
Conditional Planning with External Functions

Davy Van Nieuwenborgh1,�, Thomas Eiter2,��, and Dirk Vermeir1

1 Vrije Universiteit Brussel, VUB
Dept. of Computer Science

Pleinlaan 2, B-1050 Brussels, Belgium
{dvnieuwe,dvermeir}@vub.ac.be

2 Institute of Information Systems,
Vienna University of Technology, Austria

eiter@kr.tuwien.ac.at

Abstract. We introduce the logic-based planning language Kc as an extension
of K [5]. Kc has two advantages upon K. First, the introduction of external func-
tion calls in the rules of a planning description allows the knowledge engineer
to describe certain planning domains, e.g. involving complex action effects, in a
more intuitive fashion then is possible in K. Secondly, in contrast to the confor-
mant planning framework K, Kc is formalized as a conditional planning system,
which enables Kc to solve planning problems that are impossible to express in K,
e.g. involving sensing actions. A prototype implementation of conditional plan-
ning with Kc is build on top of the DLVKsystem, and we illustrate its use by
some small examples.

1 Introduction

In general, the task of a planning system consists of finding, dependent on the ini-
tial state, a sequence of actions such that a certain goal will be reached if, starting
from that initial state, the actions in the sequence are executed in the correct order.
In the context of logic-based languages, a number of frameworks have been proposed
in the literature to logically describe and reason about such planning problems, e.g.
[8,9,3,13,11,4,15,5,16].

In [4,5], the planning language K was introduced as a system for planning under
incomplete knowledge, i.e. rather than describing transitions between states of the world
(complete knowledge), one can describe in K transitions between states of (incomplete)
knowledge. K’s ability to deal with incomplete knowledge comes from the fact that
its semantics is close in spirit to the answer set semantics [7], thus allowing negation
as failure (naf) to be used in the causation rules of the planning description. As for
answer sets, the semantics of K is defined in a two step process. First, the semantics is
defined for planning descriptions without naf. Next, for arbitrary planning descriptions,
a reduction is introduced, similar to the GL-reduct [7], which removes naf from the
planning descriptions w.r.t. a candidate state transition. Finally, if the state transition

� Supported by the Flemish Fund for Scientific Research (FWO-Vlaanderen).
�� Supported by the Austrian Science Fund project FWF P16536-N04.

C. Baral, G. Brewka, and J. Schlipf (Eds.): LPNMR 2007, LNAI 4483, pp. 214–227, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Conditional Planning with External Functions 215

is valid w.r.t. the reduct of the planning description, the state transition is valid for the
planning description.

Although K is an expressive framework, it suffers from two shortcomings. The first
problem encountered is a direct consequence of the fact that K is a conformant planning
system. Consider e.g. the problem (taken from [15]) of defusing a bomb. To defuse the
bomb, a special lock has to be placed in the locked position. If one defuses the bomb
while the lock is unlocked, the bomb explodes and the person defusing the bomb is
killed. The person defusing the bomb can determine if the bomb is locked or unlocked
by looking at it, and she can switch the lock from the locked to the unlocked position
and vice-versa. Obviously, no action can be undertaken once the bomb has exploded. A
possible encoding of this problem in K is depicted below.

fluents: exploded. locked. unlocked. disarmed. dead.
actions: disarm. turn. look.
always: caused exploded after disarm, unlocked.

caused disarmed after disarm, locked.
caused unlocked after turn, locked.
caused locked after turn, unlocked.
caused dead if exploded.
caused locked if not unlocked after look.
caused unlocked if not locked after look.
executable disarm if not exploded, not dead.
nonexecutable disarm if not locked, not unlocked.
executable turn if not exploded, not dead.
executable look if not exploded, not dead.
inertial dead.
noConcurrency.

goal: disarmed?(3)

One can check that no conformant plan1 for the above problem exists. Indeed, if the
action look is performed we know that the bomb is either locked or unlocked, but both
cases need a different, but incompatible, strategy for defusing the bomb. In such cases,
one needs to switch from conformant to conditional planning. A conditional plan for
the above problem could be

look ; case
{

{locked} → disarm
{unlocked} → turn; disarm (1)

Thus, the person defusing the bomb first looks at the bomb. If it is locked, she disarms
it; but if it is unlocked, she first turns the switch and then disarms the bomb.

A second problem with K is encountered when one needs to describe effects of
actions that are not easily captured by logic programming rules. Consider the following
variant of the Bubble Breaker game. We have a grid of a certain height and certain width
and on each position in the grid we have a colored bubble. We can tap on any position in
the grid, but if we tap a position, the biggest connected (left/right/up/down directions)
region of bubbles with the same color and including the tapped position, is removed
from the board. In case the biggest connected region only contains the tapped position
itself, nothing is removed. After the bubbles are removed, the remaining bubbles in each
column fall down, such that there are no holes between the bubbles in the same column.
An illustration of the course of the game is provided in Figure 1. The goal of the game
is to tap certain positions in such a way that all the bubbles are removed from the board.

1 A conformant (or secure) plan is a plan that always leads to a goal state when it is executed.

216 D. Van Nieuwenborgh, T. Eiter, and D. Vermeir

Fig. 1. Left: the initial configuration of the board. Middle: the region that is selected after tap-
ping position (1, 1), i.e. the lower left corner. Right: the configuration after the selected block is
removed.

Clearly, it is not so easy to describe the effects of the tap action using causation rules.
First, one has to compute the biggest connected region, afterwards that region has to be
removed and finally the blocks on top of the removed region have to fall down. One
solution is to add an additional action update and some extra fluents to take care of this
complicated process of computing the effects of the tap action. The complete encoding
in K can be found in [17], but we will briefly describe parts of it here.

First, some (non)executability statements are needed for the tap and update action,
i.e. when there are holes between bubbles in the same column, the update action is
executable and the tap action is not.

executable update if pos(X,Y,C), not placed(X,Yn), succ(Yn,Y).
nonexecutable tap(X,Y) if pos(A,B,C), not placed(A,Bn), succ(Bn,B).

Next, to compute the region that has to be removed from the board and to actually
remove that region, one can use the following set of causation rules.

caused remove(X,Y,C) after tap(X,Y), pos(X,Y,C).
caused remove(Xn,Y,C) if remove(X,Y,C) after pos(Xn,Y,C), succ(X,Xn).
caused remove(Xn,Y,C) if remove(X,Y,C) after pos(Xn,Y,C), succ(Xn,X).
caused remove(X,Yn,C) if remove(X,Y,C) after pos(X,Yn,C), succ(Y,Yn).
caused remove(X,Yn,C) if remove(X,Y,C) after pos(X,Yn,C), succ(Yn,Y).
caused pos(X,Y,C) if not remove(X,Y,C) after pos(X,Y,C), tap(A,B).

Finally, to encode that the bubbles have to fall down, the update action will be exe-
cuted a number of times and each time all the bubbles with a free position below them
are moved one position lower.

caused pos(X,Yn,C) after update, pos(X,Y,C), not placed(X,Yn), succ(Yn,Y).
caused pos(X,1,C) after update, pos(X,1,C).
caused pos(X,Y,C) after update, pos(X,Y,C), pos(X,Yn,Cn), succ(Yn,Y).

Note that a plan for this problem using the encoding in K will always be of the form

tap(x , y); update; . . . , update; tap(v ,w); update; . . . ; tap(k , l); . . . ; update; tap(a, b).

To solve problems like the above, we propose to extend the action language K by
allowing external functions to be called2 in the causation rules of an action descrip-
tion. Intuitively, an external function call allows a knowledge engineer to import fluent
information from an external source in response to an action that is performed. These
external function calls are inspired by the DLVHEX system [6], i.e. a system for answer

2 We assume that the external functions have no side effects when they are called.

Conditional Planning with External Functions 217

set programming with higher-order atoms and external evaluations. For this reason, our
external functions will use the same notation as the ones in DLVHEX.

Reconsider e.g. the Bubble Breaker game and the following causation rule involving
an external function &nbc, which stands for new board configuration

caused pos(Xn,Yn,Cn) after &nbc[X ,Y](Xn,Yn,Cn), tap(X ,Y) .

When the action tap is executed for a certain position (X, Y), the external function
&nbc will return a set of tuples of the form (Xn, Y n, Cn), with (Xn, Y n) a position
and Cn a color, that correspond to the new configuration of the grid when a tap action
is executed on the given position. The above rule imports this output into the fluent
pos, yielding that the above rule can be intuitively read as “executing the action tap on
position X and Y of the grid causes the fluents pos(Xn, Y n, Cn) to become true if the
tuple (Xn, Y n, Cn) is an output of the external function call &nbc”.

The external function in the previous rule is deterministic, i.e. for a given config-
uration of the grid and a position (X, Y), the external function always produces the
same output tuples. However, when we reconsider the defusing a bomb problem with
external functions &look effect and &disarm effect computing the effects of the look
(resp. disarm) action, we get non-deterministic outcomes. E.g., consider the following
causation rules

caused X after &look effect()[X], look .

caused X after &disarm effect()[X], disarm.

Intuitively, the external functions will return, when their corresponding action gets ex-
ecuted, some fluents as output which are imported into the planning process by the
above causation rules. Clearly, the outcomes of these functions are non-deterministic.
E.g., disarming the bomb when you don’t know if it is locked or not can either yield
disarmed or exploded. Further, this example on non-deterministic external functions
demonstrates that the proposed extension to K can be used to simulate sensing actions
[12,10,14,15,16]. By combining an ordinary action together with an external function
that materializes the sensed values of executing the “sensing” action, we have very flex-
ible means to encode sensing, e.g. sensing more than one fluent, or a combination of
fluents at the same time; or sensing that depends on what is known (or not known) in
the current (incomplete) state,

The rest of the paper is organized as follows. In Section 2 we introduce the syntax
of Kc, while its semantics is defined in Section 3. Before concluding in Section 5, we
discuss our prototype implementation in section 4.

2 Syntax of Kc

A signature of a planning domain with external actions PD is a tuple PDsig = (σact, σfl,
σec, σtyp, σcon, σvar), where σact, σfl, σec and σtyp are mutually disjoint sets of respec-
tively action, fluent, external function and type names. The names in σact, σfl and σtyp

actually correspond to predicate symbols, so we associate with each of them an arity
n ≥ 0. On the other hand, the names in σec correspond to external predicate symbols,

218 D. Van Nieuwenborgh, T. Eiter, and D. Vermeir

with whom we associate both an input arity i and an output arity o (i, o ≥ 0)3. Further,
σcon and σvar are mutually disjoint sets of respectively constants and variable symbols4.

For a given signature PDsig , an action atom is defined as p(t1, . . . , tn), where p ∈
σact, n is the arity associated with p and t1, . . . , tn ∈ σcon ∪ σvar ∪ σfl. We define fluent
atoms and type atoms similarly by substituting p ∈ σact by p ∈ σfl or p ∈ σtyp respec-
tively. An external function call is defined as &p[i1, . . . , im](o1, . . . , on), where p ∈
σec, m, n are the input and output arities associated with p and i1, . . . , im, o1, . . . , on ∈
σcon ∪ σvar ∪ σfl. A variable atom is defined as X(t1, . . . , tn), n ≥ 0, where X ∈ σvar

and t1, . . . , tn ∈ σcon ∪ σvar ∪ σfl.
An action (resp. fluent, external function call, type, variable) literal is an action (resp.

fluent, external function call, type, variable) atom a or its classical negation ¬a. For a
set of literals X we use ¬X to denote the set {¬p | p ∈ X }, where ¬(¬a) ≡ a for
an atom a. Furthermore, we use X+ (resp. X−) to denote the set of positive (resp.
negative) literals in X . To denote the set of all action (resp. fluent, external function
call, type, variable) literals that can be formed using the signature, we use Lact (resp.
Lfl, Lec, Ltyp, Lvat). In addition, we use Lfl,typ = Lfl ∪ Ltyp, Ldyn = Lfl ∪ Lact

+ ∪ Lec
+

and L = Lfl,typ ∪ Lact
+ ∪ Lec

+.
All actions, fluents, and external function calls that can be used in a planning de-

scription have to be declared using the following declaration rules.

Definition 1. An action (resp. fluent) declaration is an expression of the form

p(X1 , . . . ,Xm) requires t1 , . . . , tn

where either p ∈ σact (resp. p ∈ σfl) or p ∈ σvar, i.e. either p(X1, . . . , Xm) ∈ Lact
+

(resp. p(X1, . . . , Xm) ∈ Lfl
+) or p(X1, . . . , Xm) ∈ Lvat

+, and X1, . . . , Xm ∈ σvar.
Further, t1, . . . , tn ∈ Ltyp, n ≥ 0, and every Xi (and p if p ∈ σvar) occurs in t1, . . . , tn.
Whenever n = 0, the keyword requires may be omitted.

An external function call declaration is an expression of the form

&p[I1, . . . , Im](O1, . . . , On) requires t1, . . . , tk ranges r1, . . . , rl

where &p[I1, . . . , Im](O1, . . . , On) ∈ Lec
+ and I1, . . . , Im, O1, . . . , On ∈ σvar. Fur-

ther, t1, . . . , tk, r1, . . . , rl ∈ Ltyp, k, l ≥ 0, and every Ii occurs in t1, . . . , tk and every
Oi occurs in r1, . . . , rl.

To describe the static and dynamic dependencies of fluents on other fluents, external
functions, and actions, we introduce causation rules, while initial state constraints are
used to describe the initial state of a planning problem.

Definition 2. A causation rule (rule, for short) is an expression of the form

caused f if b1 , . . . , bk , not bk+1 , . . . , not bl after a1 , . . . , am , not am+1 , . . . , not an

where f ∈ Lfl ∪ Lvat ∪ {false}, b1, . . . , bl ∈ Lfl,typ ∪ Lec
+, a1, . . . , an ∈ L, l ≥ k ≥ 0,

and n ≥ m ≥ 0. Whenever l = 0 (resp. n = 0), the keyword if (resp. after) may be

3 Note that predicate symbols with the same name, but different arities, are not allowed.
4 As usual constants begin with a lower case letter, while variables start with an upper case letter.

Conditional Planning with External Functions 219

omitted. When both l = n = 0, the keyword caused may also be dropped. Rules where
n = 0 are called static rules, while all other rules are called dynamic rules. A static
rule preceded by the keyword initially, is called an initial state constraints.

To access the different parts of a causation rule r (or an initial state constraint), we
define h(r) = f , post+(r) = {b1 , . . . , bk}, post−(r) = {not bk+1 , . . . , not bl},
pre+(r) = {a1 , . . . , am}, pre−(r) = {not am+1 , . . . , not an}, and lit(r) = {f, b1,
. . . , bl, a1, . . . , an}.

To allow conditional execution of actions, we define executability conditions.

Definition 3. An executability condition is an expression of the form

executable a if b1 , . . . , bk , not bk+1 , . . . , not bl

where a ∈ Lact
+ ∪ Lvat, b1, . . . , bl ∈ L and l ≥ k ≥ 0. Whenever l = 0, i.e. the

execution is unconditional, the keyword if may be omitted.

To access the different parts of an executability condition e, we define h(e) = a,
post+(e)=post−(e)=∅, pre+(e)={b1 , . . . , bk}, pre−(e) = {not bk+1 , . . . , not bl},
and lit(e) = {a, b1 , . . . , bl}.

Furthermore, we define, for any rule, initial state constraint, or executability condi-
tion r, that post(r) = post+(r) ∪ post−(r) and pre(r) = pre+(r) ∪ pre−(r).

From K, we also adopt the safety restriction notion, i.e. all rules (including initial
state constraints) and executability conditions have to satisfy the syntactic restriction
that all variables in a naf type literal must also occur in some literal which is not a naf
type literal.

Definition 4. An action description is a pair (D, R) where D is a finite set of action,
fluent and external function declarations and R is a finite set of safe executability con-
ditions, safe causation rules, and safe initial state constraints.

A planning domain is a pair PD = (Π, AD), where Π is a logic program over the
literals of Ltyp admitting exactly one answer set, and AD is an action description.

A query is of the form

g1, . . . , gm, not gm+1, . . . , not gn?(i)

where g1, . . . , gn ∈ Lfl are variable-free, and i, j ≥ 0, n ≥ m ≥ 0.
A planning problem is a pair (PD, q), where PD is a planning domain and q is a

query.

In appendix B and C of [17], one can find the Kc encodings of the Bubble Breaker
game and the defusing a bomb problem respectively. Especially note the difference in
readability between the encoding, of the same problem, in K from Appendix A of [17]
and the one in Kc from Appendix B of [17].

3 Semantics of Kc

3.1 Instantation

Similar to the grounding of a logic program, we instantiate a planning problem such that
the semantics can be defined more easily. The main difference with classical grounding

220 D. Van Nieuwenborgh, T. Eiter, and D. Vermeir

is that we only allow correctly typed action, fluent, and external function call literals to
be generated.

A substitution is any function θ : σvar �→ σcon∪σfl, i.e. a function assigning constants
or fluent names to variables. The application of a substitution θ can be extended to any
syntactic object x by defining θ(x) as the object x′ obtained from x by replacing every
X ∈ σvar that occurs in x, and that is defined by θ, with θ(x).

First, we define the valid instantiations of the fluents, actions, and external functions.

Definition 5. Let PD = (Π, (D, R)) be a planning domain, and let M be the unique
answer set of Π .

For a fluent (resp. action) declaration d ∈ D and a substitution θ that is at least
defined over X1, . . . , Xm (and p if p ∈ σvar), we say that θ(p(X1, . . . , Xm)) is a legal
fluent (resp. action) instantiation if {θ(t1), . . . , θ(tn)} ⊆ M and θ(p) ∈ σfl (resp.
θ(p) ∈ σact) if p ∈ σvar.

For an external function declaration d ∈ D and a substitution θ that is at least de-
fined over I1, . . . , Im, O1, . . . , On, θ(&p[I1, . . . , Im](O1, . . . , On)) is a legal external
function call instantiation if {θ(I1), . . . , θ(Im), θ(O1), . . . , θ(On)} ⊆ M .

To denote the set of all legal fluent (resp. action, external function call) instantiations
of PD and their classical negations, we will use Lfl

PD (resp. Lact
PD , Lec

PD). In addition,
we use LPD = Lfl

PD ∪ Lact
PD

+ ∪ Lec
PD

+.

Using the above, we can define the instantiation of a planning domain.

Definition 6. Let PD = (Π, (D, R)) be a planning domain. The instantiation of PD,
denoted PD ↓, is defined as PD ↓= (Π ↓, (D, R ↓)), where Π ↓ is the grounding of
Π over σcon and R ↓= {θ(r) | r ∈ R, θ ∈ Θr}, where Θr is the set of all substitutions
θ that define all the variables in r, such that

– lit(θ(r)) ∩ Ldyn ⊆ LPD ;
– (post+(θ(r)) ∪ pre+(θ(r))) ∩ Ltyp ⊆ M ;
– h(r) ∈ Lfl

PD ∪ {false} if r is a causation rule or an initial state constraint; and
– h(r) ∈ Lact

PD
+ if r is an executability condition.

Intuitively, the above ensures that in the instantiation of PD all actions, fluents and
external function calls agree with their declarations, that positive type literals agree
with the background knowledge, that causation rules or initial state constraints should
cause a fluent literal and that executability conditions should have an action in their
head. A planning domain PD is said to be ground if PD and PD ↓ coincide.

From now on, we will assume that we are working with the grounded version of a
given planning domain PD, i.e. we will implicitly replace PD by PD ↓.

3.2 Conditional Planning

A plan in K is a sequence of sets of actions. However, this approach is not feasible in
the context of conditional planning, where one wants to cope with non-deterministic
effects of actions. For this reason, we will introduce the concept of a conditional plan,
i.e. a plan that allows to branch depending on the effects that are caused by executing an

Conditional Planning with External Functions 221

action. Our notion of a conditional plan is inspired by the one from [16], and is limited
to conditional plans with only the case-endcase construct5.

In what follows, we use P(X) to denote the powerset of X .

Definition 7. Let PD be a planning domain. A conditional plan for PD is defined
inductively as follows:

1. A sequence of sets of actions A1; . . . ; Ak, with Ai ⊆ Lact
PD

+, is a conditional plan.
2. If we have a sequence of sets of actions A1; . . . ; Ak ∈ Lact

PD
+ and conditional plans

c1, . . . , cl, with 1 ≤ l ≤ |P(Lfl
PD)|, then

A1; . . . ; Ak; case

⎧⎨
⎩

o1 → c1
. . .

ol → cl

(2)

is a conditional plan, where oi ∈ P(Lfl
PD) and oi = oj whenever i = j, i.e. each

element of P(Lfl
PD) is associated to at most one ci.

3. Nothing else is a conditional plan.

Intuitively, a conditional plan of the form6 (2) in the above definition has to be read as
“execute the actions in A1, then the ones in A2, . . . , then the ones in Ak; and depending
on which set of fluent literals that are true after executing these actions, execute the
corresponding plan ci”.

The plan we introduced in the introduction, i.e. (1) on page 215, is a conditional plan
for our running defusing a bomb example. Although in general, a conditional planner
should consider all possible sets of fluent literals in a case construct, in practice this
is not always necessary as certain sets cannot occur, given the current state and the
actions performed. E.g., the external function look effect will never return both locked
and unlocked at the same time.

Definition 8. For a planning domain PD, a state is any consistent subset s ⊆ Lfl
PD .

For each external function p ∈ σec, we will use, with t1, . . . , tm ∈ σcon ∪ σfl,

out(&p[t1, . . . , tm]) = {(o1 , . . . , on) | &p[t1 , . . . , tm](o1 , . . . , on) ∈ Lec
PD

+} ,

i.e. the set containing all possible output tuples for a given input tuple. As not all input
tuples are valid for the legal instantations of p, we will use

vit(&p) = {(t1 , . . . , tm) | &p[t1 , . . . , tm](o1 , . . . , on) ∈ Lec
PD

+} .

Further, we associate with p an (m + 1)-ary function f&p that associates with each
tuple (s, t1, . . . , tm) an element of P(P(out(&p[t1, . . . , tm]))), where s is a state and

5 Although e.g. [12,14] introduce constructs as if-then-else or while-do in conditional plans, the
former can be easily transformed to case-endcase statements, while the same holds for the
latter in case one is interested in plans of bounded length.

6 For practical purposes, multiple oi (having the same ci) might be compactly represented by
a Boolean combination F of fluent literals using the connectives ∧, ∨ and not , which is
evaluated on a state s in the obvious way. A state s would correspond to the conjunction∧

l∈s l ∧
∧

l∈Lfl
PD\s

not l.

222 D. Van Nieuwenborgh, T. Eiter, and D. Vermeir

(t1, . . . , tm) ∈ vit(&p). Intuitively, the function f&p returns, for an external function
p ∈ σec and an input tuple (t1, . . . , tm) w.r.t. a state s, the combinations of output
tuples that are possible as a return value when the function is executed. Clearly, when
|f&p(s, t1, . . . , tm)| = 1, the external function is deterministic, otherwise it is non-
deterministic.

To handle the external functions correctly in a state transition, we need to take care
that each external function is evaluated exactly once for each possible input tuple. If
not, we would have undesired results in case of non-deterministic functions, e.g. hav-
ing two different rules with the same external function evaluating to different sets of
output tuples. For this reason, we define an external function evaluation w.r.t. a state
s as a function gs, such that for each p ∈ σec and for each (t1, . . . , tm) ∈ vit(&p),
gs(&p[t1, . . . , tm]) = o, where o ∈ f&p(s, t1, . . . , tm). Thus, each external function
evaluates in gs to exactly one set of output tuples for each possible input w.r.t. a state s.

Definition 9. Let PD be a planning domain. A state transition is a tuple

t = 〈s, gs, A, s′, gs′〉 ,

where s, s′ are states, gs, gs′ are external function evaluations w.r.t. s (resp. s′) and A
is a set of action atoms.

Similar to the answer set semantics[7], we define our semantics first for positive plan-
ning domains, i.e. planning domains that are free from negation as failure. Afterwards,
we will define a reduction from a general planning domain to a positive one. In what
follows, we consider a ground planning domain PD = (Π, (D, R)), where M the
unique answer set of Π .

For a set of ground literals X ⊆ Lfl,typ ∪Lact
+, a ground literal l ∈ Lfl,typ ∪Lact

+ and
an external function evaluation gs, with s = X ∩ Lfl

PD , we use

– X |=gs l, when l ∈ X ;
– X |=gs not l, when l ∈ X ;
– X |=gs &p[t1, . . . , tm](o1, . . . , om), when (o1, . . . , om) ∈ gs(&p[t1, . . . , tn]); and
– X |=gs not &p[t1, . . . , tm](o1, . . . , om), when (o1, . . . , om) ∈ gs(&p[t1, . . . , tn]).

Finally, for a set of ground literals Y ⊆ L, we use X |=gs Y iff X |=gs y for each
y ∈ Y . As usual, we have X |=gs Y if we have not X |=gs Y .

Definition 10. For a positive PD, a state s0 and an external function evaluation gs0 ,
we call s0 a legal initial state if s0 is the smallest (w.r.t. subset inclusion) set such that
h(r) ∈ s0 whenever s0 ∪ M |=gs0

post(r) for all initial state constraints and static
rules r ∈ R.

For a positive PD, a state s and an external function evaluation gs, a set A ⊆ Lact
PD

+

is called an executable action set w.r.t. s and gs, if for each a ∈ A there exists an
executability condition e ∈ R such that h(e) = a and s ∪ M ∪ A |=gs pre(e).7

7 Note that we allow dependent actions, i.e. actions that depend on the execution of other actions.

Conditional Planning with External Functions 223

Definition 11. Let PD be a positive planning domain, let t = 〈s, gs, A, s′, gs′〉 be a
state transition and let r ∈ R be a causation rule. We say that r is satisfied by s′ w.r.t.
t iff either h(r) ⊆ s′ \ {false} or we do not have both s′ ∪ M |=gs′ post(r) and
s ∪ M ∪ A |=gs pre(r).

A state transition t = 〈s, gs, A, s′, gs′〉 is called a legal state transition if A is an ex-
ecutable action set w.r.t. s and gs, and s′ is a minimal (w.r.t. subset inclusion) consistent
set that satisfies all causation rules in R, except initial state constraints, w.r.t. t.

Next, we generalize the above to arbitrary ground planning domains PD, i.e. planning
domains containing negation as failure in the rules. This is done by defining a reduction
to positive planning domains, similar to the GL-reduct for the answer set semantics [7].

Definition 12. Let PD be an arbitrary planning domain and consider a state transition
t = 〈s, gs, A, s′, gs′〉. The reduction of PD w.r.t. t, denoted PDt, is defined by PDt =
(Π, (D, Rt)), where Rt is obtained from R by removing:

– every r ∈ R for which either s′ ∪ M |=gs′ post−(r) or s ∪ A ∪ M |=gs pre−(r);
– all literals not l, with l ∈ L, from the remaining rules.

Clearly, PDt is a positive planning domain. Now we can define the concepts of legal
initial states, executable action sets and legal state transitions in the case of arbitrary
planning domains.

Definition 13. Let PD be a planning domain. A state s0 is a legal initial state if s0
is a legal initial state for PDt, where t = 〈∅, g∅, ∅, s0, gs0〉. A set A is an executable
action set w.r.t. a state s, if A is an executable action set w.r.t. s in PDt, where t =
〈s, gs, A, ∅, g∅〉. A state transition t = 〈s, gs, A, s′, gs′〉 is a legal state transition if it is
a legal state transition for PDt.

Before we can define optimistic conditional plans, we need some additional notions.
For a planning domain PD and two states s0 and sn, with n ≥ 0, a sequence of state
transitions

T = 〈〈s0, gs0 , A1, s1, gs1〉, 〈s1, g
′
s1

, A2, s2, gs2〉, . . . , 〈sn−1, g
′
sn−1

, An, sn, gsn〉〉

is called a trajectory from s0 to sn for PD if all state transitions in T are legal. Further,
we use T (s0, sn) to denote the set of all trajectories from s0 to sn; and for a sequence
of sets of actions A1; . . . ; Ak and a set of states S, we use

PD(A1; . . . ; Ak, S) = {sk | 〈〈s0, gs0 , A1, s1, gs1〉, 〈s1, g
′
s1

, A2, s2, gs2〉, . . . ,
〈sk−1, g

′
sk−1

, Ak, sk, gsk
〉〉 ∈ T (s0, sk) ∧ s0 ∈ S} .

Now, we have all necessary means to define optimistic conditional plans.

Definition 14. Let PP = (PD, q) be a planning problem, let C be a conditional plan
and let S be a set of states. We define C being optimistic w.r.t. S inductively as

1. if C = A1; . . . ; Ak and ∃s ∈ S · ∃x ∈ PD(C, {s}) · {gm+1 , . . . , gn} ∩ x = ∅ ∧
{g1 , . . . , gm} ⊆ x, then C is optimistic w.r.t. S.

224 D. Van Nieuwenborgh, T. Eiter, and D. Vermeir

2. if C = A1; . . . ; Ak; case

⎧⎨
⎩

o1 → c1
. . .

ol → cl

; and {o1 , . . . ol}∩PD(A1; . . . ; Ak, S) = ∅;

and ci is optimistic w.r.t. oi for each i ∈ [1 . . . l], then C is optimistic w.r.t. S.

Now, C is an optimistic plan for PP if it is optimistic w.r.t. the set of all legal initial
states.

Intuitively, condition (1) in the above definition demands that a goal state can be reached
for each starting state in S, while condition (2) demands that each of the conditional
states oi can be reached, starting from the states in S, and that for each of these condi-
tional states oi a goal state can be reached by executing ci.

Note that an optimistic conditional plan corresponds to an optimistic plan in K when
the conditional plan does not contain case constructs. This implies that executing an
optimistic conditional plan can yield situations where the goal is not reached. Similar to
K, we can define when a conditional plan is secure, i.e. when executing the conditional
plan will always result in a goal state.

Definition 15. Let PP = (PD, q) be a planning problem, let C be a conditional plan
and let S be a set of states. The secureness of C w.r.t. S is inductively defined as

1. if C = A1; . . . ; Ak and ∀s ∈ S · ∀i ∈ [1 . . . k] · ∀s′ ∈ PD(A1; . . . ; Ai−1, {s}) ·
PD(Ai, {s ′}) = ∅ and ∀s ∈ S · ∀x ∈ PD(C, {s}) · {gm+1 , . . . , gn} ∩ x = ∅ ∧
{g1 , . . . , gm} ⊆ x, then C is secure w.r.t. S.

2. if C = A1; . . . ; Ak; case

⎧⎨
⎩

o1 → c1
. . .

ol → cl

; and PD(A1; . . . ; Ak, S) ⊆ {o1 , . . . , on}

and ∀s ∈ S ·∀i ∈ [1 . . . k] ·∀s′ ∈ PD(A1; . . . ; Ai−1, {s}) ·PD(Ai, {s ′}) = ∅ and
ci is secure w.r.t. oi for each i ∈ [1 . . . l], then C is secure w.r.t. S.

Now, C is a secure plan for PP if it is secure w.r.t. the set of all legal initial states.

Intuitively, the condition ∀s ∈ S · ∀i ∈ [1 . . . k] · ∀s′ ∈ PD(A1; . . . ; Ai−1, {s}) ·
PD(Ai, {s ′}) = ∅ in the above definition ensures that a secure plan never gets “stuck”
in a state during execution.

The conditional plan (1) on page 215 is a secure plan for our defusing a bomb exam-
ple. However, if we change the behavior of the external function look effect such that it
either returns locked , unlocked or neither locked nor unlocked , than one can check that
the conditional plan is not any longer secure. Furthermore, it turns out that no secure
plan exists for this modification.

On the other hand, consider the following extension of the defusing a bomb example.
We can look at the bomb and if the light is on, we know that the bomb is either locked or
unlocked, but if we do not have light (or we don’t know if there is light or not) looking at
the bomb can either yield locked , unlocked or neither locked nor unlocked . Further, we
have an action check light with a corresponding external function check light effect
which materializes the effect of the “sensing” action check light. Finally, using the ac-
tion switch we can switch the state from the light. Now8 one can see that the following

8 The encoding in Kc of this example can be found in Appendix D of [17].

Conditional Planning with External Functions 225

conditional plan

check light ; case

⎧⎪⎪⎨
⎪⎪⎩

{light} → look ; case
{

{locked} → disarm
{unlocked} → turn; disarm

{no light} → switch; look ; case
{

{locked} → disarm
{unlocked} → turn; disarm

is secure, while the conditional plan on page 215 is only an optimistic one.

4 Computing Conditional Plans Using DLV K

To demonstrate our conditional planning framework, we developed a prototype imple-
mentation of a part of the semantics of Kc on top of DLVK. As DLVK does not support
external evaluations, our prototype currently disregards9 this feature of Kc. Further,
we only implemented optimistic plan generation so far, but in the next step a secure
checker will be added, using the built-in security checker of DLVK. When provided
with a classical K planning problem description, DLVK

c will generate a conditional plan
in a graphical representation. E.g., feeding the defusing a bomb planning description
from the introduction (page 2) to the system, will yield the conditional plan depicted in
Figure 2. To generate this plan, we use DLVK’s batch mode for generating optimistic
plans. Each optimistic plan received from DLVK is first compressed by removing use-
less planning steps, and afterwards this compressed optimistic plan is put into the graph
representing the optimistic conditional plan, i.e. each optimistic plan from DLVK can
be seen as a valid trajectory in an optimistic conditional plan.

Initial state:

unlocked,

look

locked,

look

turn

disarmed,

disarm

Initial State

look,

turn,

disarm,

Fig. 2. The generated conditional plan for the defusing a bomb example from page 2. On the left,
we have a conditional plan that also contains the states reached, while the plan on the right only
contains the different actions that need to be taken to reach the goal. To increase readability, our
implementation compacts the tree shape of a conditional plan into a dag whenever possible.

The prototype implementation is built using the Python programming language and
can be run on any modern platform that DLVK supports. The implementation, together

9 One can of course, naı̈vely, introduce the behavior of external evaluations by adding mutually
exclusive rules that introduce the possible outcomes of the external evaluations hard-coded.

226 D. Van Nieuwenborgh, T. Eiter, and D. Vermeir

with additional information and examples, can be found at http://tinfpc2.vub.
ac.be/cdlvk.

5 Related Work and Conclusion

In this paper we presented Kc, a conditional planning language that can use external
functions to outsource the computation of certain effects when an action is executed. As
Kc is a proper extension of the planning language K, it relates to most other planning
language in the same way, and we therefore refer to [5]. One exception here, are exten-
sions of those languages that incorporate sensing actions to obtain non-deterministic,
i.e. conditional, planning. For these extensions, e.g. [15,16], we clearly showed that
external function calls are well-suited to simulate sensing actions by combining an or-
dinary action with an external function that materializes the effects of the “sensing”
action.

In future work, we plan to extend our prototype so the generated conditional plans
can be checked for secureness. We also want to incorporate external functions natively,
such that the explicit introduction of such functions by using mutually exclusive rules
can be dropped, improving the readability and robustness of the planning descriptions.
Finally, we are currently employing our framework in the context of repairing web
service workflows by planning [1], one of the topics of the ongoing WS-Diamond re-
search project [2]. The high expressiveness and declarativity of Kc, together with its
conditional planning capabilities, turns out to be beneficial in that area of application.

References

1. Private Communications with Gerhard Friedrich, University of Klagenfurt, Austria.
2. Ws-diamond: Web-service diagnosability, monitoring & diagnosis (ist-516933). Project

website at http://wsdiamond.di.unito.it.
3. Special issue on reasoning about action and change. Journal of Logic Prog., 31(1-3), 1997.
4. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Planning under incomplete knowl-

edge. In Computational Logic, volume 1861 of LNCS, pages 807–821. Springer, 2000.
5. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming approach

to knowledge-state planning: Semantics and complexity. Transactions on Computational
Logic, 5(2):206–263, 2004.

6. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A uniform integration of higher-order
reasoning and external evaluations in answer-set programming. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJCAI-05), pages 90–96, 2005.

7. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9(3-4):365–386, 1991.

8. M. Gelfond and V. Lifschitz. Representing action and change by logic programs. Journal of
Logic Programming, 17(2/3&4):301–321, 1993.

9. E. Giunchiglia, G. N. Kartha, and V. Lifschitz. Representing action: Indeterminacy and
ramifications. Artificial Intelligence, 95(2):409–438, 1997.

10. K. Golden and D. Weld. Representing sensing actions: The middle ground revisited. In Proc.
of the 5th Intl. Conf. on Principles of KR and Reasoning, pages 174–185, 1996.

http://tinfpc2.vub.ac.be/cdlvk
http://tinfpc2.vub.ac.be/cdlvk

Conditional Planning with External Functions 227

11. L. Iocchi, D. Nardi, and R. Rosati. Planning with sensing, concurrency, and exogenous
events: logical framework and implementation. In Proc. of the 7th Intl. Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR 2000), pages 678–689, 2000.

12. H. J. Levesque. What is planning in the presence of sensing? In AAAI/IAAI, Vol. 2, pages
1139–1146, 1996.

13. V. Lifschitz. The Logic Programming Paradigm - A 25-Year Perspective. Springer, 1999.
14. J. Lobo, S. Taylor, and G. Mendez. Adding knowledge to the action description language A.

In Proc. of the 14th National Conf. on AI (AAAI97), pages 454–459. AAAI Press, 1997.
15. T. C. Son and C. Baral. Formalizing sensing actions a transition function based approach.

Artificial Intelligence, 125(1-2):19–91, 2001.
16. T. C. Son, P. H. Tu, and C. Baral. Planning with sensing actions and incomplete informa-

tion using logic programming. In Proc. of the 7th Intl. Conf. on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2004), volume 2923 of LNAI, pages 261–274, 2004.

17. D. Van Nieuwenborgh, T. Eiter, and D. Vermeir. Conditional planning with external func-
tions. Technical report, 2007, http://tinf2.vub.ac.be/˜dvnieuwe/lpnmr2007technical.ps.

	Introduction
	Syntax of Kc
	Semantics of Kc
	Instantation
	Conditional Planning

	Computing Conditional Plans Using DLVK
	Related Work and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

