
Logic Programming Agents Playing Games

Marina De Vos
Department of Computer Science, University of Bath

Bath, UK

Dirk Vermeir
Department of Computer Science, Vrije Universiteit Brussel (VUB)

Brussels, Belgium

Abstract

We present systems of logic programming agents (LPAS) to model the interac-
tions between decision-makers while evolving to a conclusion. Such a system
consists of a number of agents connected by means of unidirectional communi-
cation channels. Agents communicate with each other by passing answer sets
obtained by updating the information received from connected agents with their
own private information. As an application, we show how extensive games with
perfect information can be conveniently represented as logic programming agent
systems, where each agent embodies the reasoning of a game player, such that the
equilibria of the game correspond with the semantics agreed upon by the agents
in the LPAS.

1 Introduction

In this paper we present a formalism for systems of logic programming agents. Such
systems are useful for modeling decision-problems, not just the solutions of the prob-
lem at hand but also the evolution of the beliefs of and the interactions between the
agents.

A system of logic programming agents consists of a set of agents connected by
means of unidirectional communication channels. Each agent contains an ordered
choice logic program [3] representing her personal information and reasoning skills.
Agents use information received from their incoming channels as input for their rea-
soning, where received information may be overridden by other concerns represented
in their program. The resulting model is communicated to the agents listening on
the outgoing channels. The semantics of the whole system corresponds to a stable
situation where no agent needs to change its output.

To model a single agent’s reasoning, we use ordered choice logic programs[3], an
extension of logic programming which provides facilities for the direct representation
of preference between rules and dynamic choice between alternatives.

Game theory [5] makes contributions to many different fields. In particular, there
is a natural connection with multi-agent systems. In this paper we illustrate the use of
logic programming agent systems as convenient executable representations of games,
where each player corresponds with exactly one agent. We concentrate on so-called
extensive games with perfect information: a sequential communication structure of
players taking decisions, based on full knowledge of the past. We demonstrate that

1

such games have a constructive and intuitive translation to logic programming agent
systems where the agents/players are connected in a cyclic communication structure.
The game’s equilibria (Nash or subgame perfect, depending on the transformation
used to construct the corresponding system) can then be retrieved as the system’s
answer set semantics. Moreover, the fixpoint computation of the answer sets closely
mirrors the actual reasoning of the players in reaching a conclusion corresponding to
an equilibrium.

2 Choice Logic Programming

Choice logic programs [1] represent decisions by interpreting the head of a rule as an
exclusive choice between alternatives.

Formally, a Choice Logic Program [1], CLP for short, is a finite set of rules of
the form

�����
where

�
and

�
are finite sets of ground atoms. Intuitively, atoms

in
�

are assumed to be xor’ed together while
�

is read as a conjunction (note that
�

may be empty, i.e. constraints are allowed). The set
�

is called the head of the rule� , denoted ��� , while
�

is its body, denoted
� � . In examples, we often use “ 	 ” to

denote exclusive or, while “
 ” is used to denote conjunction.
The Herbrand base of a CLP � , denoted �� , is the set of all atoms that appear � .

An interpretation is a consistent � subset of ��������� . For an interpretation � , we
use ��� to denote its positive part, i.e. ����������� . Similarly, we use ��� to denote
the negative part of � , i.e. � �!�"�$#%���&��� �' . An atom (is true (resp. false) w.r.t. to
an interpretation � for a CLP � if (*)!� � (resp. (+),� �). An interpretation is total
iff �-�.�&�/�+�0� . The positive complement of an interpretation � , denoted � , equals
� .1 �-� .

A rule � in a CLP is said to be applicable w.r.t. an interpretation � if
� �+23� .

Since we are modeling choice, we have that � is applied when � is applicable and4 �5���6� 4 ��798 . A rule is satisfied if it is applied or not applicable. A model is defined
in the usual way as a total interpretation that satisfies every rule. A model : is said
to be minimal if there does not exist a model ; such that ;*�=<�:>� .

The Gelfond-Lifschitz transformation for a CLP � w.r.t. an interpretation � is the
positive logic program �@? obtained from � by first removing all false atoms from the
head of each choice rule (e.g. a rule with more than one head atom). Afterwards,
all remaining choice rules � are replaced with the constraints

� � �
 � � . These
constraints force �@? to reject interpretations that contain two true atoms that are both
in the head of an applicable choice rule. A total interpretation : is a stable model for
� iff : is a minimal model for �BA . For choice logic programs the stable model and
the minimal model semantics coincide[1].

The following example is a variation on the well-known prisoner’s dilemma [5].

Example 1 (Eternal Enemies) One day two eternal enemies, the lions and the hyaena’s,
meet on the African plains. Today’s cause of argument is a juicy piece of meat. Both
the lions and the hyaena’s are keen on devouring it. To obtain their share there are two
C
For a set of literals D , we use EFD to denote GHE/IBJKIMLNDMO , where E E/IQP*I for any atom I . D is

consistent iff D,RQEFD�P�S .T
For a a set D , we use J DUJ do denote its cardinality.

possibilities: they can either divide the piece among the members of both groups or
they can fight for it with the risk of getting injured. Knowing the other group’s temper
it is always best to attack: either both parties are willing to fight or the peace-loving
group will be chased away. However, both parties know that they get the most meat
without any risk if they are both willing to share. Despite this, no pride is willing
to take the risk of losing out on this free lunch. The following simple choice logic
program models this eternal feud.

���������
	 ������ 	 ��� ��� 	 ������ �
���������
������������� 	 ��� ��� ������������� �

��� ��� 	 ������ � �����
��� ������� �
���
��� ��� 	 ������ � ��� ��� ������� �
���
��� ��� ������������� � �����
��� 	 �!���"�
��� ��� ������������� � ��� ��� 	 ������

The program from Example 1 has one stable model #$��� ��� 	 ������
���� ��� �������������&%

which explains why the two species remain enemies: neither wants to give sharing
a try as they fear that the other will take advantage by attacking.

3 Ordered Choice Logic Programming

An ordered choice logic program (OCLP) [2] is a collection of choice logic programs,
called components, each representing a portion of information. The relevance or pre-
ciseness of each component with respect to the other components is expressed by a
strict pointed partial order ' .
Definition 1 An Ordered Choice Logic Program, or OCLP, is a pair � �)(+*
",.-
where * is a finite set of finite choice logic programs / , called components, and “ , ”
is a strict pointed partial order on * . We use �10 to denote the CLP obtained from �
by joining all components, i.e. �20 � �43�5
687 . For a rule �)0�20 , 7 # � ' denotes the
component from which the rule was taken (i.e. we assume that rules are labeled by
the component) 9 . The Herbrand base of an OCLP � is defined by � � ���: . An
interpretation of � is an interpretation of �10 . A rule � in an OCLP � is applicable,
resp. applied, w.r.t. an interpretation � , if it is applicable, resp. applied in �;0 , w.r.t.
� .

For two components < �
&< 8)=* , < � ,>< 8 implies that < 8 contains more general,
or less preferred, information than < � . Throughout the examples, we will often repre-
sent an OCLP � by means of a directed acyclic graph in which the nodes represent
the components and the arcs the , -relation.

?
A relation @ on a set A is a strict partial order iff @ is anti-reflexive, anti-symmetric and transitive. @

is pointed if there is an element I LBA such that I>@DC for all C�LBAFE G I O .G
We assume that all rules are grounded; i.e. any rule containing variables has been replaced with all its

ground instances.H
In fact, the same rule could appear in two components and thus IKJ should be a set of labeled rules. We

prefer to work with the present simpler notation and note that all results remain valid in the general case.

Example 2 This year, the choice for the holidays has been reduced to a city trip to
London or a fortnight stay in either Spain or Mexico. A city trip to London is rather
short and Mexico is expensive. With a larger budget however, we could have both a

I T

I H

���������
	��

���������� �

���������� ��	 ���������� ������� � ��	 ����������! ��	"	$#%	 �������
�%�
���������� # � �!���&� � #('�)*��� � ���������+�
	I G

I ? '�)*��� � �

� �!���&� � �

I C

Figure 1 The travel OCLP of Example 2

holiday in Mexico and a trip to
London. Given these considera-
tions, there are two possible out-
comes:

, we have a small budget and
we should opt for Spain, or

, with a larger budget, we
can combine Mexico and
London.

This decision problem can be
conveniently represented as an
OCLP, as displayed by Figure 1.
The rules in the components
� �.-�-/- � ' , express the preferences
in case of a small budget. The

rules in � / explain that we want to travel and, because of this, we need to make a de-
cision concerning our destination. In component � 9 , the first rule states that there is
also the possibility of a larger budget. In this case, the two other rules in this compo-
nent tell us that we can have both London and Mexico.

The sets: �U� #10 ��243�5�6
 �+7F�98:8
 �<;1= ��3:>@? , A.� # �����9B���8
"0 ��213�5+6
 ��7F�98:8
 �DC 69>FE169>

�<;1= ��3:>
 � 8 �
� � ����? , G � # � ����B ��8
&;�= �93:>
 ��7F�98:8
�� 8 ��� � ���
 �DC 69>FE16�>
 �<0 �
243�5+6H? , andI � # ������B ��8
JC 69>FE169>
&;�= �93:>
K0 ��243�5�6
 8 ��� � ���
 � ��7F�98:8�? are all interpretations for this
OCLP. The interpretation � makes the rule �+7F�98:8 	 8 �
� � ��� � applied while the rule
C 69>FE169> �

is applicable but not applied. While A , G and
I

are total, � is not.

When it is clear from the context that only total interpretations are considered, we
will omit the negative part. If necessary it can be retrieved by means of the positive
complement.

A decision involves a choice between several alternatives. In a CLP, decisions are
generated by so-called choice rules, i.e. rules with multiple head atoms. Thus, for an
interpretation � of a CLP, (and L are alternatives if they appear together in the head
of an applicable rule. For an ordered program, we will use a similar notion which
takes the preference order into account. Intuitively, for a component < , (and L are
alternatives w.r.t. an interpretation � if there is an applicable choice rule containing (
and L in the head, in a component that is at least as preferred as < .

Definition 2 Let �3� (+*
�,.- be an OCLP, let � be an interpretation and let <) * .
The set of alternatives in < for an atom (!),�� w.r.t. � , denoted M ?N #%(' , is defined
as O : M$?N # (' � #$L 4�P �).� 0RQ�7 # � '�S <UT � ��2 �VT (
�LQ)&�5� with (XW�YL ? -
Z/[

is the reflexive closure of \ .

Example 3 Reconsider the interpretations � and A from Example 2. The alternatives
for 0 ��213�5+6 in � 8 w.r.t. A are M���� #�0 �
243�5+6 ' � #1;�= �93:>
+C 69>FE16�>@? . With respect to �
we obtain M$?�� #�0 ��213�5+6 ' � �

, since the choice rule in � ' is not applicable. When we
take � 9 instead of � 8 , we obtain w.r.t. A : M ��� #�0 �
243�5+6 ' � �

.

Atoms that are each others’ alternative w.r.t. a certain interpretation � will continue
to be so in any extension A�� � . In this sense, M is a monotonic operator.

Although rules do not contain negations, they can still conflict. E.g. one rule could
force a choice between (and L while other rules could force (and L separately. More
generally, a conflict exists for a rule � , which is applicable w.r.t. an interpretation � , if
for all ()&� � , there exists another rule �	� such that � ��
 2 M$? 3� �� #%(' .

As in [4], we use the preference relation among the components to ignore rules
that are defeated by more preferred rules forcing different alternatives.

Definition 3 Let � be an interpretation for an OCLP � . A rule �) �10 is defeated
w.r.t. � iff

� (�).�U� Q P ���)�� 0 Q�7 # � ' W ,.7 # ��� ' T � � is applied w.r.t. � T ����� 2 M ? 3� ��� #%(' -
The rule � � is called a defeater w.r.t. � . � is a model of � iff every rule in �10

is either not applicable, applied or defeated w.r.t. � . A model : is minimal iff its
positive part is minimal according to set inclusion, i.e. no model ; of � exists such
that ; � < :>� .

The above definition defines a approach where a rule can be defeated by applied
rules that are not less preferred as the rule at hand. This approach can be seen as
credulous, as a random choice is made between two equally or unrelated alternatives.
A more skeptical approach would demand that the rules are related and the defeater(s)
is (are) strictly more preferred.

Example 4 Reconsider the interpretations A and
I

defined in Example 2. The rule
C 69> E469> �

is defeated w.r.t. A by the rule 0 ��243�5+6 �
. The combination of the

rules 0 ��213�5+6 � 8 ��� � ��� and C 69>FE169> � 8 �
� � ��� defeats the rule C 6�> E469> 	V0 ��243�5+6 	
;�= �93:> �

is w.r.t.
I

. Only G and
I

are models. Model
I

is not minimal due to the
smaller model � � # � �&�9B���8
 8 ��� � ���
�0 �
243�5+6
�C 6�> E469>
 �����9B���8
 �<;�= �93:>
H� �+7F�98:8!? . The
minimal models G and � correspond to the intuitive outcomes of the problem.

For ordered programs, the minimal semantics sometimes yields unintuitive results,
as demonstrated in the following example.

Example 5 Consider the program � � (#�7 �
&7 8
&7 ' ?
�,.- where 7 � � # (� ? , 7 8 �
#$L � ? , 7 ' � #K(�	 L � 7 ? and 7 ' , 7 8 , 7 � . The minimal models are # a,b ? , where no
choice between (and L is forced, and # c,b ? . The latter is not intuitive due to the
gratuitous assumption of 7 .

Unwarranted assumptions as in Example 5 can be avoided by adopting an answer
set semantics, where we use a variant of the Gelfond-Lifschitz transformation to map
an OCLP to an unordered CLP.

Definition 4 Let : be a total interpretation for an OCLP � . The reduct for � w.r.t.
: , denoted �BA , is the choice logic program obtained from �10 by removing all de-
feated rules. : is called an answer set for � iff : is a stable model for � A .

Example 6 The program � from Example 5 does not admit ; � #K(
�L ? as an answer
set, since ����� #$L �
�(M	 L � 7 ? which has only #$L ? W� ; as a stable model. The
minimal models G and � of Example 4 are both answer sets.

4 Logic Programming Agents

In this section we consider systems of communicating agents where each agent is
represented by an OCLP that contains its knowledge about itself and other agents.

Agents communicate via unidirectional communication channels through which
the conclusions derived by the agent at the source of the channel are passed on to the
agents at the other end.

Definition 5 A logic programming agent system, or LPAS, is a pair
� � (��
�� -

where � is a set of agents (and < <��	�
� is an anti-reflexive relation repre-
senting the communication channels between agents. Moreover, each agent (�)�� is
associated with an ordered choice logic program

� � � (!* �
�, � - .
We will use a more convenient graph-like notation in our examples.

Example 7 Two witnesses discover a body lying in the park. The first witness tells
the local police that she saw hair near the victim and that she did not see any blood.

����

��� ����� �
 �� � � �
�%�

� �"� � � �!���

� � 	 � � � ���"����� �&�:� ��� � ���	 � �!� � � � � � � ��� � � � 	 !

� �!��	&	

��	 �
��� ����"�:� ��� � � �
� �"� � � �!�#"

�$��	 ������ ���"�(�

� ��� � � � 	 ! � � � 	 �%� � ���"�������"�:� ��� � �

Figure 2 The werewolf-killing of Example 7

The second witness testifies
that she saw blood and that
the victim had strange bite
marks. The sheriff states that
this situation is a clear case
of murder and passes it to the
FBI. Because of the strange
appearance of bite-marks and
hair, the FBI passes the case
to the special X-cell. In addi-
tion, the FBI states that, if the
X-cell reports that a werewolf
is involved, the case should be
classified. Given the evidence,
the X-file team has no choice
but to decide that the killing

was indeed done by a werewolf. This situation is represented by the LPAS depicted in
Figure 2.

The Herbrand base of a LPAS is the union of all the Herbrand bases of the ordered
choice logic programs used by the agents. An interpretation assigns a set of literals to
each agent in the system. These literals may be concluded by the agent itself, based on

input received through an input channel, or they may simply be accepted from other
agents via an input channel.

Definition 6 Let
� � (��
�� - be an LPAS. The Herbrand base of

�
, denoted ��� ,

equals ��� � ��� 5�� �
�

. An interpretation of
�

is a function �	� ��
� ����� 0�� �����
that associates a consistent set of literals (beliefs) to each agent.
Given an interpretation � , the inputs and outputs of each agent are defined by � > ? #%(' �5+69>�� # � ����� � � 5�� � #�� ' ' and � � � ? # (' � � # (' , respectively, where 5+6�>�� #"! ' �#!.� 1
#�!��.�$!+� ' , i.e. the maximal positive consistent part of % .

Thus, an agent sends its full set of beliefs over all outgoing communication chan-
nels. On the other hand, an agent receives as input, the beliefs of all agents connected
to its incoming channels. If two agents send conflicting information to a receiving
agent, the conflicts are removed.

Example 8 Consider the Werewolf LPAS
�

of Example 7. We define the interpertation
� of

�
as:

� # ��������3 & ' � # 7 � �
E ���4?
� #(' 3!� > ���$�*) ' � # 7 � �
E ���
 ���93!�
H�+� 8&6*6*EF?
� #(' 3!� > ���$�-, ' � # 7 � �
E ���
.� 8&6*6/E
.� 3!� � 7F����/���?
� #10324� ' � # 7 � �
E ���
 ���93!�
5� 3!� � 7;�
��/ �
6' ����� ' 6�8 7 - ! � 8 �
 5�8 � �$��3 � �+E ?
� #"! 5&��8:8 ' � # 7 � �
E ���
 ���93!�
5� 3!� � 7;�
��/ �
6' ����� ' 6�8 7
�! � 8 �
 5�8 � �$��3 � �+EF?

The input of agent 0824� w.r.t. � equals � > ? #"0824� ' � # 7 � �
E����
 ����3!�
.� 3!� � 7F����/��1?
-

The output produced by the ! 5$��8:8 -agent w.r.t. � 8 is � � � ? #�! 5$��8:8 ' � # 7 � �
E ���
 ���93!�

� 3!� � 7F����/��
6' ����� ' 698 7 - ! � 8 �
 5�8 ���$�+3 � �+EF?

-
An agent reasons on the basis of positive information that is received from other

agents (its input) and its own program that may be used to draw further conclusions,
possibly overriding incoming information. Hence, agents attach a higher preference
to their own rules rather than to suggestions coming from outside.

This can be conveniently modeled by extending an agent’s ordered program with
an extra “top” component containing the information gathered from its colleagues.
This way, the OCLP semantics will automatically allow for defeat of incoming infor-
mation that does not fit an agent’s own program.

Definition 7 Let
� � (��
�� - be a LPAS. The updated version of an agent (,) � ,

with program
� � � (!* �
", � - , w.r.t. a set of atoms 9 2 �:� , denoted (�; , is defined by

(�;!� (!* � � #�7 ; ?
�, � � # 7=< 7 ;
4 7) * � ? - with 7 ; � #.> � 4 >)	9 ? .

For an interpretation to be a model, it suffices that each agent produces a local
model (output) that is consistent with its input.

Definition 8 Let
� � (��
�� - be a LPAS. An interpretation � of

�
is a model iff� () � Q�� � � ? # (' is an answer set of (@? �*A � � � .

Example 9 Reconsider the Werewolf LPAS of Example 7 and its interpretation � from
Example 8. It is easy to see that � is a model. Even more, it is the only model.

For systems without cycles the above model semantics will generate rational so-
lutions for the represented decision-problems. The next example demonstrates that
systems that do have cycles may have models that contain too much information, be-
cause assumptions made by one agent may become justified by another agent.

Example 10 Two children have been listening to a scary story about vampires and

� ��	 ��� � � ��� � ���� �!� � ��� � ���� �!� � � ���)��&���� ��	 ��� � � � ���)��&���

� � � �1# �+�)��"���(� � �!� � � � ��	 ��� � �
� � �"	 � �

� � �"	 � "

Figure 3 The imagination LPAS of Example 10

zombies. Suddenly, they
think something moved in the
room and they start fantasiz-
ing about the story they just
heard. The first child says
that, in order to have a real
zombie or vampire, the crea-
ture should be dead and be
walking around. The second
child agrees that vampires and
zombies are both dead but still
able to walk around.
The situation is represented by

the LPAS in Figure 3. This system has three models with : � # 5$��3:8&E) ' � 0) # 5&� 3:8&E , ' �
� B ��7 = 3!���
 ��� 697 � 3
 ��' �98 /93:> �
 � E �$�1EF? , and : 8 # 5$��3:8&E) ' � 0 , # 5&� 3:8&E , ' � #�� 697 � 3

' ��8 /93:> �
 E �$�1E
H� B ��7 = 3!����? ; and : ' # 5&� 3:8&E) ' � 0�� # 5$��3:8&E , ' � # B ��7 = 3!���
6' ��8 /93:> �
E �&�4E
H��� 6�7 � 3�? . The last two models are not realistic, since the children are just
giving a description.

To avoid such self-sustaining propagation of assumptions, we will demand that a
model be the result of a fixpoint procedure which mimics the evolution of the belief
set of the agents over time.

Definition 9 Let
� � (��
�� - be a LPAS. A sequence of interpretations ��� -/-�- �
	 is an

evolution of
�

iff for any
����

, () � , �
� � � #%(' is a model of (�? �*A�� � � � . An evolution-
ary fixpoint of an interpretation �
� is any interpretation � that can be repeated forever
in an evolution ��� -/-�- �
	!� ��
 ��	 ��� ��� . An answer set of

�
is any c-evolutionary

fixpoint of ��� .

Thus, in an evolution, the agents evolve as more information becomes available:
at each phase of the evolution, an agent updates her program to reflect input from the
last phase and computes a new set of beliefs. An evolution thus corresponds to the
way decision-makers try to get a feeling about the other participants. The process of
reaching a fixpoint boils down to trying to get an answer to the question “if I do this,
how would the other agents react”, while trying to establish a stable compromise. Note
that the notion of evolution is nondeterministic since an agent may have several local
models. For a fixpoint, it suffices that each agent can maintain the same set of beliefs
as in the previous stage.

Example 11 Consider the Werewolf LPAS of Example 7. The interpretation � de-
scribed in Example 8 is an answer set of the LPAS. The vampire-zombie LPAS of
Example 10 has one answer set � , where

� # 5$��3:8&E) ' � � # 5$��3:8�E , ' � # ��� 6�7 � 3 �
 � B��97 = 3!�&�
 ��' �98 /93:> �
 � E �$�1EF? -
Theorem 1 Let

� � (��
 � - be a LPAS. An interpretation � is a model for
�

iff it is
an evolutionary fixpoint of

�
.

Corollary 1 Let
� � (��
 �1- be a LPAS. Every answer set of

�
is a (model of

�
.

The reverse of the above corollary does not hold in general. A counter example is
given in Example 10. However, for acyclic LPAS a one-to-one mapping does exist.

Theorem 2 Let
� � (��
�� - be a LPAS without cycles. An interpretation : is a

stable model (resp. answer set) iff � is a model (resp. c-model) of
�

.

5 LPAS and Game Theory

In this section we demonstrate that extensive games with perfect information have
a natural formalization as logic programming agent systems. The equilibria of such
games can be obtained as the answers sets of the system, where each agent represents
a player, and the evolution mimics the mechanism players can use in order to come to
a decision.

5.1 Extensive Games with Perfect Information

An extensive game is a detailed description of a sequential structure representing the
decision problems encountered by agents (called players) in strategic decision making
(agents are capable to reason about their actions in a rational manner). The agents in
the game are perfectly informed of all events that previously occurred. Thus, they can
decide upon their action(s) using information about the actions which have already
taken place. This is done by means of passing histories of previous actions to the
deciding agents. Terminal histories are obtained when all the agents/players have
made their decision(s). Players have a preference for certain outcomes over others.
Often, preferences are indirectly modeled using the concept of payoff where players
are assumed to prefer outcomes where they receive a higher payoff.
Summarizing, an extensive game with perfect information, [5]), is 4-tuple, denoted
(%;
 �.
 �$
9#�� � ' �+5 � - , containing the players ; of the game, the histories � , a player
function � telling who’s turn it is after a certain history and a preference relation � �
for each player

�
over the set of terminal histories.

For examples, we use a more convenient representation: a tree. The small circle at
the top represents the initial history. Each path starting at the top represents a history.
The terminal histories are the paths ending in the leafs. The numbers next to nodes
represent the players while the labels of the arcs represent an action. The numbers
below the terminal histories are payoffs representing the players’ preferences (The
first number is the payoff of the first player, the second number is the payoff of the
second player, ...).

Example 12 The game depicted in Figure 4 models an individuals’ predicament in
������
� � � � �

1
� ��� � � / �

� �
�
 � '

������
� � � � �

2��� �&� ':� ������3 ��� 5&��������3 ���
� �

#��F
97 '
�����
� � � �

15����$�97 > 6 5����$�97
�

#	�/

� '
�

7-
 7 '

Figure 4 The Cake-game of Example 12

the following situation: two
ladies have decided that they want
fruit cake for dessert. There are
two possibilities: they either bake
a cake or they buy one. At the bak-
ery shop one can choose between
strawberry and cherry cake. For
strawberry cake there is the pos-
sibility to have whipped cream on
top. They agree that the first lady
will decide on how to get the cake

and, if necessary, whether a topping is wanted or not. The second lady will be picking
the type of fruit cake.

A strategy of a player in an extensive game is a plan that specifies the actions
chosen by the player for every history after which it is her turn to move. A strategy
profile contains a strategy for each player.
The first solution concept for an extensive game with perfect information ignores the
sequential structure of the game; it treats the strategies as choices that are made once
and for all before the actual game starts. A strategy profile is a Nash equilibrium if no
player can unilaterally improve upon his choice. Put in another way, given the other
players’ strategies, the strategy stated for the player is the best this player can do � .
Example 13 The game of Example 12 has two Nash equilibria:

�6���/
 5����$�97 ?
�# �$����� ':� ������3 ���9?1? and # # �6����
 >F6 5����$�97 ?
�# 5$��������3 ���1?1?
-

Although the Nash equilibria for an extensive game with perfect information are
intuitive, they have, in some situations, undesirable properties due to not exploiting
the sequential structure of the game. These undesirable properties are illustrated by
the next example.

Example 14 Being a parent can sometime be hard. Especially when your child asks

���� � � �Parent
no pet pet����� ����� � � �Child

cat spider����� �����

Figure 5 The Spider Threat
of Example 14

for a pet. His two favorite animals are cats
and spiders and you really hate spiders. How-
ever, your son prefers the cat since it is more
affectionate. The game corresponding to this
situation is depicted in Figure 5. This game
has three Nash equilibria #�# >F6 = ����?
�# 5$����?1? ,
#�# > 6 = ����?
�# � = 3�E�����?1? and #�#�= ���+?
�# 5$����?1? .
The strategy profile # # >F6 = ���
 � = 3�E���� ?1? is an un-
intuitive Nash equilibrium since it is sustained by
the threat that the child would opt for the spider

when a pet was allowed. However, the child would never go for a spider (payoff 1)
since a cat is more playful (payoff 2).

�
Note that the strategies of the other players are not actually known to � , as the choice of strategy has

been made before the play starts. As stated before, no advantage is drawn from the sequential structure.

Because players are informed about the previous actions they only need to reason
about actions taken in the future. This philosophy is represented by subgames. A sub-
game is created by pruning the tree in the upwards direction. So, intuitively, a subgame
represent a stage in the decision making process where irrelevant and already known
information is removed. Instead of just demanding that the strategy profile is opti-
mal at the beginning of the game, we require that for a subgame perfect equilibrium
the strategy is optimal after every history. In other words, for every subgame, the
strategy profile, restricted to this subgame, needs to be a Nash equilibrium. This can
be interpreted as if the players revise their strategy after every choice made by them
or another player. Therefor, subgame perfect equilibria eliminate Nash equilibria in
which the players’ threats are not credible.

Example 15 Reconsider the game of Example 14: # #�= ���+?
�# 5$�
�+? and #�# >F6 = ����?
�# 5&�
�+?
are the only subgame perfect equilibria. The unintuitive Nash equilibrium #�# >F6 = ����?

� = 3�E�����? is no longer accepted. The Cake-game of Example 12 admits only one sub-
game perfect equilibrium: # # �6���/
 5����$�97 ?
�# �$����� ':� ������3 ���9?1? .

5.2 Playing Games

We demonstrate that extensive games with perfect information have a natural formu-
������
� � � � �

1� �
� �

#���
�� '
������
� � � � �

25 E
� �

#���

� '
�����
� � � �

1� 7
�

#	��
�� '
�

#��F

� '

Figure 6 The game of Example 16

lation as multi-agent sys-
tems with a particularly sim-
ple information-flow structure
between the agents. For our
mapping, we assume that an
action can only appear once � .
This is not really a restric-
tion, since one can simply use
different names for these ac-
tions since they are not re-
lated. This will just have an

effect on the syntax of the game and not on its semantics.

Example 16 Consider the extensive game depicted in Figure 6. This game has six
Nash equilibria: #�#��
 �1?
�# 59?4? , #�#��
 7 ?
�# 5�?1?
 #�# �
 �1?
�# EF?1?
�# # �
 7 ?
�# E ?1?
 #�# �
 �1?

EF?1?
8# # �
 7 ?
�# E ?1? - Three of these Nash equilibria are also subgame perfect equili-
bria: # # �
 �1?
�# 5�?1?

#�# �
 �1?
�# EF?1?
�#�# �
 ��?
�# E ?1? -

The following transformations will be used to retrieve the Nash equilibria and
subgame perfect equilibria from the game as the answer sets of the corresponding
OCLP.

Definition 10 Let (%;
 �.
 �$
9#�� � ' � 5 � - be a finite extensive game with perfect informa-
tion. The corresponding Nash LPAS � 	 � (# � � 4 �)�; ?
&< - with � 	� � � (#"* � � ?
�, � -
constructed as follows:

1. * � � � # < �� 4�P��) � Q	�&� 9�� # � ' ? ;

2.
� < ��
$< ��) * � � Q < �� , � < �� iff � ���

;

3.
� �) #%� 1 � '
 ��# � ' � � Q�# � # � ' � ') < ��
 � < �	
�� W� � Q�< �� , ��< �	 ;

4.
� � � �

� (
�
8) �
 ��# � � ' �

� Q (� �) < �� with� � #9L)�� �	��
@4 � � �
' L

�
/
 ��#

�
' ' W�

� ? and �&� 9 ���� � # � ' ,

5. <5# � � ' � # � � � � ? for
�)�;.
 � <������$; ,

6. <5# ������� � ' � # � � ? .

The corresponding subgame LPAS ��� � (# � � 4 �)�; ?
$< - where ���� � � (#"* � � ?
�, � -
is defined in the same way as the Nash variant apart from step 4 which becomes:

� � -
� � � �

� (
�
8) �
 ��# � � ' ��7 Q #%(� � ') < �� with� � #9L)�� � � ��4 � � �

' L
�
/
 ��#

�
' ' W�

� ? and �6� 9 ����� � # � ' -
Intuitively an agents is created for each player in the game. The OCLP of such

an agents contains as many component as the represented player has payoffs (step
1.). The order among the components follows the expected payoff, higher payoffs
correspond to more specific components (step 2). The various actions a player can
choose from a certain stage of the game are turned into a choice rule which is placed
in the most specific component of the agent modelling the player making the decision
(step 3). Since Nash equilibria do not take into account the sequential structure of
the game, players have to decide upon their strategy before starting the game, leaving
them, for each decision, to reason about both past and future. This is reflected in the
rules (step 4): each non-choice rule is made out of a terminal history (path from top
to bottom in the tree) where the head represents the action taken by the player/agent,
when considering the past and future created by the other players according to this
history. The component of the rule corresponds to the payoff the deciding player
would receive in case the history was actually followed. When considering subgame
perfect equilibria, we know that they do take previous actions into account, making
unnecessary to reason about the past. This is reflected in step 4’. Steps 5 and 6
establish the communication between the agents in the system.

Example 17 For the game of Example 16, the corresponding LPAS’s � 	 and � � are
displayed in Figure 7. A C

�!

" CT
" C?
" CG
A T" TT
" T?

! �� � �
� �� � �
� � �
�.# � �

� � !
� � �� � �� # � �

�F# ! �
� �

A C

A T

�$#

" CT
" C?
" CG

�R��� � !" TT
" T?

� ���� � � �
�� # � �

� # ! �� # � �� ��X� �
� � ��X���

! � ��X���

%
We use & '�(to denote the set of actions appearing in a sequence ' .

Figure 7 The LPAS’s of Example 17

Notice that the answer sets for � 	 match exactly the Nash equilibria of the game,
while the subgame perfect equilibria can be retrieved using the answer sets of � � .
Theorem 3 Let (;.
 �
 �$
9# � � ' �+5 � - be a finite extensive game with perfect informa-
tion and let � 	 and ��� be the corresponding LPAS’s, according to Definition 10. Then,
��� is a Nash equilibrium (resp. subgame perfect equilibrium) for (%;.
 �.
 �$
K#�� � ' � 5 � -
iff the interpretation � with � # (' � ��� for every (&)�� is an answer set for � 	 (resp.
� �).

For the proof of the above theorem, we demonstrate that every c-evolutionary fix-
point of �
� can be constructed in � iterations, with � the number of players in the
game. Of course, this only happens when players or agents know which actions will
lead to an equilibrium state. In practice, it might take more iterations in order to find a
fixpoint. Such a fixpoint computation can easily be seen as the players trying to obtain
actions belonging to an equilibrium state. At first, she picks an action and sees how
the other players respond to this. With this information she can update her actions.
This process is carried on until a equilibrium is reached.

6 Relationship to Other Approaches

In this section we investigate the relationship of our approach with other formalisms.
We restrict to the relationship with Game Theory, logic and agents. For a comparison
with other preference based systems we refer to [2].

In the previous section we have demonstrated that OCLPs and multi-agent systems
based on OCLPs provide a way to represent extensive games with perfect information
in such a way that, depending on the transformation, either the Nash or subgame per-
fect equilibria can be retrieved as the stable models of the system. With the algorithm
for the stable model computation of an OCLP, we immediately have an implementa-
tion for the equilibria of the game that the OCLP is representing. At the end of the pre-
vious section we already mentioned certain extensions to our proposed formalism in
order to investigate other topics relevant to game theory, like for example information
hiding and cheating. Probably the most important benefit for using logic programming
for such research is its immediate return in the form of algorithms which allow for an
efficient monitoring tool for the effects of the changes made.
Another aspect of logic programming that we already mentioned in the introduction,
is its capability to represent more complex games. Take the Travel OCLP (Example 2)
for example. If we just consider the first three components (� � , � 8 and � '), we see the
representation of a very simple strategic or extensive game with a single player (the
person who wants to travel). In this case the equilibrium would be #1;1= ��3:> ? which
corresponds to the situation in which there are few dealers. From the moment that the
dealers outnumber the officers two alternatives instead of just one are needed, which
is impossible in game theory.

There are two main ways of relating logic and games: logic games and game
logics. The former uses the games for the purpose of logic, while the latter uses logic

for the purpose of game theory. Detailed information about their history can be found
in [8]. Our research belongs the category of game logic and, as far as we know, we
are the only ones that look at game theory in the context of logic programming. The
only exception might be [6], but he simply puts game theoretic features on top of his
language. We, on the other hand, do not go outside the realm of logic programming to
retrieve equilibria.

Some research has already been done in the area of agents and games, although
with different viewpoints. For example, [7] investigates methods to prevent agents
exploiting game theoretic properties of negotiations. [6] incorporates the players of
the game directly into its logic programming formalism for strategic games in order to
obtain mixed strategy Nash equilibria. We, on the other hand, are interested in multi-
agent systems that are able to represent, in an intuitive way, games such that agents
correspond with players and models with the equilibria.

References

[1] Marina De Vos and Dirk Vermeir. On the Role of Negation in Choice Logic
Programs. In Michael Gelfond, Nicola Leone, and Gerald Pfeifer, editors, Logic
Programming and Non-Monotonic Reasoning Conference (LPNMR’99), Lecture
Notes in Artificial Intelligence, pages 236–246, Springer Verslag, 1999.

[2] Marina De Vos and Dirk Vermeir. A Logic for Modelling Decision Making
with Dynamic Preferences. In Proceedings of the Logic in Artificial Intelligence
(Jelia2000) workshop, Lecture Notes in Artificial Intelligence, pages 391–406,
Malaga, Spain, 2000. Springer Verslag, 2000.

[3] Marina De Vos and Dirk Vermeir. Logic Programming Agents and Game The-
ory. In Answer Set Programming: Towards Efficient and Scalable Knowledge
Representation and Reasoning, pages 27–33, American Association for Artificial
Intelligence Pres, 2001.

[4] D. Gabbay, E. Laenens, and D. Vermeir. Credulous vs. Sceptical Semantics for
Ordered Logic Programs. In J. Allen, R. Fikes, and E. Sandewall, editors, Pro-
ceedings of the 2nd International Conference on Principles of Knowledge Repre-
sentation and Reasoning, pages 208–217, Morgan Kaufmann, 1991.

[5] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. The MIT
Press, third edition, 1996.

[6] David Poole. The independent choice logic for modelling multiple agents under
uncertainty. Artificial Intelligence, 94(1–2):7–56, 1997.

[7] Jeffrey S. Rosenschein and Gilad Zlotkin. Rules of Encounter. Designing Conven-
tions for Automated Negotiation among Computers. The MIT Press, 1994.

[8] Johan van Benthem. Logic and games. Online course notes of 1999, Stanford
University.

