesheats_j is depicted in Fig. 4. One sees thatheats his spouse
with Jane since: dates Jane but is married td. Furthermore, by the constraint,
we must have that Jane is also a cheater, and thus, by mityroanswer sets,
we must have that Jane is married to sojmec1 and dategane2, who in turn
must be cheating, resulting in an infinite answer set. In nzases, there is in-
teresting knowledge that cannot be captured within theeradtrict tree format of
FoLP rules. For example, in addition, we may have a rule ssreng that if Leo is
married to Jane, Jane dates Felix, and Leo himself is notidgethen Leo dislikes
Felix: dislikes(leo, feliz) < marr(leo, jane), dates(jane, feliz), not cheats(leo).
This ground rule does not have a tree structure, but relatethtee constants in
an arbitrary graph-like manner. We extend FoLPs by allowisrga component
with arbitrary DLP rules that may only be grounded with thentaned program’s
constants.

Definition 25 Anextended forestlogic program (EFOLPY is a pair (), R) where
Q) is a FoLP andR is a finite DLP. We denot® with clp(P) and R with e(P). An
EFoLP answer sebf (@, R) is an open answer set 6f U Ry or - Satisfiability
checking and query answering w.t£), R) are modified accordingly.

To avoid confusion with EFOLP answer sets and open answgrwetassume an
EFoLP P is a FOLP(Q extended with a ground DLR, i.e., P = QQ U R, under an
open answer set semantics. It is easy to see that the EFolR@sst semantics
of an EFoLP can be reduced to the open answer set semantidsobfPawith an
arbitrary ground part.

Note thate(P) can be full-fledged DLP, i.e., with negation as failure. Maver,
predicates ire(P) may be defined in the FOLP/p(P), as is the case fomarr,
dates and cheats. Vice versa, we may have predicates appearing in the FoltP par
that are defined in the ground rule part, edjs/ikes could appear in the FOLP part
as adislikes(X, Y) literal.

EFoLPs still have the forest-model property, since, intaly, graph-like connec-

tions between constants are allowed in a forest, which ighalground part(P)
of an EFoOLPP can ever introduce. Proofs in this subsection are adaptatrom

22

leo hates felix

e {cheats}

Fig. 5. Forest-Model of the EFoLP
their FOLP counterparts and have been omitted.

Theorem 26 Extended forest logic programs have the forest-model ptgpe

The forest-model of the cheats example is depicted in Fighb.cutting of infinite
answer sets to finite ones, as defined in Subsection 3.2, tharapplied to arbi-
trary EFOLPs. As in the FOLP case, we need a local model piyppémfortunately,
the local model property as defined for FOLPs will not do. Téeexample, a rule

doesnt_care(feliz) «— marr(leo, jane), dates(jane, feliz), cheats(leo)

where Felix does not care about dating the married Jane ihbgloand Leo is
cheating as well. Together with théecats rule from the cheating example, one has
that doesnt_care(feliz) is in an answer set ilvarr(leo, jane), dates(jane, feliz),
cheats(leo), marr(leo, leol), anddates(leo, leo2) for successorgo! andleo2 of

leo are in the answer set. Thus, although the cheats rule it @teek not violate
the local model property, adding a ground rule does so, snopports may also
involve successors of constants whereas the local modekpsodefinition for
FoLPs allows only the constants themselves in the support.

Although the local model property for FOLPs is not suitalilean be safely relaxed
by allowing also successors of constants in the supporédddcutting of forest-
models never removes any successors of constants and,vegrasuccessor of
a constant is never considered as a candidate for the secaledim a duplicate
pair since, by definition, the root in a constant tree is nkémainto account as a
candidate for the first node in a duplicate pair. Thus the esgmrs of constants
remain unmodified in the cut forest.

Definition 27 A forest-model{H, M) of an EFOLPP is locally supportedf
Vi=gq(x)e MVI= f(x,y) e M -

(Hsqy € {x,zi} U{a,ai|a € Hp})A

(Vf(z,a) € S(I),a € Hp - z # xi), p € upreds(P) is locally satisfiablew.r.t. P

23

if there is a locally supported forest-model|acal modelfor short, (H, M) such
thatp(e) € M for aroote in H. An EFOLPP has thelocal model propertyf the
following holds: ifp € upreds(P) is satisfiable w.r.tP then it is locally satisfiable.

EFoLPs with the local model property then have the desireshded finite model
property.

Theorem 28 Let P be an EFoLP with the local model property. Thénhas the
bounded finite model property.

Thanks to this property we can reduce reasoning with EFobFP®tmal answer
set programming by introducing a sufficiently large bound.

Theorem 29 Let P be an EFoOLP with the local model property.c upreds(P)
is satisfiable w.r.t.P iff there is a0 < h < k and an answer set/ of ¢, (P)
containing ap-atom, wheré: and,(P) are as in Theorem 19.

The other direction is trivial: there is a normal answer &ebf a programpP con-
taining ap(a) € Hp iff pis satisfiable w.r.t. to the EFoL@®, P). Indeed, by defini-
tion of EFOLPs, the second component in the pair has a nomsaler set seman-
tics. By [14,7], the normal answer set semantics for DLR&ISPTIME-complete.
Furthermore((), P) has the local model property such that we have the following
lower complexity bound.

Theorem 30 Let P be an EFoLP with the local model property. Satisfiabilitydhe
ing w.r.t. P is NEXPTIME-hard.

A lower EXPTIME bound for reasoning with FoOLPs will be established in Sectio
Similar to the complexity upper bound for FoLPs with the looadel property, one
can deduce the following upper bounds for EFoLPs with thallotodel property
(where extra complexity is due to the unbounded groundinthefarbitrary rule
part).

Theorem 31 Let P be an EFoLP with the local model property. Satisfiabilitycke
ing W.r.t. P is in 2-EXPTIMENEXPTIME,

As was the case for FoLPs, the local model property for EFakRssemantical
characterization, which makes it non-trivial to recogniz€oLPs satisfying this
property. We identify a class of EFoLPs, based on their syictatructure, that
have the local model property.

Definition 32 Alocal EFOLP P is an EFOLP where:p(P) is a local FOLP.

Local EFoLPs have the local model property, i.e., the abjtrules have no influ-
ence on the locality.

Theorem 33 Local EFoLPs have the local model property.

24

4 Nonmonotonic Ontological and Rule-based Reasoning withx&ended For-
est Logic Programs

In Subsection 4.1, we simulate reasoning in an expressiveiiLFoLP; Subsec-
tion 4.2 shows that the extension of this DL with DL-safe suban be simulated
by EFoLP, and discusses some of the advantages of EFoL Pspi@senting and
reasoning with conceptual and rule-based knowledge.

4.1 Ontological Reasoning with FOLPs

Description logics (DLSs) [5] play an important role in thepligyment of the Se-
mantic Web, as they provide the formal semantics of (parbofplogy languages
such as OWL [9]. Usingonceptandrole namesas basic building blockggrmi-
nological androle axiomsin such DLs define subset relations between complex
conceptandrole expressiongespectively. The semantics of DLs is given by inter-
pretations = (AZ,.7) whereA? is a non-empty domain anélis an interpretation
function.

ALCHOQ(L, M) is a particular DL with syntax and semantics as in Table 1: con
cept namesi are the base concept expressiafss a role name, establishing the
base role expression, amdis an individual.D and E are arbitrary concept ex-
pressions, andk and S are arbitrary role expressions. Individuals are integatet
as elements i\, concept expressions as subsetg\éfand role expressions as
binary relations om\Z. DLs are named according to their construgt£ is the ba-
sic DL [49], andALCHOQ(L, M) adds negation of concept expressiofis (ole
hierarchies t?), individuals (or nominals)®), qualified number restrictions)),
and conjunctionr() and disjunctionl(l) of roles.

The unique name assumptienif o, # o, theno? # of — ensures that different
individuals are interpreted as different domain elemédtge that OWL does not
have the unique name assumption [51], and thus differentithdhls can point
to the same resource. However, the open answer set semgingssan Herbrand
interpretation to constants, i.e., constants are integdras themselves, and for
consistency we assume that also DL nominals are interptieieday. Thus, from
a Semantic Web point of view, we assume all individuals ar¢’sXRat point to a
unique resource.

For concept expression3 and F, terminological axiomd) C FE are satisfied by
an interpretatiorf if D C EZ. Role axiomsRk C S are interpreted similarly. An
axiom X = Y stands forX C Y andY C X. A knowledge bas& is a set of
terminological and role axiomg; is amodelof X if Z satisfies every axiom ik.
A concept expressio6y' is satisfiablew.r.t. 3 if there exists a model of X such
thatC% # ().

25

Table 1
Syntax and Semanticd CCHOQ(LJ, 1)

concept names AT c AT
role names PLc AL x AL
individuals {0}t = {0} C AT

conjunction of concepts (DM E): = DIfnE?
disjunction of concepts (DU E)f = DTUE?
conjunction of rolesf (RN S)X = RTINS
disjunction of roles] (RuUS)f = RIuUS?

existential restriction (3R.D)Y = {z|3y: (x,y) € RT Ay € DT}
universal restriction (VR.D)X = {z|Vy: (z,y) € RT = y € D*}
)P = {zl#{yl(z,y) € R Ny € DT} <n}
(>nR.D)* = {z[#{yl(z,y) € R* ny e D'} >n}

qualified number restriction (< n R.D

As an example, the human resources department has an gntgegifying the
company’s structure: (ayersonnel consists ofManagement, Workers andjohn,
(b) john is the boss of some manager, and (c) managers only take dral@rsther
managers and they are the boss of at least thiregkers. This corresponds to the
following ALCHOQ(U, M) knowledge bas&:

Personnel = Manag U Workers Ll { john}

{john} C Jboss.Manag
Manag T (Vt_orders.Manag) M (> & boss. Workers)

A model of thisX is Z = ({j, w1, wa, w3, m}, 1), with - defined byWorkers® =
{wy, wa, w3}, Manag® = {m}, {john}" = {4}, Personnel* = {j, wy, ws, w3, m},
boss = {(4,m), (m,wy), (m,wy), (m,ws)}, t_orders’™ = 0.

We can rewriteX as an equivalent FOLP. The axioms inX correspond to the
constraints

— Personnel(X), not (Manag U Workers U {john})(X)

— (Manag U Workers U {john})(X), not Personnel(X)

— {john}(X), not (Fboss.Manag)(X)

— Manag(X), not ((Vt_orders.Manag) M (> 3 boss. Workers))(X)

in P, where the concept expressions are used as predicatesndiodting, in
case of the first constraint, that if the answer set containges’ersonnel(z) then

26

it must also contairf Manag LU Workers LI {john})(z). Those constraints are the
kernel of the translation; we still need, however, to sineithe DL semantics by
rules that define the different DL constructs.

The predicaté Manag LI Workers U {john}) is defined by rules
(Manag U Workers U {john})(X) «— Manag(X)

(Manag U Workers U {john})(X) «— Workers(X)
(Manag U Workers L {john})(X) < {john}(X)

and thus, by minimality of answer sets(if/anag U Workers U {john})(z), there
must either be d/anag(z), a Workers(z), or a{john}(z). The other way around,
if one has allanag(z), a Workers(z), or a{john}(z), one must have
(Manag U Workers LI {john})(z). This behavior is exactly what is required by the
LI-construct.
The predicatédboss. Manag) is defined by

(Fboss.Manag)(X) « boss(X, Y), Manag(Y')

such that, if the litera{3boss. Manag)(z) is in the answer set, there ig/auch that
boss(z,y) and Manag(y) are in the answer set and vice versa.

The predicaté(Vt_orders. Manag) 1 (> 3 boss. Workers)) is defined by

((Vt_orders.Manag) M (> 3 boss. Workers))(X) «—
(Vt_orders.Manag)(X), (> 3 boss. Workers)(X)

and the body predicates by the rules

(Vt_orders.Manag)(X) <« not (It_orders.(—Manag))(X)

(> 3 boss. Workers)(X) « boss(X, Y;), boss(X, Yz), boss(X, Ys),
Workers(Y;), Workers(Ys), Workers(Ys),
Yi# Yo, Yo # V5, Y1 # Y5

and

(Ft_orders.(—~Manag))(X) « t_orders(X, Y), (—~Manag)(Y)
(=Manag)(X) < not Manag(X)

Finally, we need to introduce free rules for all concept asid names. Intuitively,

27

concept names and roles names are types and thus contairnsbamees or not.

Workers(X) V not Workers(X) «

Personnel(X) V not Personnel(X) «—

Manag(X) V not Manag(X) «

boss(X, Y)V not boss(X,Y) «—
t_orders(X,Y) V not t_orders(X,Y) «—

The individual{john} is taken care of by introducing a constgotn in the pro-

gram with the rulgjohn }(john) < . The only possible value of in a{john}(X)
is thenjohn.

The DL modelZ corresponds to the open answer €kt M) with H = (A
{7}) U {john} andM = {C(z) | C € upreds(P),z € C*} U{R(z,y) | R €
bpreds(P), (x,y) € R*}, with a slight abuse of notation, i.e., usiigand R as
predicates and DL expressions. Formally, we definectbsure clos(C, X)) of a
concept expressio@’ and a knowledge base as the smallest set satisfying the
following conditions:

o for every concept (role) expressidn (R) in {C} U X, we have thatD(R) €
clos(C, %),
e foreveryD in clos(C, X)), we distinguish the following cases:

D =-D, = D € clos(C, %)

D = D, U D, = {Dy, Dy} C clos(C, %)

D =DM D, = {D1, Dy} C clos(C, %)

D =3R.D, = {R,D,} C clos(C,%)
=
=
=

D =VR.D, (D1, 3R~D:} C clos(C, %)
D=(<nQ.D) {(Zn+1Q.Dy)} C clos(C, Y)
D= (>nQ.D,) {Q, D1} C clos(C, %)

e for RUS € clos(C,X),{R, S} C clos(C,Y),
o for RMS € clos(C,%),{R,S} C clos(C,%).

The FoLP®(C, ¥) that simulates satisfiability checking 6fw.r.t. X is then con-
structed by introducing for concept nhamésrole namesP, and individuals in
clos(C, %), rulesA(X) V not A(X) «— , P(X,Y)Vnot P(X,Y) « , and facts
{o}(0) <. For every other constru@ < clos(C, %), we introduce, depending on
the particular construct, a rule with in the head as in Table 2.

This completes the simulation gfLCHOQ(L, M) using FoLP.

28

Table 2
FoLP Translatior(C, X)

(~D)(X) « not D(X) (DN E)(X) « D(X), B(X)

(DUE)(X) « D(X) (DUE)(X) « E(X)

(3R.D)(X) «— R(X,Y),D(Y) (VR.D)(X) « not 3R.~D(X)
(RUS)(X.Y) — R(X,Y) (RNS)(X.Y) — R(X,Y),S(X,Y)
(RUS)(X,Y) « S(X,Y) (< n R.D)(X) — not (> n+1R.D)(X)
(>n RD)(X) «— R(X,Y1),...,R(X,Y,),D(Y1),...,D(Y,),Y; # Ya,...

Theorem 34 An ALCHOQ(U, M) concept expressiofi is satisfiable w.r.t. a
knowledge bask iff C'is satisfiable w.r.t®(C, ¥).

Proof Sketch. For the “only if” direction, takeC' satisfiable w.r.tY, i.e., there
exists a model = (AZ,.7) with C* # (). We rename the elemeant from AZ by
o, which is possible by the uniqgue name assumption. We thestieat the answer
set(H, M) withH = AT andM = {C(z) | z € C*,C € clos(C,X)}U{R(z,) |
(r,y) € RT,R € clos(C,%)}. One can show thatH, M) is an answer set of
o(C,%).

For the “if” direction, we have an open answer §gt, M) that satisfies”, i.e.,
C(x) € M for somex € H. Define an interpretatiom?, -7), with A = H, and
AT = {y | A(y) € M}, for concept named, PZ = {(y,z2) | P(y,z) € M}, for
role namesP, ando? = o, foro € Hac,x)- I is defined on concept expressions
and role expressions as in Table 1, and we can showZtlimt model ofY such
thatC? #£0. O

Note that, in general, the resulting FolbPC',) is not local:(3R.(AMB)) is trans-
lated as rule§3R.(ATM B))(X) «— R(X,Y),(AnIB)(Y)and(AMN B)(X) «
A(X), B(X), such that there is a positiyel 1 B)-atom that is not free in a body
and there is a rule witA M B) in the head and a body that has a non-empty
positive part®(C, X) has, however, the convenient property that it is acyclits It
sufficient to note that the body of a rule #n(C, X) is structurally “smaller” than
the head, e.g(A M B) is smaller than(3R.(A M B)). This permits us to replace
the rule with(3R.(A M B)) in the head by the two rulegR.(AMN B))(X) <
R(X,Y),not (AN B)(Y); (AN B)(X) < not (AN B)(X): we negate A M
B)(Y) twice. The resulting FoLP is now local and satisfiability ckiag w.r.t.
¢ (C, X)) can be reduced to this replacement, as a consequence o&fhéor

From the reduction of reasoning WithLCHOQ(LU, M) to reasoning with local
FoLPs, we can deduce a lower complexity bound for reasoniitig tve latter.

Indeed, since satisfiability checking of the sublanguddgew.r.t. a set of axioms is
EXPTIME-complete [5], we have the following theorem.

29

Theorem 35 Let P be a FOLP with the local model property. Satisfiability chagk
w.r.t. P is EXPTIME-hard.

The ALCHOQ(L, M) simulation shows the feasibility of Semantic Web reason-
ing with FOLPs, asALCHOQ(U, M) is an expressive DL related to the OWL DL
ontology language. Formally, OWL DL corresponds to the SKOZN (D) [37],
which differs fromALCHOQ(L, M) in thatSHOZN (D) additionally allows for
inverted roles 1), data typesID) and transitivity of roles (which distinguisheés
from ALC). HoweverSHOZN (D), and thus OWL DL, does not support qualified
number restrictions, i.e., it only allows for unqualifiednmioer restrictions such as
(> n R) instead of qualified ongs> n R.D)(X). Furthermore ACCHOQ(L, M)
adds the role constructsandr.

Putting this in perspective, the loss of transitivitydd CHO Q(LJ, 1) weighs heav-
ier than having qualified number restrictions and role amesors. Indeed, there is
actually no reason why OWL DL should not include qualified tn@émrestrictions
(corresponding to the DISHOZ Q(D)). We needed to omit transitivity in order
to be able to translate to EFoLPs with the bounded finite mpdgberty. OWL
DL does not have this limitation, i.e., there are conceptesgions that have only
infinite models. Note that adding transitivity #£CHOQ(L, 1) without restrict-
ing the allowed roles in qualified number restrictions (tbapnot be transitive nor
can they have transitive subroles), one immediately hasaiddbility of reason-
ing [35]. Further note that OWL DL does not make the unique @assumption,
while EFoLPs do. Since the unique name assumption can beexsge OWL DL,
EFoLPs are strictly weaker in this respect.

4.2 Combined Ontological and Rule-based Reasoning with.E§0

The ontology layer for the Semantic Web is becoming a rewlitly languages such
as OWL DL, and the rule layer, which provides additional iefecing capabilities
on top of DL reasoning, is gaining interest in the Semanti®d\&e@mmunity. For
example, in [45], integrated reasoning of DLs widh-saferules was introduced.
DL-safe rules are unrestricted Horn clauses where only timentunication be-
tween the DL knowledge base and the rules is restricted;ghakle one to express
knowledge inexpressible with DLs alone, e.g., triangutamkledge such as [45]

BadChild(X) <« GrChild(X), parent(X, Y), parent(Z, Y), hates(X, Z)
saying that a grandchild that hates its sibling is a bad child

We introduce DL-safe rules as in [45]. For a DL knowledge baset No and Ny

be the concept and role namesirand N is a set of predicate symbols such that
NcUNg C Np. A DL-atomis an atom of the forml(s) or R(s, t) for A € No and

R € Ng. A DL-safe ruleis a rule of the formu < by, ..., b, wherea, b; are atoms

30

and every variable in the rule appears in a non-DL-atom imuleebody. ADL-safe
programis a finite set of DL-safe rules. Lets(X, P) be the set of nominals iR
and constants i .

The semantics of the combinéd, P) for a knowledge bask and a DL-safe pro-
gramP is given by interpreting as a first-order theory(X), see, e.g., [12], every
DL-saferulea < b,,...,b, asthe clausev—b, V...V -b,, and then considering
the first-order interpretation of(¥X) U P. The main reasoning procedure in [45] is
guery answeringi.e., checking whether a ground atenis true in every first-order
model of7(3) U P, denoted asX, P) = «.

We provide an alternative semantics based on DL interpoetags in [33] rather
than on first-order interpretations. However, both sencardre compatible as in-
dicated in [45]. For(X, P) and an interpretatiod = (AZ,-Z) of ¥ we extend
L for Np and’Hp such that for unary predicatesc Np, p* C AZ, for binary
predicatesf € Np, ff C AT x AT, ando? € AZ for o € Hp; such an ex-
tended interpretation is, by definition, an interpretatd>:, P). Furthermore, we
impose the unique name assumption such that i o,, theno? # oZ, for el-
ementso € cts(X, P). A bindingfor an interpretatior¥ of (X, P) is a function
o : vars(P) U cts(3, P) — AT with (o) = of for o € cts(3, P); it maps con-
stants/nominals and variables to domain elements. A urtarg &(s) is then true
w.r.t. o andZ if o(s) € of, and a binary atony(s,t) is true w.r.t.c andZ if
(o(s),0(t)) € fE. Aruler is satisfied byZ iff for every bindingos w.r.t. Z that
makes the atoms in the body true, the head is also true. Arphetation of(X, P)
is a model if it is a model ok and it satisfies every rule if. Query answering
(3, P) = « amounts then to checking whether for every madeif (3, P), the
ground atomu is true inZ.

In Subsection 4.1, we reducetC.CHO Q(LJ, M) satisfiability checking to FOLP sat-
isfiability checking. We can reduce query answering wA£CHOQ(LI, 1) knowl-
edge bases extended with DL-safe rules to query answerirtgiFoLPs. We first
provide some intuition with an example. Take a knowledgebas

dmanuf _in.Co M Jhas_price E Product ,

expressing that if something is manufactured in some cyuartd it has a price
then it is a product{has_price is shorthand foBhas_price. T, where T = A?
for every interpretatio). We have some facts in a DL-safe prograhabout the
world we are considering:
is_product_of (p, ¢;) «— manuf _in(p, japan) —
is_product_of (p, cg) Co(japan) «—

saying thatp is a product of company; and company:,, thatp is manufac-
tured in Japan and that Japan is a country. Those facts aalyrDL-safe since

31

they do not contain variables. Additionally, we have a DEesaile in P saying
that if a product is a product of 2 companies, those compar@gompetitors,

r1 : competitors(Cy, Cy) < Product(P),is_product_of (P, Cy),

is_product_of (P, C5). Note that this is indeed a DL-safe rule since every vari-
able occurs in ais_product_of atom, which is a non-DL-atom in the body of
the rule. The only DL-atom in the rule iBroduct(P). A modelZ of (X, P) is

T = ({japan, c;, co,p,x},-T)* with Z: Co? = {japan}, Product’ = {p},
manuf _in* = {(p, japan)}, has_price’ = {(p, z)},

is_product_of* = {(p, ¢1), (p, c2)}, competitors’ = {(c;, cs)}.

We translate(X, P) now to an EFoLP: the DL axiom is translated to the con-
straint < (Imanuf_in.Co M Jhas_price)(X), not Product(X), where we intro-
duce predicates corresponding to the concept express$iartbermore, we define
these predicates by the rules

(Imanuf _in.Co M Jhas_price)(X) «— (Imanuf_in.Co)(X), (Ihas_price)(X)
(Imanuf _in.Co)(X) «— manuf_in(X, Y), Co(Y)
(has_price)(X) < has_price(X, Y)
Furthermore, we introduce the concept and role names by snafafiee rules,

indicating that a domain element (or a pair of domain elesjastof a certain type
or not.

Product(X) V not Product(X) «

Co(X) V not Co(X) «—

manuf _in(X, Y) V not manuf_in(X,Y) «—
has_price(X, Y) V not has_price(X,Y) «

This concludes the FoLP part of the translation(nf P). Formally, we define

d(X) as thed(C,) from Subsection 4.1 wher@ is some arbitrary concept from
Y. The arbitrary DLP part of the EFoLP includes the DL-safesul

Since DL-safe rules have a first-order interpretation it fnayhat
(c1,¢2) € competitors®

for a modelZ of (X, P) without any justification irZ: the body ofr; in P does
not need to be satisfied in order to have, c;) € competitors”. The answer set
semantics, however, only deducesnpetitors(c;, co) in an answer set if the body

3 Actually, to correspond entirely with the desired semantige would need to indicate
that C; and C, are different companies. This seems to be not possible Wil -safe
rules in [45], however, it is with EFOLPs using.

4 We takeo = o0, 0 € cts(X, P), for ease of notation.

32

of r; is satisfied in that answer set, since otherwise the answevadd not be
minimal (one could omitompetitors(c;, co) and still have an answer set).

To solve this, we introduce for each headf a DL-safe rule, arule V not a « ,
competitor(Cy, Cg) V not competitor(Cy, Cz) < , such that one has always a
motivation for competitor(C;, Cs), mimicking the first-order semantics.

Formally, we define(P) for a DL-safe progran® as the DLPP with free rules
headr) V not headr) «— |,
for eachr € P.

Theorem 36 For an ALCHOQ(L, M) knowledge bas& and a DL-safe program
P,we havgy, P) = aiff (#(X), x(P)) E «a.

In [45] the DL SHOZN (D) is considered in the definition of DL-safe rules in-
stead of ALCHOQ(L, M). Decidability of query answering is shown for the DL
SHOZN (i.e., without data types). Using EFoLPs instead of a DL knowledge
base with DL-safe rules on top has the further advantage mieootonicity by
means of negation as failure in both the FoLP part and the CArE whereas both
DLs and DL-safe rules are monotonic (DL-safe rules are H@anses and thus do
not allow for negation as failure).

Example 37 Add a rule to the company example ontology, expressingftiahin
is not married, he works late at the office:

works_late(john) < not married(john)

Adding such a rule to our knowledge will have the effect tivatyy open answer
set includes the literalvorks_late(john), i.e., John always works late. However,
consecutively adding the newly acquired knowledge that dekctually married
with a rule

married(john) «—

will make sure that John never works late in answers to ourenirknowledge.
This type ofnonmonotonicityis one of the main strengths of logic programming
paradigms for knowledge representation and is thus usaef@amantic Web rea-
soning as well; it was, e.g., identified in [13] as one of thqueements on a logic
for reasoning on the Web. DLs lack this feature andra@otonic e.g., one could
try to translate the above rule as the following DL axiom.

—Married 1 {john} T Works_late M {john}

> Note that the proof of this decidability does not use a rédndb disjunctive Datalog;
in order to use such a reduction [45] restricts itselflZ Q(D).

33

However, it is clear that interpretations satisfying thigi@n have a choice in
making John work later or not, such that adding that John igried would not
invalidate any previously concluded facts.

Besides the previously illustrated nonmonotonicity, Felaife more articulate than
DLs in other aspects.

Example 38 E.g., representing the knowledge that a team must at feashsist
of a technical expert, a secretary, and a team leader, whieeeléader and the
technical expert are not the same, can be done by

team(X) < member(X, Y;), tech(Y;), member(X, Yy), secret(Ys),
leader(X, Ys), Y1 # Y3

Note that in order for the rule to correspond to our informaffahition of a team we
assume no other rules with a head predicegamexist, i.e., we implicitly use the
minimality of open answer sets. This is clearly not idealwdwer, using only satis-
faction of rules to conclude that, ifis team, then it should satisfy the listed prop-
erties, seems impossible to express with (open) answeragamming. Compare
the rule with, e.g., the rule for number restrictions in Tald. In number restric-
tions(> n R.C') one indicates that there are more tham?-successors that are of
typeC, while FOLPs can constrain different successor relatiopsltimember and
leader) instead of just onekK). Moreover, FOLPs can be very specific about which
successors should be different and which ones may be équaky be equal td5,

but should be different frori), or to which different types the successors belong
(tech and secret) instead of one typel).

Representing such generalized number restrictions usihg Would be signifi-
cantly harder while arguably less succinct.

Finally, consider some EFoL{), R) whereR is the ground rule

f(a,c) = f(a,b),f(b,c)

Although this rule does not have a tree structure, its groeed suggests that one
can replace it by a DL axiom using hominals:

{a}13f.({b} N 3nA{c}) E{a} 1 3f {c}

If (a,b) € f* and(b,c) € f* for a modelZ (and assuming, b, andc are the
elements of a}?Z, {b}7, and{c}* respectively), the DL axiom enforcés, c) € fZ.

The DL axiom does not capture the rule’s semantics exaghgn@nswer sets have
to be minimal such that an open answer set cannot coffitairr) without applying

the body of the rule fronR. It seems that the satisfaction of ground rules can indeed

6 Note that other entities tharamcould have these properties, e.gclab— in the exam-
ple clubs and teams would then be the same.

34

be simulated by DL axioms, however, the minimality of opesva@r sets cannot
be captured as such. Note that DL-safe rules are not interpbsy such a minimal
model semantics such that it is more likely that they acjuadluld be captured as
DL axioms (provided the particular DL allows for nominal3his is subject for

further research. Writing non-ground DL-safe rules diseas DL axioms seems
to be more intricate, if possible at all.

It is still up to a knowledge engineer to decide whether theimality property is
required to represent the domain under consideration.

5 Related Work

In [22], the languag&, of a programP is expanded with an infinite sequence of
new constants,, ..., ¢, ... such thatC, is the expansion of, with ¢, ..., c;. A

pair (k, B) for a nonnegative integérand a set of ground literal8 in L, is then a
k-belief seof P iff B is an answer set df,,, whereP,, is the grounding of” in the
language’l,.. Our definition of open answer sets is more general in theestvad
also infinite universes are allowed, whilé-delief set is always finite. Nonetheless,
the other direction is valid: every-belief set can be written as an open answer set.

Defining k-belief sets, or open answer sets for that matter, easitysléa unde-
cidability as was argued fok-belief sets in [48]. Interestingly, [48] shows that
reasoning becomes decidable again under the well-fourgledrgtics . Since for
stratified programs this semantics coincides with the ansatesemantics, one has
decidability of reasoning fak-belief sets of stratified programs. However, trying to
extend the language of stratified programs with an extraustrdelow all others,
containing disjunctions of positive literals, leads to aaidiability again [48]. Con-
sidering, in this light®(C,), which basically consists of a stratified part, defining
the DLs constructors, and a disjunctive part, the free ruleshave, however, still
decidability, emphasizing the importance of the forestdeigroperty.

Another approach to infinite reasoning, besides infinitenap@mains, is presented
in [11], where function symbols are included in the langudgeitary programs
are identified as a class for which ground query answeringagidble, and lead to
elegant formulations of, e.g., plans with unbounded plagitength. Formally, they
are defined as programs that are finitely recursive, i.etygreund atom may only
depend on a finite number of other ground atoms, and suchrhea dinite number
of odd-cycles may occur in the grounded program. Neitheditmms are neces-
sary for FoLPs: the local FOLP containing rulesX) «— f(X,Y),not b(Y) and
b(X) <« a(X), when grounded with an infinite universe, is not finitely nesive
and contains infinitely many odd-cycles. Since not all fiyifarograms are FOLPs,
both classes of programs are not directly related, and tiesttanodel property ap-
pears to be an alternative indication of “finitary” reas@nuith possibly infinite

35

knowledge. While ground query answering with finitary peogs is decidable,
unground query answering is only semi-decidable [11]. Sinoth are decidable
for FOLPs, FoLPs are arguably more suited for checking stescy of, e.g., on-
tologies. Moreover, checking whether a program is finitanggelf undecidable, in
contrast with FOLPs, which are a syntactic restriction ofF3L

There are basically two lines of research that try to redemt@scription logics with
logic programming. The approaches in [10,24,44,2,38,b2likte DLs with LP,

possibly with a detour to FOL, while [15,47,17] attempt tatarthe strengths of
DLs and LP by letting them coexist and interact.

In [10], the simulation of a DL with acyclic axioms impen logic programmings
shown. An open logic program is a program with possibly umaefipredicates and
a FOL-theory; the semantics is the completion semanticgik only complete
for a restrictive set of programs. The opennes lies in th@tisedefined predicates,
which are comparable to free predicates with the differéhaefree predicates can
be expressed within the FoLP framework. More specificalbgrologic program-
ming simulates reasoning in the DLLCA, N indicating the use of unqualified
number restrictions, where terminological axioms consision-recursive concept
definitions; ALCN is a subclass ol LCHOQ(LJ,).

[24] imposes restrictions on the occurrence of DL conssructterminological
axioms to enable a simulation using Horn clauses. E.g.,naxioontaining dis-
junction on the right hand side, as in C C' U D, universal restriction on the
left hand side, or existential restriction on the right haiak are prohibited since
Horn clauses cannot represent them. Moreover, neithertinagaf concept ex-
pressions nor number restrictions can be representedal&atDescription Logic
Programsare thus incapable of handling expressive DLs; howevelqfarte lies
in the identification of a subclass of DLs that make efficie@soning through LPs
possible. [44] extends the work in [24], for it simulates rrecursive ALC on-
tologies with disjunctive deductive databases. Compatiéial wossibly recursive,
ALCHOQ(L, M), those are still rather inexpressive.

In [2], the DL ALC QT is successfully translated into a DLP. However, to take into
account infinite interpretations [2] presumes, for techhieasons, the existence of
function symbols, which leads, in general, to undecidgbdf reasoning.

[38] and [52] simulate reasoning in DLs with a LP formalism dging an inter-
mediate translation to first-order clauses. In [38HZ Q™ knowledge bases, i.e.,
SHZQ knowledge bases with the requirement that rdfds (< nS.C') have no
subroles, are reduced to first-order formulas, on whichcosgperposition calcu-
lus is then applied. The result is transformed into a fumcfree version which is
translated to a disjunctive Datalog program. Note that (28] deal with transitive
roles which is a clear advantage over our approach in thexbot DL simulation.

[52] translatesA LC Q7 concepts to first-order formulas, grounds them with a finite

36

number of constants, and transforms the result to a logigram. One can use a
finite number of constants by the finite-model property #o£C QZ-concept ex-
pressions; in the presence of terminological axioms thi®itonger possible. The
resulting program is, however, not declarative anymoré ghat its main contri-
bution is that it provides an alternative reasoner for DLeemeas FoLPs can be
used both for reasoning with DLs and for a direct and eleggmassion of knowl-
edge. Furthermore, FOLPs are also interesting from a purgdvippoint since they
constitute a decidable class of DLPs under the open answeesantics.

Along the second line of research, Ax€-log [15] system consists of two subsys-
tems: a DL knowledge base and a Datalog program, where iratter hariables
may range over DL concept instances, thus obtaining a flomfofination from
the structural DL part to the relational Datalog part. Tliigktended in [47] for
disjunctive Datalog and thé £LC DL. A further generalization is attained in [17]
where the particular DL can be the express®i€OZN (D). The DL knowledge
base is considered as a black box that can be queried fromulige Moreover,
inferences made by rules can serve as input to the DL knowlbdge as well,
leading to a bidirectional flow of information. A disadvagéeof this approach, as
was remarked in [45], is that, since one considers only auresgces of the DL
knowledge base, i.e., atoms that are true in all models, soate fine-grained in-
ferences will not be made by the rules. Since reasoning watliPE can be reduced
to finite ASP, it can be trivially reduced to the approach id][Wwith an empty DL
knowledge base. In [18] the approach of [17] was adaptedhemtell-founded
semantics instead of the answer set semantics.

In [4], one builds a nonmonotonic rule system on top of theolmgly language
DAML+OIL [8], a predecessor of OWL. More specifically, thegaidefeasible
logic [46] to express rule-based knowledge and argue its use éontinerce appli-
cations on the Semantic Web. Another approach that comBiA&4L+OIL with
rules can be found in [25], whergtuated courteous logic programs the rule
markup language RuleML [1] provide for the nonmonotoni@rsystem.

A notable approach, which cannot be categorized in one daftbéines of research
described above, although it tends towards the coexisppgoach, is the SWRL
[36] initiative. SWRL is aSemantic Web Rule Languaged extends the syntax and
semantics of OWL DL with unary/binary Datalog RuleML [1ki, Horn-like rules.
This extension is undecidable [33] but lacks, nevertheliessresting knowledge
representation mechanisms such as negation as failure.

[23] explains how reasoning with SWRL [36], can be done byaiigely calling

the DL reasoneRACER [26] and the rule-based reasordass[20], each feeding
the other with the inferences it made. Since SWRL is undébédaand such an
iterative procedure is thus incomplete, it shows that ctable worst-case com-
plexity (or even undecidability) should not hold one bacld&vice practical and
useful combined reasoners. On the other hand, the appno$28]iis quite ad hoc

37

and not formally proved to be correct. A similar iterativegbnis taken in [43]
where SWRL is extended with negation as failure and equipptdan answer set
semantics, resulting in a nonmonotonic but undecidablesys

6 Conclusions and Directions for Further Research

We extended the semantics of answer set programming withosufor open do-
mains. This extension led to an increase in expressivebeasslso to undecid-
ability of reasoning. This was remedied by syntacticallgtrieting the types of
allowed rules in logic programs, resulting in extended $otegic programs. We
further restricted EFOLPs to local EFoLPs that have the Hediinite model prop-
erty. Lower and upper bounds for the complexity of reasomege established.

Furthermore, we showed how EFoLPs can simulate reasonamBinthat is related
to the OWL DL ontology language together with DL-safe rukeslisadvantage of
the EFOLP approach, however, compared to state-of-thBtatis the inability to
express transitive roles as in, e.g., the BHZ Q: we restrict ourselves to EFoLPs
with the local model property in order to ensure a boundetefimodel property, a
restricting property thas’HZ Q does not have.

Since EFoLP is a logic programming paradigm, with, e.g. atieg as failure and
the consequential nonmonotonic reasoning, we believeehal Ps may be useful
for reasoning with both rules and ontologies on the Semaiib, and this in
such a way that both types of knowledge are fully integraféel concluded with a
description of related work.

It would be interesting to look for further extensions of fheest-model property of
EFoLPs. Other syntactical classes of open answer set pnogirey, e.g.guarded
programs[30], can be identified, based on other decidability velsidike, e.g.,
fixed point logic.

Acknowledgements

Davy Van Nieuwenborgh is supported by the Flemish Fund faer8idic Research
(FWO-Vlaanderen).

References

[1] The Rule Markup Initiative. http://www.ruleml.org.

38

[2] G. Alsac and
C. Baral. Reasoning in Description Logics using Declamtiwgic Programming.
http://ww. public.asu. edu/ guray/dlreasoni ng. pdf,2002.

[3] H. Andréka, I. Németi, and J. Van Benthem. Modal Lamgem and Bounded
Fragments of Predicate Logid. of Philosophical Logic27(3):217-274, 1998.

[4] G. Antoniou. A Nonmonotonic Rule System using Ontolagi€ EUR Proceedings,
2002.

[5] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, anda®lfSchneider. The
Description Logic HandbookCambridge University Press, 2003.

[6] F.Baaderand U. Sattler. Number Restrictions on ComBlebes in Description logics.
In Proc. of KR-96 pages 328-339, 1996.

[7] C. Baral. Knowledge Representation, Reasoning and Declarative |®moisolving
Cambridge Press, 2003.

[8] S. Bechhofer, C. Goble, and I. Horrocks. DAML+OIL is noa@ligh. InProc. of the
First Semantic Web Working Symposium (SWWSjiHges 151-159. CEUR, 2001.

[9] S. Bechhofer, F. van Harmelen, J. Hendler, |. Horrocks,LDMcGuinness, P. F.
Patel-Schneider, and L. A. Stein. OWL Web Ontology LanguBgérence. W3C
Recommendationht t p: / / www. w3. or g/ TR/ ow - r ef / , February 2004.

[10] K. Van Belleghem, M. Denecker, and D. De Schreye. A Sir@orrespondence
between Description Logics and Open Logic Programming.Pioc. of ICLP'97,
pages 346-360, 1997.

[11] P. A. Bonatti. Reasoning with Infinite Stable Modehstificial Intelligence 156:75—
111, 2004.

[12] A. Borgida. On the Relative Expressiveness of Desiotiplogics and predicate
logics. Artificial Intelligence 82(1-2):353-367, 1996.

[13] F. Bry and S. Schaffert. An Entailment Relation for Re@ag on the Web. IProc.
of Rules and Rule Markup Languages for the Semantic, WES, pages 17-34.
Springer, 2003.

[14] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Corapiky and Expressive Power
of Logic Programming ACM Comput. Sury33(3):374-425, 2001.

[15] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Abg: Integrating Datalog
and Description LogicsJ. of Intelligent and Cooperative Inf. System:227-252,
1998.

[16] T. Eiter, W. Faber, M. Fink, G. Pfeifer, and S. Woltraror@plexity of Model Checking
and Bounded Predicate Arities for Non-ground Answer Segjaaming. In Didier
Dubois, Christopher Welty, and Mary-Anne Williams, ed#pProceedings Ninth
International Conference on Principles of Knowledge Reprgation and Reasoning
(KR 2004), June 2-5, Whistler, British Columbia, Canadages 377-387. Morgan
Kaufmann, 2004.

39

[17] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. TorspitCombining Answer Set
Programming with Description Logics for the Semantic WebPioc. of KR 2004

[18] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. TorsplitVell-Founded Semantics for
Description Logic Programs in the Semantic WebPhac. of RuleML 2004number
3323 in LNCS, pages 81-97. Springer, 2004.

[19] E. A. Emerson. Temporal and Modal Logic. In J. van Leenweditor, Handbook
of Theoretical Computer Sciengeages 995-1072. Elsevier Science Publishers B.V.,
1990.

[20] E.J. Friendman-Hill. Jess homepage. http://herzbargandia.gov/jess/.

[21] M. Gelfond and V. Lifschitz. The Stable Model SemanfiasLogic Programming. In
Proc. of ICLP’88 pages 1070-1080, Cambridge, Massachusetts, 1988. M$E.Pre

[22] M. Gelfond and H. Przymusinska. Reasoning in Open Domai In Logic
Programming and Non-Monotonic Reasonipgges 397-413. MIT Press, 1993.

[23] C. Golbreich. Combining Rule and Ontology Reasonergtie Semantic Web. In
Proc. of RuleML 2004number 3323 in LNCS, pages 6—22. Springer, 2004.

[24] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Deptign Logic Programs:
Combining Logic Programs with Description Logic. Bmoc. of Twelfth International
World Wide Web Conference (WWW 2QQG#)ges 48-57, 2003.

[25] B. N. Grosof and T. C. Poon. SweetDeal: RepresentingnAdeontracts with
Exceptions using XML Rules, Ontologies, and Process Dgisonis. InProc. of WWW
2003 pages 340-349. ACM Press, 2003.

[26] V. Haarslev and R. Moller. Description of the RACER Symatand its Applications.
In Proc. of Description Logics 2002001.

[27] J. Y. Halpern and Y. Moses. A Guide to Completeness anchilexity for Modal
Logics of Knowledge and Beliefartif. Intell., 54(3):319-379, 1992.

[28] S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Seinadlieb Reasoning with
Conceptual Logic Programs. Rroc. of RuleML 2004number 3323 in LNCS, pages
113-127. Springer, 2004.

[29] S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Nonatonic Ontological and
Rule-based Reasoning with Extended Conceptual Logic Bnogyr InProc. of ESWC
2005 LNCS. Springer, 2005. To Appear.

[30] S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Gudr@pen Answer Set
Programming. In Chitta Baral, Gianluigi Greco, Nicola Lepand Giorgio Terracina,
editors, 8th International Conference on Logic Programming and Noanbtonic
Reasoning (LPNMR 2005humber 3662 in LNAI, pages 92—-104, Diamante, Italy,
September 2005. Springer.

[31] S. Heymans and D. Vermeir. Integrating Description icegand Answer Set
Programming. InProc. of PPSWR 2003wumber 2901 in LNCS, pages 146-159.
Springer, 2003.

40

[32] J. Hladik and U. Sattler. A Translation of Looping Albating Automata to
Description Logics. IProc. of CADE-19volume 2741 of.NAI. Springer, 2003.

[33] I. Horrocks and P. F. Patel-Schneider. A Proposal forQWIL Rules Language.
In Proc. of the Thirteenth International World Wide Web Coafee (WWW 2004)
ACM, 2004.

[34] I. Horrocks and U. Sattler. Ontology Reasoning in&8%O Q(D) Description Logic.
In Proc. of IJCAI'0], pages 199-204. Morgan Kaufmann, 2001.

[35] I. Horrocks, U. Sattler, and S. Tobies. Practical Reaspfor Expressive Description
Logics. In Harald Ganzinger, David McAllester, and Andresrdhkov, editors,
Proc. of the 6th International Conference on Logic for Pmgrming and Automated
Reasoning (LPAR’99nhumber 1705, pages 161-180. Springer-Verlag, 1999.

[36] I. Horrocks, P. F. Schneider, H. Boley, S. Tabet, B. Gfpand M. Dean. SWRL: A
Semantic Web Rule language Combining OWL and RuleML, May200

[37] lan Horrocks and Peter Patel-Schneider. Reducing O\WwlailEnent to Description
Logic Satisfiability. J. of Web Semantic2004. To Appear.

[38] U. Hustadt, B. Motik, and U. Sattler. ReducirgyHZQ~ Description Logic to
Disjunctive Datalog Programs. FZI-Report 1-8-11/03, Ebtmgszentrum Informatik
(FzI), 2003.

[39] Katsumi Inoue and Chiaki Sakama. Negation as failuhéhead.Journal of Logic
Programming 35(1):39-78, April 1998.

[40] R. E. Ladner. The Computational Complexity of Provipiln Systems of Modal
Propositional LogicSIAM J. Comput.6(3):467-480, 1977.

[41]N. Leone, G. Pfeifer, and W. Faber. DLV homepage.
http://www.dbai.tuwien.ac.at/proj/div/.

[42] V. Lifschitz. Answer Set Programming and Plan GeneratiArtificial Intelligence
138(1-2):39-54, 2002.

[43] J. Mei, S. Liu, A. Yue, and Z. Lin. An Extension to OWL witeeneral Rules. IRroc.
of RuleML 2004number 3323 in LNCS, pages 6—22. Springer, 2004.

[44] B. Motik, R. Wolz, and A. Maedche. Optimizing Query Anering in Description
Logics using disjunctive deductive databases.Pmc. of KRDB’'03 pages 39-50,
2003.

[45] Boris Motik, Ulrike Sattler, and Rudi Studer. Query Avering for OWL-DL with
Rules. InProc. of ISWC 2004number 3298 in LNCS, pages 549-563. Springer,
2004.

[46] D. Nute. Defeasible Logic. In D. M. Gabbay, C. J. Hoggand J. A. Robinson,
editors,Handbook of Logic in Artificial Intelligence and Logic Pramnming (Vol. 3)
pages 353-395. Clarendon Press, 1994.

[47] R. Rosati. Towards Expressive KR Systems Integratirmdaldg and Description
Logics: Preliminary Report. IRroc. of DL'99 pages 160-164, 1999.

41

[48] J. Schlipf. Some Remarks on Computability and Open DorSBamantics. IrProc.
of the Workshop on Structural Complexity and Recursiorsiidiie Methods in Logic
Programming of the International Logic Programming Symipws 1993.

[49] M. Schmidt-Schaub and G. Smolka. Attributive ConcepésEriptions with
ComplementsArtif. Intell., 48(1):1-26, 1991.

[50] P. Simons.sMODELS homepage. http://www.tcs.hut.fi/Software/smodels/.

[51] M. Smith, C. Welty, and D. McGuinness. OWL Web Ontologgriguage Guide.
http://ww. w3. or g/ TR ow - gui de/, 2004.

[52] T. Swift. Deduction in Ontologies via Answer Set Pragraing. In Vladimir Lifschitz
and llkka Niemela, editorgroc. of LPNMR 2004volume 2923 of NCS pages 275—
288. Springer, 2004.

[53] M. Y. Vardi. Why is Modal Logic so Robustly Decidable? chmical Report TR97-
274, Rice University, April 12, 1997.

[54] M. Y. Vardi. Reasoning about the Past with Two-Way Autden InProc. of ICALP
'98, pages 628-641. Springer, 1998.

42

