Nonmonotonic Ontological and Rule-Based Reasoning
with Extended Conceptual Logic Programs

Stijn Heymans, Davy Van Nieuwenborgh*, and Dirk Vermeir**

Dept. of Computer Science,
Vrije Universiteit Brussel, VUB,
Pleinlaan 2, B1050 Brussels, Belgium
{sheymans, dvnieuwe, dvermeir}@vub.ac.be

Abstract. We present extended conceptual logic programs (ECLPs), for which
reasoning is decidable and, moreover, can be reduced to finite answer set pro-
gramming. ECLPs are useful to reason with both ontological and rule-based
knowledge, which is illustrated by simulating reasoning in an expressive descrip-
tion logic (DL) equipped with DL-safe rules. Furthermore, ECLPs are more ex-
pressive in the sense that they enable nonmonotonic reasoning, a desirable feature
in locally closed subareas of the Semantic Web.

1 Introduction

Reasoning with both ontological knowledge, in the form of a description logic (DL)[3]
knowledge base, and rule-based knowledge has recently gained in interest in the Se-
mantic Web community. The purpose of adding rules to ontological knowledge is to
have additional expressiveness. E.g., [23] extends a DL knowledge base with DL-safe
rules, i.e. Horn clauses where variables must appear in non-DL-atoms in the body of
rules. DL-safe rules can, e.g., express triangular knowledge not expressible with DLs
alone: uncle(a, ¢) < brother(a, b), parent(b, c).

DL-safe rules do not include the negation as failure (naf) operator, and as a con-
sequence, do not cope well with incomplete or dynamically changing knowledge: like
reasoning with DL, reasoning with DL knowledge bases and DL-safe rules is mono-
tonic. However, nonmonotonic reasoning may be useful in applications that involve
well-defined closed subareas of the Semantic Web, as illustrated in the following ex-
ample. Assume a business is setting up its website for processing customer feedback. It
decides to commit to an ontology O which defines that if there are no complaints for a
product, it is a good product.

good_product(X) < not complaint(X)

The business has its own particular business rules, e.g. i : invest(tps, 10K) «—
not good_product(tps) saying that if its particular top selling product ¢ps cannot be

* Supported by the FWO.
** This work was partially funded by the Information Society Technologies programme of the
European Commission, Future and Emerging Technologies under the IST-2001-37004 WASP
project.

A. Gémez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 392-407, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Nonmonotonic Ontological and Rule-Based Reasoning 393

shown to be a good product, then the business has to invest 10K in ¢ps. Finally, the
business maintains a repository of dynamically changing knowledge, originating from
user feedback collected on the site, e.g. at a certain time the repository contains R; =
{complaint(tps) < } with a complaint for ¢ps.

If the business wants to know whether to invest more in tps it needs to check
O U {i} U Ry [invest(tps, 10K), i.e. whether the ontology, combined with its own
business rules, and the information repository, demand for an investment or not.

One can use extended conceptual logic programming (ECLP) to express the above
knowledge. Intuitively, any model of O U {i} U Ry, must verify complaint(tps), and
thus good_product(X) < not complaint(X) will not trigger and good _product(tps)
will be false, which in turn, with rule %, allows to conclude that the business should
indeed invest.

Evaluating the same query with an updated repository Ry = {complaint(tps) « ,
good_product(tps) < } containing a survey result saying that ¢ps is a good product,
no matter what complaints of individual users there may be, leads to O U {i} U Ry B~
invest(tps, 10K), such that no further investments are necessary. Adding knowledge
thus invalidates previous conclusions making reasoning nonmonotonic; similar scenar-
ios can easily be imagined in any environment with dynamically changing knowledge.

In this paper, we formally introduce ECLP programs which consist of two (possi-
bly empty) parts: a conceptual logic program (CLP) capable of expressing conceptual
knowledge, as in e.g. DL knowledge bases, and an arbitrary finite grounded program
which allows to relate constants/individuals in arbitrary ways, enabling e.g. the expres-
sion of triangular knowledge. More specifically, ECLPs can simulate reasoning in the
DL ALCHOQ(U, M) equipped with DL-safe rules. Besides the advantage of uniform
syntax and semantics that ECLPs have over DLs equipped with DL-safe rules', ECLPs
are capable, as indicated above, of nonmonotonic reasoning as well.

Furthermore, we will show that reasoning with ECLPs can be reduced to finite an-
swer set programming by virtue of the forest-model property and the bounded finite
model property. The reduction to finite ASP makes reasoning with ECLPs amenable
for existing answer set solvers such as DLV[21] or SMODELS[25].

The remainder of the paper is organized as follows. After recalling the open an-
swer set semantics in Section 2, ECLPs are formally introduced in Section 3. Sec-
tion 4 describes the simulation of an expressive class of DLs equipped with DL-safe
rules. Section 5 highlights some related work while Section 6 contains conclusions and
directions for further research. Due to space restrictions all proofs have been omit-
ted; they can be found at http://tinf2.vub.ac.be/~{}sheymans/tech/
oasp-sw.ps.gz.

2 Answer Set Programming with Open Domains

Answer set programming (ASP)[5] is a logic programming paradigm where knowl-
edge is represented by programs and answer sets provide for the intended seman-

' SWRL[20] also combines ontologies and rules in one uniform syntax and semantics; reasoning
with it is, however, undecidable.

http://tinf2.vub.ac.be/~{}sheymans/tech/
oasp-sw.ps.gz

394 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

tics of that knowledge. However, in certain cases ASP fails to capture the intention
of the program. Take the program consisting of the rules bad(X) «— not good(X)
and good(heather) < , where one is bad if not good and Heather is a good per-
son. In ASP a program is grounded with the constants in the program, resulting in
bad (heather) < not good(heather) and good(heather) « , after which the unique
answer set {good(heather} can be calculated. One would thus wrongfully conclude
that there can never be bad individuals. In [17], this was solved by considering open
domains, i.e. the program may be grounded with any superset of the present constants:
grounding with a universe {z, heather} yields bad(heather) < not good(heather);
bad(x) < not good(z) and good(heather) < , which has an answer set

{bad(z), good(heather)}, correctly capturing the intended meaning of the program.

We briefly recall the open answer set semantics from [17]. We call individual names
constants and write them as lowercase letters, variables will be denoted with uppercase
letters. Variables and constants are ferms. Atoms are of the form a(t) or f(t1,t2), with
a aunary predicate, f a binary predicate, and ¢, t; and ¢5 terms. A literal is an atom or
an atom preceded by —. An extended literal is a literal [or a naf-literal not [where [is a
literal. We will often denote a set of unary extended literals {a; (s), ..., a,(s)}, ranging
over a common term s, as a(s) with @ = {ay, ..., a,}. A set of binary extended literals
can be similarly denoted as a(s, t). The positive part of a set of extended literals [is
BT ={l| 1 € B,1]literal}, the negative partis 3~ = {I | not | € 3}. Furthermore, we
assume the existence of a binary predicate #, with the usual interpretation.

A disjunctive logic program (DLP) is a finite set of rules r : o < (§ where o and 3
are finite sets of extended literals and |a+| < 1.If a = (), the rule is called a constraint.
The set « is the head of the rule r, denoted head(r), while 3 is called the body, denoted
body(r). As usual, atoms, (extended) literals, rules, and programs that do not contain
variables are ground. For a set X of literals, =X = {—l |l € X}, where, by definition,
——a = a. A set of ground literals X is consistent if X N =X = ().

For a DLP P, let Hp be the constants in P and vars(P) its variables. A (possibly
infinite) non-empty set of constants H such that Hp C H, is called a universe for P.
We call Py the grounded program obtained from P by substituting every variable in
P by every possible constant in . Let Lp be the set of literals that can be formed
from a grounded program P, preds(P) are the predicates® in P, and upreds(P) and
bpreds(P) the unary and binary predicates respectively.

An interpretation I of a grounded P is any consistent subset of £p. For a ground
literal I, we write I |= [, if [€ I, which extends to I = not L if I |~ [, and, for a set of
ground extended literals X, I = X if I = o forevery x € X. A groundrule r : o < 3
is satisfied w.r.t. I, denoted I |= r,if I = [for some [€ « whenever I = (3, ie.r
is applied whenever it is applicable. A ground constraint <« (3 is satisfied w.r.t. I if
I £ 3. For a simple grounded program P (i.e. a program without not), I is a model of
P if I satisfies every rule in P; it is an answer set of P if it is a subset minimal model
of P. For grounded programs P containing not, the GL-reduct[13] w.r.t. I is defined as
P, where PT contains at «— Bt fora «— fin P, NI =0anda~ C I.Iisan
answer set of a grounded P if I is an answer set of P!, An open interpretation of P

2 When speaking of predicates, also the (classically) negated predicates are assumed.

Nonmonotonic Ontological and Rule-Based Reasoning 395

is a pair (H, I) where H is a universe for P and I is an interpretation of Py,. An open
answer set of P is then an open interpretation (H, M) with M an answer set of Py. In
the following, we will usually omit the “open” qualifier. We express the motivation of a
literal in an answer set formally by means of the operator 7" that computes the closure
of a set of literals w.r.t. a GL-reduct. For a DLP P and an interpretation (H, M) of
P, TP_)J;I : ﬁp% — ACP?J{VI is defined as® T(B) = BU {ala «— 8 € P7]_lw A B C B}.
Additionally, we have T7°(B) = B, and T""1(B) = T(T"(B)). More detail than the
T-operator is provided by the support of a literal a in an answer set (H, M), which
explicitly indicates the literals that support the presence of a in the answer set. For the
least n such that @ € T, we inductively define the support S*(a) on a certain level
1<k<nasS"(a)={a}and S*(a) = {B| b B € PN,BC Tk be S*1(a)},
1 < k < n. A support for a is then S(a) = UZ_, S¥(a).

Take, for example, the program P with a rule p(X) V not p(X) < . Grounding
w.r.t. to a universe {x, y} yields the program Py, ., consisting of p(z) V not p(z)
and p(y) V not p(y) « . We have that {p(x)} is an answer set of P(, 3, since
the GL-reduct is p(z) < which has only one minimal model: {p(x)} itself. Thus
({z,y}, {p(x)}) is an answer set of P. Actually, a rule such as in P allows one to
freely introduce p-literals (provided no other rules constrain this). We call a predicate
p free if p(X,Y)Vnot p(X,Y) <« or p(X)Vnot p(X) < is in the program,
for a binary or unary p respectively. Similarly, a ground literal [is free if we have
[V not | —.

A program P is consistent if it has an answer set. For a unary predicate p, appearing
in P, p is satisfiable w.r.t. P if there exists an answer set (H, M) of P such that p(a) €
M for some a € H. For a ground literal o, we have P |= « if for all answer sets
(H, M) of P, « € M. Checking whether P |= « is called query answering. We can
reduce query answering to consistency checking, i.e. P | « iff P U {not o « }
is not consistent. Consistency checking can be reduced to satisfiability checking, by
introducing some new free predicate p.

Finally, note that satisfiability checking for DLPs under the open answer set se-
mantics is undecidable since the undecidable domino problem[4] can be reduced to
it[17].

3 Adding Grounded Rules to Conceptual Logic Programs

In [17], the syntax of DLPs was restricted in order to regain decidability of reasoning
and to enable a reduction of reasoning to normal answer set programming, resulting in
conceptual logic programs (CLPs). We recall the intuition and definition of CLPs.
Consider a program P; defining when one cheats one’s spouse, i.e. if one is married
to someone that is different than the person one is dating. We have a specialized rule
saying when one is cheating one’s spouse with the spouse’s friend Jane. Furthermore,
some justice is introduced by a constraint ensuring that cheaters will in turn be cheated.

3 We omit the subscript if it is clear from the context and, furthermore, we will usually write T
instead of T(0).

396 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

{cheats, cheats_with_jane}

x {cheats}

marr - marr

’,/"’};iend

zle -~ janel {cheats}

 {cheats}

Fig. 1. Forest-Model

cheats(X) — marr(X, Y;), dates(X,Yy), Y, # Yo
cheats_with_jane(X) — marr(X,Y), friend(Y, jane), dates(X , jane), Y # jane
— cheats(X), dates(X, Y'), not marr(X, Y), not cheats(Y)

with marr, friend and dates free predicates. An (infinite) answer set of this program
that satisfies cheats_with_jane is depicted in Figure 1, where e.g. cheats in the label
of = indicates that cheats(x) is in the answer set. One sees that x cheats his spouse
with Jane since x dates Jane but is married to x1. Furthermore, by the constraint, we
must have that Jane is also a cheater, and thus, by minimality of answer sets, we must
have that Jane is married to some janel and dates jane2, who in turn must be cheating,
resulting in an infinite answer set*. Formally, a CLP is a DLP consisting of the following
types of rules[17]:

— free rules | V not | +— for aliteral [,

— unary rules a(s) < [(5), UmYm (S, tm); UmOm (tm), Uixjt; # t;, such that, if
Ym # 0 then ~;} # 0, and, in case t,, is a variable: if &,,, # 0 then 7, # 0,

— binary rules f(s,t) < B(s),v(s, t),8(¢) with v £ () if ¢ is a variable,

— constraints — a(s).

where ¢ and j are within the range of m. Note that the example program P, is not
directly a CLP due to the presence of the literals marr(X, Y), friend(Y, jane) in
the second rule where jane is not directly connected to X, as is required for unary
rules. However, we can easily rewrite it as a CLP rule by replacing friend(Y, jane) by
some «(Y') and adding the unary rule a(Y) « friend(Y, jane). In general, programs
where the rules have a tree-like body can be easily rewritten as CLPs. Although CLPs
allow only constraints of the very simple form <« a(s) we can easily reduce more
complicated constraints <« [to a CLP rule by introducing the unary rule a(s) < (3
and « a(s).

CLPs were designed to ensure the forest-model property (and to a lesser extent the
bounded finite model property, cfr. infra). This forest-model property ensures that if a
CLP has an answer set where a certain unary predicate is satisfied, then there must be an

4 We represent the n successors of a node z, as z1,...,zn.

Nonmonotonic Ontological and Rule-Based Reasoning 397

answer set that has the form of a forest such that the predicate is true at the root of a tree
in such a forest. E.g., the answer set in Figure 1 consists of a tree with an anonymous’
element = as root and the constant jane as the root of another tree. It appears that
the clean forest structure (i.e. disjoint trees) is perturbed by the connections between
x, x1 and jane. However, it is easy to see that we can encode e.g. dates(z, jane) as
dates®(z) and thus keep dates® in the label of x. Since there are only a finite number of
constants in a program, the labels of the trees are also finite. In effect, a forest-model is
a set of trees, with arbitrary connections from elements to constants. As a consequence,
the connections between constants, i.e. the roots of the trees, may form an arbitrary
graph.

A particular forest-model constructed from an answer set of a program with n con-
stants contains n + 1 trees, i.e. one for each constant (which is the root of that tree) and
an additional one for some anonymous element that contains the predicate of which
satisfiability is being checked.

The rules in a CLP make sure that the forest-model property is valid for CLPs[17].
E.g. one cannot have p(X) < not f(X, Y), since an answer set ({z,y}, {p(x)}) can-
not be transformed into a tree: we have nothing to connect x with y. Similarly, we
cannot have f(X,Y) < p(X) since, for p(x), this would introduce arbitrary connec-
tions between x and all other domain elements y, and thus would clearly violate the
tree structure. However, it is allowed to have p(X) « ¢(a) for a constant a, since,
intuitively, a is a root of its own tree.

As the tree-like rules impose a rather strict format upon the representation of knowl-
edge, we now extend CLPs by allowing for arbitrary ground DLP rules.

Definition 1. An extended conceptual logic program (ECLP) P is a program (Q U R,
where Q is a CLP and R is a finite ground DLP. We denote Q with clp(P) and R with
e(P).

For example, in addition to P}, we may have a rule representing that if Leo is mar-
ried to Jane, Jane dates Felix, and Leo himself is not cheating, then Leo dislikes Fe-
lix: dislikes(leo, felix) — marr(leo, jane), dates(jane, felix), not cheats(leo). This
ground rule does not have a tree structure, it relates the three constants in an arbitrary
graph-like manner. Note that the ground rules can be full-fledged DLP, i.e. with nega-
tion as failure. Moreover, predicates in e(P) may be defined in the CLP clp(P), as is
the case for marr, dates and cheats. Vice versa, we may have predicates appearing in
the CLP part that are defined in the ground rule part, e.g. dislikes could appear in the
CLP part as a dislikes(X, V) literal.

ECLPs still have the forest-model property, since, intuitively, graph-like connections
between constants are allowed in a forest, which is all the ground part e(P) of an ECLP
P can ever introduce.

Theorem 1. Extended conceptual logic programs have the forest-model property.
A forest-model of the example ECLP would be the forest-model of Figure 1 with ad-
ditionally {dislikes(leo, felix), marr(leo, jane), dates(jane, felix)}. As for CLPs in

3 Le. a domain element not appearing as a constant in the program.

398 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

Fig. 2. Cutting a Forest-Model

[17], we would like to establish a bounded finite model property for ECLPs. This prop-
erty enables the transformation of an (infinite) answer set into a finite one, and, more
specifically, it establishes a bound on the number of domain elements that are needed for
such a construction. Moreover, this bound depends solely on the program at hand, such
that, by introducing a sufficient number of domain elements, we can simulate reasoning
with ECLPs by normal finite answer set programming.

We sketch the cutting technique from [17] to transform an infinite forest-model into
a finite answer set. For every path in a tree in such a forest-model, and every first pair
of nodes with equal labels on such a path from the root, we cut away the tree below the
second node in the pair and duplicate the outgoing edges of the first node in the second
node in the pair. Intuitively, once we encounter on a path a label (a “state”) we already
encountered, we act as if in the first occurrence of the label instead of going down the
tree thereby ignoring the infinite part. For example, Figure 2 shows the cutting of the
forest-model on the left, resulting in the finite answer set on the right. Since z1 and x2
have the same label A as = we replace all outgoing edges from =1 and x2 with the out-
going edges from x: we have connections from x to x1, from x to 2, and from z to the
constant a. Thus we introduce for zi, ¢ € {1,2} connections from zi to z1, from zi to
22, and from x7 to a. The tree with constant root is cut in a similar way, but note that one
only starts considering duplicate pairs from below the root and thus (a1, al1) is the first
pair with duplicate labels to consider. This because it might be that a rule ¢(a) < intro-
duces t in the label of a, however, such a rule cannot be used to motivate the presence
of ¢ lower in the tree. Below the root, we would not have this problem as ¢ there would
be motivated by a rule with head ¢(X), which can be matched against any lower node.

Taking into account that forest-models have a finite bounded branching, and that on
every path we must always encounter duplicate labels after a bounded depth, together
with the fact that there are n + 1 trees, for n constants, leads to a finite bound £ of
needed domain elements, which can be read from the program: the branching can be
determined from the branching of the unary rules, and the number of possible labels de-
pends on the number of unary predicates in the program. The number of different labels
is exponential in the size of the program such that, taking into account the branching of
the program, k is in general double exponential.

However, one has to be cautious with this cutting, e.g. the program with rules
a(X) «— f(X,Y),a(Y), and a(X) « b(X) with b and f free, has a tree-model®

® A tree-model is a forest-model containing only one tree.

Nonmonotonic Ontological and Rule-Based Reasoning 399

{a(z), f(z,21),a(x1), f(x1,211),a(x11),b(x11)}. If one cuts at the first occurrence
of a duplicate label, which would be at 21 in this case, then a(z) would no longer have
a valid support - b(z11) has been cut away - and thus the resulting model would not
be minimal. Note that cutting is somewhat similar in spirit to blocking in description
logics[3], however, the minimality of answer sets demands some extra precautions, as
indicated above.

This problem was solved in [17] for CLPs by enforcing the local model property:
forest-models of a CLP should be locally supported, i.e. for every literal ¢(z) (f(x,y))
the forest-model can only be motivated by z, one of x’s successors, and/or constants.
This way, when we cut the trees we never remove the support of any higher nodes
in the tree. An extra condition for local supportedness was that a g(xi, a), although it
involves only a successor of z and a constant, cannot be in the support of ¢(x) (f(x, y))
since upon cutting at xi, g(xi, a) could be removed while it provides support for ¢(x)
(f(2,y)). In the cheating example we have that the forest-model depicted in Figure 1 is
not locally supported since friend(x1, jane) is in the support of cheats_with_jane(z)
- to derive cheats_with_jane(z) we need friend(z1, jane).

In the ECLP case, however, where we have an arbitrary ground part, the local model
property of [17] is not sufficient. Take, for example, a rule doesnt_care(feliz) «—
marr(leo, jane), dates(jane, feliz), cheats(leo), where Felix does not care about dat-
ing the married Jane if her husband Leo is cheating as well. Together with the cheats
rule from the cheating example, one has that doesnt_care(feliz) is in an answer set if
marr(leo, jane), dates(jane, felix),cheats(leo), marr(leo, leol), and dates(leo, leo2)
for successors leol and leo2 of leo are in the answer set. Thus, although the cheats rule
in itself does not violate the local model property, adding a ground rule does so, since
supports may involve also successors of constants which is not allowed according to the
local model property definition for CLPs in [17].

However, cutting of forest-models never removes any successors of constants and,
moreover, a successor of a constant is never considered as a candidate for the second
node in a duplicate pair since, by definition, the root in a constant tree is not taken into
account as a candidate for the first node in a duplicate pair. Thus, we can safely relax
the local model property definition from [17] for ECLPs by also allowing successors
of constants in the support. In the definition below, we use Hg ;) to denote the domain
elements in S(7), the support of .

Definition 2. A forest-model (H, M) of an ECLP P is locally supported if

Vi=qz)e MVI=f(x,y) € M-

(Hsqy € {x,xi | xi successor of v} U{a,ai | a € Hp,ai successor of a})\
(Vf(z,a) € S(I),a € Hp - z # xi), p € upreds(P) is locally satisfiable w.r.t. P if
there is a locally supported forest-model, a local model for short, (H, M) such that
p(g) € M for a root € in H. An ECLP P has the local model property if the following
holds: if p € upreds(P) is satisfiable w.r.t. P then it is locally satisfiable.

Thus, a forest-model is locally supported if the support for every g(x) or f(x,y)
involves only x itself, successors of z, constants and/or successors of constants. ECLPs
with the local model property then have the desired bounded finite model property, i.e.
if a (unary) predicate p is satisfiable w.r.t. an ECLP P then it is satisfiable by a finite
answer set (H, M) with |H| < k where k is solely determined by the program P.

400 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

Theorem 2. Let P be an ECLP with the local model property. Then, P has the bounded
finite model property.

Thanks to this property we can reduce reasoning with ECLPs to normal answer set
programming by introducing a sufficiently large bound.

Theorem 3. Let P be an ECLP with the local model property. p € upreds(P) is sat-
isfiable w.r.t. P iff there is an answer set M of 1 (P) containing a p(x;), 1 < i <k,
where k is as derived above and (P) = P U {cte(z;) — |1 <1i <k}.

The local model property characterizes those ECLPs for which reasoning can be re-
duced to normal finite answer set programming. However, it is a semantical characteri-
zation, which makes it non-trivial to recognize ECLPs satisfying this property. We now
identify a class of ECLPs, based on their syntactic structure, that have the local model
property.

Local CLPs are CLPs where each unary a(s) < a(s), Ym($, tm), Bm(tm), ti # ¢
and each binary f(s,t) < «(s),v(s,t),5(t) is such that every b € ﬁ(fw) is either a
free predicate, or if £(,,,) is a constant, b(t(,,,)) is a free literal, or for every r : b(u) «—

body(r), body ()" = (. Intuitively, to prove an a(s) (f(s,t)) one needs to descend at
most one level in the tree, where one can locally prove a(s) (f(s,t)), i.e. without the
need to go further down the tree. Of course, in the level below s one may need to check
more literals which could amount going further down the tree, but whilst doing this one
does not need to remember which literals need to be proven above in the tree - in a way
a local CLP is memoryless. In [17] local CLPs were shown to have the local model
property.

We then define local ECLPs as the union of a local CLP and an arbitrary ground
DLP.

Definition 3. A local ECLP P is an ECLP where clp(P) is local.

By the extension of the local model property of CLPs to accommodate for ECLPs,
where also successors of constants are allowed in the local support, local ECLPs have
the local model property, i.e. the arbitrary ground rules have no influence on the locality.

Theorem 4. Local ECLPs have the local model property.

Furthermore, adding a finite number of ground rules to a CLP does not augment the
complexity of reasoning.

Theorem S. Let P be an ECLP with the local model property. Satisfiability checking
w.r.t. P is in 3-NEXPTIME.

Indeed, we have that the bound k of needed domain elements to simulate reasoning
w.r.t. an ECLP P with finite answer set programming is double exponential in the size
of P, and thus the size of the translated program (P) (as in Theorem 3) is double
exponential in the size of P. Since satisfiability checking w.r.t. ¢)(P) is in NEXPTIME
w.r.t. the size of the program[9, 5], we have a 3-NEXPTIME bound w.r.t. the size of the
original ECLP.

Nonmonotonic Ontological and Rule-Based Reasoning 401

4 Nonmonotonic Ontological and Rule-Based Reasoning with
Extended Conceptual Logic Programs

We consider the DL ALCHOQ(L, M) which is the basic DL ALC with support for
role hierarchies (7{), nominals/individuals (), qualified number restrictions (Q), and
conjunction (M) and disjunction (L)) of roles. ALCHOQ(U, M) is a DL related to the
ontology language OWL DL[7], extending it in certain aspects and restricting it in oth-
ers: OWL DL is a notational variant of the DL SHOZN (D)[18], which adds transitive
roles (turning ALC into S), inverse roles (Z), and data types (D) to ALCHOQ(LI, M)
while removing support for role constructors and qualified number restrictions from it,
and allowing only unqualified number restrictions ().

Formally, the syntax of ALCHOQ(LU, M) concept and role expressions can be de-
fined as in Table 1 for concept expressions D, F, concept names A, role expressions
R, S, role names @, and nominals o. The semantics is given by a tuple Z = (AT .7)
where A7 is a non-empty set, representing the set of available domain elements, and
L is an interpretation function such that A7 C A% and Q7 C A x A7 for concept
names A and role names (Q, and every nominal o is mapped to some o € AZ. For com-
plex concept expressions, - is defined as in Table 1, where we additionally assume the

Table 1. Syntax and Semantics ALCHOQ(U, M)

concept names AT C A?
role names Qf c AT x AT
individuals {o}* = {0}

conjunction of concepts| (DM E)Y = DT n E*
disjunction of concepts| (D U E)* = DT u BT
conjunction of roles| (RMS)* = R* N S*
disjunction of roles| (R S)* = RT U S*
existential restriction| (3R.D)* = {z|3y : (z,y) € R* Ay € DT}
universal restriction| (VR.D) = {z|Vy : (z,y) € R = y € D}
qualified number restriction| (< n R.D)* = {x|#{y|(z,y) € R Ay € D*} <n}
(> n R.D)” = {al#{yl(z,y) € R* Ay € D?} > n}

unique name assumption for nominals, i.e. if 01 # 02, then 0¥ # o%. Note that OWL
does not have the unique name assumption[26], and thus different individuals can point
to the same resource. However, the open answer set semantics gives an Herbrand inter-
pretation to constants, i.e. constants are interpreted as themselves, and for consistency
we assume that also DL nominals are interpreted this way. Thus, from a Semantic Web
point of view, we assume all individuals are URI’s that point to a unique resource.

A DL knowledge base consists of terminological axioms C; = C5 and role axioms
Ry C R, for concept expressions C7 and C5, and role expressions Ry and Rs. Axioms
express a subset relation: an interpretation Z satisfies an axiom Cy C C5 (Ry C R») if
CT C CF (R C R%). Aninterpretation is a model of a knowledge base X if it satisfies
every axiom in X. A concept C' is satisfiable w.r.t. X if there is a model Z of X' such
that C7 # 0.

402 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

The ontology layer for the Semantic Web is becoming a reality with languages such
as OWL DL. Consequently, the rule layer, which provides additional inferencing ca-
pabilities on top of DL reasoning, is gaining interest in the Semantic Web community.
For example, in [23], integrated reasoning of DLs with DL-safe rules was introduced.
DL-safe rules are unrestricted Horn clauses where only the communication between the
DL knowledge base and the rules is restricted; they enable one to express knowledge
inexpressible with DLs alone, e.g. triangular knowledge such as[23]

BadChild(X) « Grandchild(X), parent(X,Y), parent(Z, Y), hates(X , Z)

saying that a grandchild that hates its sibling is a bad child.

We introduce DL-safe rules as in [23]. For a DL knowledge base X' let No and Np
be the concept and role names in X' and Np is a set of predicate symbols such that
N¢ UNg C Np. A DL-atom is an atom of the form A(s) or R(s,t) for A € N¢ and
R € Ng. A DL-safe rule is a rule of the form a «— by,..., b, where a,b; are atoms
and every variable in the rule appears in a non-DL-atom in the rule body. A DL-safe
program is a finite set of DL-safe rules. Let cts(X, P) be the set of nominals in X' and
constants in P.

The semantics of the combined (X, P) for a knowledge base X and a DL-safe
program P is given by interpreting X' as a first-order theory 7(X'), see e.g. [8], every
DL-safe rule a < by, ..., b, as the clause a\V—by V...V b, and then considering the
first-order interpretation of 7w(X") U P. The main reasoning procedure in [23] is query
answering, i.e. checking whether a ground atom « is true in every first-order model of
m(X) U P, denoted as (X, P) | «.

We provide an alternative semantics based on DL interpretations as in [19] rather
than on first-order interpretations. However, both semantics are compatible as indicated
in [23]. For (X, P) and an interpretation Z = (AZ,-Z) of X we extend - for Np
and H p such that for unary predicates p € Np, p C AZ, for binary predicates f €
Np, fT € AT x A%, and oF € A? for o € Hp; such an extended interpretation is,
by definition, an interpretation of (X, P). Furthermore, we impose the unique name
assumption such that if o1 # 0s, then o7 # oZ, for elements o € cts(X, P). A binding
for an interpretation Z of (X, P) is a function o : vars(P) U cts(X, P) — AT with
o(o) = of for o € cts(X, P); it maps constants/nominals and variables to domain
elements. A unary atom a(s) is then true w.r.t. o and Z if o(s) € af, and a binary
atom f(s,t) is true w.r.t. o and Z if (0(s),o(t)) € f£. Arule r is satisfied by Z iff for
every binding o w.r.t. Z that makes the atoms in the body true, the head is also true. An
interpretation of (X, P) is a model if it is a model of X and it satisfies every rule in P.
Query answering (X, P) = « amounts then to checking whether for every (DL) model
T of (X, P), the ground atom « is true in Z.

In [17], ALCHOQ(L, M) satisfiability checking is reduced to CLP satisfiability
checking. Here we reduce query answering w.r.t. ACCHOQ(L, M) extended with DL-
safe rules to query answering w.r.t. ECLPs. We first provide some intuition with an
example. Take a knowledge base X = {Imanuf_in.Co M Ihas_price T Product},
expressing that if something is manufactured in some country and it has a price then
it is a product. We have some facts in a DL-safe program P about the world we are
considering:

Nonmonotonic Ontological and Rule-Based Reasoning 403

is_product_of (p, ¢y) « manuf _in(p, japan) —
is_product_of (p, c2) « Co(japan) «—

saying that p is a product of company c; and company cs, that p is manufactured
in Japan and that Japan is a country. Those facts are vacuously DL-safe since they
do not contain variables. Additionally, we have a DL-safe rule in P saying that if
a product is a product of 2 companies then those companies are competitors’, r; :
competitors(Cy, Cg) «— Product(P), is_product_of (P, Cy),is_product_of (P, Cg).
Note that this is indeed a DL-safe rule since every variable occurs in a is_product_of
atom, which is a non-DL-atom in the body of the rule. The only DL-atom in the rule is
Product(P). A possible model Z of (¥, P) would be Z = ({japan, c;,cz,p,z},- %)
with -Z: Co” = {japan}, Product® = {p}, manuf _in* = {(p, japan)}, has_price*
= {(p,)}, is_product_of* = {(p, ¢1), (p, c2)} and competitors’ = {(c;, cs)}.
We translate (X', P) now to an ECLP: the DL axiom is translated to the constraint
— (Imanuf _in.Co M Jhas_price)(X), not Product(X), where we introduce predi-
cates corresponding to the concept expressions. Furthermore, we define these predicates
by the rules

(Imanuf _in.Co M Ihas_price)(X) « (Imanuf _in.Co)(X), (Fhas_price)(X)
(Imanuf_in.Co)(X) «— manuf_in(X, Y), Co(Y)
(Fhas_price)(X) «— has_price(X,Y)

such that if an answer set contains (3manuf _in.Co M 3has_price)(z), then, by mini-

mality of answer sets and the first rule, (3manuf _in.Co)(z) and (3has_price)(z) are
in the answer set, and, by the second and third rule, there must be a y; and a ys such
that manuf _in(z,y;), Co(y;), and has_price(z, yz) are in the answer set. The op-
posite direction is also valid, i.e. if manuf_in(z, y;), Co(y;), and has_price(z, yz)
are in the answer set then (Imanuf _in. Co M Jhas_price)(x) is in the answer set since
rules need to be satisfied. This kind of behavior exactly mimics the DL semantics of
the corresponding constructs. Furthermore, we introduce the concept and role names
by means of free rules, indicating that a domain element (or a pair of domain elements)
is of a certain type or not.

Product(X) V not Product(X)

Co(X) V not Co(X)

manuf _in(X,Y) V not manuf _in(X,Y)
has_price(X, Y) V not has_price(X,Y) «

«—
«—
«—

This concludes the CLP part of the translation of (X', P). The ground DLP part consists
of the same facts as in the DL-safe part; it also contains the grounding of the rule r; in
P with constants {japan, p, ¢;, ¢z}, e.g. the rule

ro @ competitors(cy, co) < Product(p), is_product_of (p, ¢y), is_product_of (p, c2)

7 Actually, to correspond entirely with the desired semantics, we would need to indicate that C;
and (' are different companies. This seems to be not possible with the DL-safe rules in [23],
however, it is with ECLPs using #.

$ We take of = 0,0 € cts(X, P), for ease of notation.

404 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

Since DL-safe rules have a first-order interpretation one may have that (c¢1,c2) €
competitors” for a model Z of (X, P) without any justification in Z, i.e. the body
of 1 in P does not need to be satisfied in order to have (¢1,c2) € competitorsI .
The answer set semantics however only deduces competitors(cy,co) in an answer
set if e.g. the body of ry is satisfied in that answer set, since otherwise the answer
set would not be minimal (one could omit competitors(c;, cz) and still have an an-
swer set).

To solve this, we introduce for each head a of a rule in the ground DLP part, a free
rule a V not a «— , e.g. competitor(cy, cg) V not competitor(cy, cg) < such that
one has always a motivation for competitor(c;, c2), mimicking the first-order seman-
tics.

We refer to [17] for the definition of the closure clos(X) of a ALCHOQ(L, M)
knowledge base X, but basically, for a concept expression D in X it includes the
subconcepts of D. Formally, we define the CLP &, (X, P) for a ALCHOQ(L, M)
knowledge base X' and a DL-safe program P as the program containing for every con-
cept expression D € clos(X) the rules in Table 2. Furthermore, for every concept

Table 2. CLP Translation ¢ (X, P)

D(X) <« not D(X) DNEX)« D(X),E(X)

DI_IE(X) D(X) DUE(X) « E(X)

JR.D(X) «— R(X,Y),D(Y) VR.D(X) < not 3R.~D(X)
RUS(X,)Y) « (Y) RMS(X,Y) — R(X,Y),S(X,Y)
RUS(X,Y) « Y) (£nR.D) (X)<—not(>n+1RD)()

(> n RD)(X) — (X Y1), ..., R(X,Yn), D(Y1),...,D(Ys),Y1 # Ya, ...

name A and role name () in X, we add the free rules A(X)V not A(X) < and
R(X,Y)Vnot R(X,Y) < . Nominals o in X are handled by introducing predicates
{o} with facts {0}(0) < in 1 (X, P), such that we can only have that {o}(x) is in an
answer set if 2 = 0. @1(X, P) is not a local ECLP, but due to the fact that the body of a
rule becomes structurally smaller one can transform it to a local ECLP while preserving
satisfiability[17].

We define @3(X, P) as the ground DLP P,i,(x, p), i.e. P grounded with all con-
stants and nominals in X' and P, together with free rules head(r) V not head(r) «— for
eachr € Pz, p)-

Theorem 6. For an ALCHOQ(U, M) knowledge base X~ and a DL-safe program P,
we have (X, P) = a iff &1 (X, P) UP2(X, P) = .

In [23] the SHOZN (D) DL is considered instead of ALCHOQ(L, 1), which extends
and at the same time restricts the type of allowed constructors. DL-safe rules allow for
variables, however, this does not make them more expressive than ground DLP pro-
grams: [23] proves that (X, P) = «iff (X, P9) | « where P9 is the grounding of P
w.r.t. constants and nominals in (X, P). Moreover, using ECLPs instead of a DL knowl-
edge base with DL-safe rules on top has the further advantage of nonmonotonicity by

Nonmonotonic Ontological and Rule-Based Reasoning 405

means of negation as failure in both the CLP part and the grounded DLP part, whereas
both DLs and DL-safe rules are monotonic (DL-safe rules are Horn clauses and thus do
not allow for negation as failure).

5 Related Work

We highlight some of the current research trends on the application of nonmonotonicity
to the Semantic Web and refer the reader for further related work on the combination of
(not necessarily nonmonotonic) rules and ontologies to [17].

In [2], one builds a nonmonotonic rule system on top of the ontology language
DAMLA+OIL[6], a predecessor of OWL. More specifically, they use defeasible logic[24]
to express rule-based knowledge and argue its use for E-commerce applications on the
Semantic Web. Another approach combining DAML+OIL with rules can be found in
[15], where situated courteous logic programs in the rule markup language RuleML[1]
provide for the nonmonotonic rule system.

[10] combines the expressive SHOZN (D), i.e. OWL DL, with ASP reasoning by
considering the DL knowledge base as a black box that can be queried from the rules.
Moreover, inferences made by rules can serve as input to the DL knowledge base as
well, leading to a bidirectional flow of information. A disadvantage of this approach, as
was remarked in [23], is that, since one considers only consequences of the DL knowl-
edge base, i.e. atoms that are true in all models, some more fine-grained inferences will
not be made by the rules. Since reasoning with CLPs can be reduced to finite ASP, it
can be trivially reduced to the approach in [10] with an empty DL knowledge base. In
[11] the approach of [10] was adapted for the well-founded semantics instead of the
answer set semantics.

[14] explains how reasoning with SWRL[20], i.e. OWL extended with Datalog
in RuleML, can be done by iteratively calling the DL reasoner RACER[16] and the
rule-based reasoner Jess[12], each feeding the other with the inferences it made. Since
SWRL is undecidable, and such an iterative procedure is thus incomplete, it shows that
intractable worst-case complexity (or even undecidability) should not hold one back to
device practical and useful combined reasoners. A similar iterative angle is taken in
[22] where SWRL is extended with negation as failure and equipped with an answer set
semantics, resulting in a nonmonotonic but undecidable system.

6 Conclusions and Directions for Further Research

We extended CLPs with a finite set of arbitrary ground DLP rules, and showed that
reasoning with the resulting ECLPs can be reduced to finite answer set programming.
We established an upper complexity bound and simulated reasoning in a DL equipped
with DL-safe rules.

The upper 3-NEXPTIME bound for reasoning with ECLPs is rather bad, however,
encouraged by practical algorithms for highly intractable DL algorithms, we believe
that, using heuristics, one can also implement practical reasoners for ECLPs. This is
subject for further research.

406

S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

References

—

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. The Rule Markup Initiative. http://www.ruleml.org.
. G. Antoniou. A Nonmonotonic Rule System using Ontologies. CEUR Proceedings,

2002.

. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The Description

Logic Handbook. Cambridge University Press, 2003.

. F. Baader and U. Sattler. Number Restrictions on Complex Roles in Description logics. In

Proc. of KR-96, pages 328-339, 1996.

. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge Press, 2003.

. S. Bechhofer, C. Goble, and I. Horrocks. DAML+OIL is not Enough. In Proc. of the First

Semantic Web Working Symposium (SWWS’01), pages 151-159. CEUR, 2001.

. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.

Patel-Schneider, and L. A. Stein. OWL Web Ontology Language Reference.
http://www.w3.org/TR/owl-ref/, 2004.

. A. Borgida. On the Relative Expressiveness of Description Logics and Predicate Logics.

Artificial Intelligence, 82(1-2):353-367, 1996.

. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive Power of

Logic Programming. ACM Comput. Surv., 33(3):374-425, 2001.

T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining Answer Set Program-
ming with DLs for the Semantic Web. In Proc. of KR 2004, pages 141-151, 2004.

T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Well-Founded Semantics for De-
scription Logic Programs in the Semantic Web. In Proc. of RuleML 2004, number 3323 in
LNCS, pages 81-97. Springer, 2004.

E.J. Friendman-Hill. Jess homepage. http://herzberg.ca.sandia.gov/jess/.

M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In Proc.
of ICLP’88, pages 1070-1080, Cambridge, Massachusetts, 1988. MIT Press.

C. Golbreich. Combining Rule and Ontology Reasoners for the Semantic Web. In Proc. of
RuleML 2004, number 3323 in LNCS, pages 6-22. Springer, 2004.

B. N. Grosof and T. C. Poon. SweetDeal: Representing Agent Contracts with Exceptions
using XML Rules, Ontologies, and Process Descriptions. In Proc. of WWW 2003, pages
340-349. ACM Press, 2003.

V. Haarslev and R. Moller. Description of the RACER System and its Applications. In Proc.
of Description Logics 2001, 2001.

S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Semantic Web Reasoning with Con-
ceptual Logic Programs. In Proc. of RuleML 2004, number 3323 in LNCS, pages 113-127.
Springer, 2004.

L. Horrocks and P. Patel-Schneider. Reducing OWL Entailment to Description Logic Satisfi-
ability. J. of Web Semantics, 2004. To Appear.

I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules Language. In Proc. of
WWW 2004. ACM, 2004.

I. Horrocks, P. F. Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL: A Semantic
Web Rule language Combining OWL and RuleML, May 2004.

N. Leone, W. Faber, and G. Pfeifer. DLV homepage. http://www.dbai.tuwien.ac.at/
proj/dlv/.

J. Mei, S. Liu, A. Yue, and Z. Lin. An Extension to OWL with General Rules. In Proc. of
RuleML 2004, number 3323 in LNCS, pages 6-22. Springer, 2004.

http://www.w3.org/TR/owl-ref/

23.

24.

25.
26.

Nonmonotonic Ontological and Rule-Based Reasoning 407

Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for OWL-DL with Rules. In
Proc. of ISWC 2004, number 3298 in LNCS, pages 549-563. Springer, 2004.

D. Nute. Defeasible Logic. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors,
Handbook of Logic in Artificial Intelligence and Logic Programming (Vol. 3), pages 353—
395. Clarendon Press, 1994.

P. Simons. Smodels homepage. http://www.tcs.hut.fi/Software/smodels/.

M. Smith, C. Welty, and D. McGuinness. @nOWL Web Ontology Language Guide.
http://www.w3.org/TR/owl-guide/, 2004.

http://www.w3.org/TR/owl-guide/

	Introduction
	Answer Set Programming with Open Domains
	Adding Grounded Rules to Conceptual Logic Programs
	Nonmonotonic Ontological and Rule-Based Reasoning with Extended Conceptual Logic Programs
	Related Work
	Conclusions and Directions for Further Research

