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Abstract

We define choice logic programs as negation-free datalog programs that
allow rules to have exclusive-only disjunctions in the head. We show that
choice programs are equivalent to semi-negative datalog programs, at least
as far as stable models are concerned. We also discuss an application where
strategic games can be naturally formulated as choice programs; it turns out
that the stable models of such programs capture exactly the set of Nash equi-
libria.
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1 Introduction

Stable model semantics[GL88] can be regarded as introducing nondeterminism
into logic programs, as has been convincingly argued in [SZ90, Sac97]. E.g. a
program such as � � ���� � � �
has no (unique) total well-founded model but it has two total stable models,

namely � ��� ���
	 and � � ��� ��	 , representing a choice between
�

and � . This non-
determinism may not show up in the actual models, as in the program� � ���� � � �� � � �
where only the choice � ��� ����	 turns out to be acceptable (the alternative leading

to a contradiction).

In this paper, we simplify matters by providing for explicit choice sets in the head
of a rule. Using

�
� � to denote a choice between
�

and � , the first example above
can be rewritten as1. ��� � �
Intuitively,

�
is interpreted as “exclusive or”, i.e. either

�
or � , but not both,

should be accepted in the above program.

It turns out that such choice programs, which do not use negation in the body, can
meaningfully simulate arbitrary semi-negative logic programs, at least as far as
their (total) stable model semantics are concerned. Since also the converse holds,
we can conclude that, in a sense, choice is equivalent to negation.

Providing explicit choice as the conclusion of a rule allows for the natural expres-
sion of several interesting problems. In this paper, we show e.g. that strategic
games[OR94] can be conveniently represented using choice programs. Moreover,
the stable models of such a program characterize exactly the pure Nash equilibria
of the game.

1Also the second example can be turned into a negation-free “choice” program, see theorem 2
below.
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2 Choice logic programs

In this paper, we identify a program with its grounded version, i.e. the set of all
ground instances of its clauses. This keeps the program finite as we do not allow
function symbols (i.e. we stick to datalog).

Definition 1 A choice logic program is a finite set of rules of the form �
� �

where � and
�

are finite sets of atoms.

Intuitively, atoms in � are assumed to be xor’ed together while
�

is read as a
conjunction. In examples, we often use

�
to denote exclusive or, while “

�
” is used

to denote conjunction.

Example 1 (prisoner’s dilemma) The following simple program models the well-
known prisoner’s dilemma where ��� means “player � does not confess” and ���
stands for “player � confesses”.
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The semantics of choice logic programs can be defined very simply.

Definition 2 Let � be an choice logic program. The Herbrand base of � , denoted���
, is the set of all atoms occurring in the rules of � . An interpretation is any

subset of
���

. An interpretation � is a model of � if for every rule �
� �

,
���

�
implies that ����� is a singleton. A model of � which is minimal (according to set
inclusion) is called stable.

Example 2 (Graph 3-colorability) Given the graph depicted in figure 2 assign
each node one of three-colors such that no two adjacent nodes have the same
color.
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Figure 1: Example graph which is 3-colorable.

This problem is know as graph 3-colorability and can be easily transformed in the
following choice program:

�������
	 ����
�� ��������	 ����
 � ��������	 � � 
 � � � � � ��	 
� � � � � �
	 ����
 �
�������
	 ����
 �

������� � � 	 
� � � � � � 
 �� � � � � � 
 �� � � � � � 
 �� � � � � � 
 �� � � � � � 
 �
� � � � � � � � 
 �
� � � � � � � � 
 �
� � � � � � � � 
 �
� � � � � � � � 
 �
� � � � � � � � 
 �
� � � � � � � � 
 �
� � � � � � � � 
 �

The first rule states that every node should take one and only one of the three
available colors. The second demands that two adjacent nodes have different
colors. All the other rules are facts describing the depicted graph.
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The stable models for this program reflect the possible solutions for this graph’s
3-colorability:

� ��� ��� � ������� � ��� 
 � ������� � ����
 � ������� � � � 
 � ������� � ��� 
 � ������� � ��� 
 	� ��� ��� � ������� � ��� 
 � ������� � ����
 � ������� � � � 
 � ������� � ��� 
 � ������� � � � 
 	��� � ��� � ������� � ��� 
 � ������� � � � 
 � ������� � � � 
 � ������� � � � 
 � ������� � ��� 
 	�
	 � ��� � ������� � ��� 
 � ������� � � � 
 � ������� � ����
 � ������� � � � 
 � ������� � ��� 
 	��� � ��� � ������� � ��� 
 � ������� � � � 
 � ������� � ����
 � ������� � � � 
 � ������� � ��� 
 	��� � ��� � ������� � ��� 
 � ������� � ����
 � ������� � � � 
 � ������� � ��� 
 � ������� � � � 
 	��
 � ��� � ������� � ��� 
 � ������� � ����
 � ������� � � � 
 � ������� � ��� 
 � ������� � ����
 	��� � ��� � ������� � ��� 
 � ������� � � � 
 � ������� � ����
 � ������� � � � 
 � ������� � ��� 
 	��� � ��� � ������� � � � 
 � ������� � ����
 � ������� � ����
 � ������� � ��� 
 � ������� � ��� 
 	� ����� ��� � ������� � � � 
 � ������� � ����
 � ������� � ����
 � ������� � ��� 
 � ������� � ��� 
 	� � ��� ��� � ������� � � � 
 � ������� � ����
 � ������� � ����
 � ������� � ��� 
 � ������� � ����
 	� � ��� ��� � ������� � � � 
 � ������� � ����
 � ������� � ����
 � ������� � ��� 
 � ������� � � � 
 	

where � stands for the sets of facts from the program.

It turns out that choice logic programs can simulate semi-negative datalog pro-
grams, using the following transformation, which resembles the one used in [SI94]
for the transformation of general disjunctive programs into negation-free disjunc-
tive programs.

Definition 3 Let � be a semi-negative logic program. The corresponding choice
logic program ��� can be obtained from � by replacing each rule

��� � � � � � �
from � with

� � � � ���
and

������ , by

��� ��� � � � � �"! �



� � ��� � �"!�



# �%$ � &"� � �
� � � !� 


where �'� and
� �

are new atoms that are uniquely associated with the rule
�
.

Intuitively,
�(�

is an “epistemic” atom which stands for “the (non-exclusive) dis-
junction of atoms from

�
is believed”. If the positive part of a rule in the original
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program � is true, � � will choose (rules
� !
� ) between accepting the conclusion

and
� �

where
�

is the negative part of the body; the latter preventing rule appli-
cation. Each conclusion is tagged with the corresponding rule (

� !
� ), so that rules

for the same conclusion can be processed independently. Finally, the truth of any
member of

�
implies the truth of

� �
(rules

� !�
).

Definition 4 Let � be a semi-negative logic program and let � � be the corre-
sponding choice logic program. An interpretation � for � � is called rational iff:

# � � $ � & � � � �� �
Intuitively, a rational interpretation contains a justification for every accepted

� �
.

Theorem 1 Let � be a semi-negative datalog program.
�

is a rational stable
model of ��� iff

� � ��� is a (total) stable model of � .

The rationality restriction is necessary to prevent
� �

from being accepted without
any of the elements of

�
being true. For positive-acyclic programs, we can get rid

of this restriction.

Definition 5 A semi-negative logic program � is called positive-acyclic iff there
is an assignment of positive integers to each element of

���
such that the number

of the head of any rule is greater than any of the numbers assigned to any non-
negated atom appearing in the body.

Note that, obviously, all stratified[Prz89] programs are positive-acyclic. Still,
many other “nondeterministic” programs such as� � ���� � � �
are also positive-acyclic.

Theorem 2 Let � be a semi-negative positive-acyclic datalog program. There
exists a choice logic program ��� such that

�
is a stable model of ��� iff

� � ���
is a stable model of � .
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We illustrate the construction underlying theorem 2 on the following program.� � ���� � � �� � � �
The equivalent choice logic program is��� ��� �

� � � � �� � � ��� �� � � �� � � �� � ���
� � ���

Intuitively,
�

stands for “there is a proof for
�

” while
���

stands for “there is
no proof for

�
”. The first two rules force the program to choose between these

alternatives for every atom in the program. The rules concluding
� �

(or � � ) are
constructed in such a way that the truth of the body effectively blocks all possible
proofs for

�
(resp. � ). Note that the example has a single stable model � � � � � 	

which corresponds to the original’s stable model � ��� ����	 .
Choice programs can be trivially simulated by semi-negative datalog programs.

Theorem 3 Let � � be a choice program. There exists a semi-negative datalog
program � such that

�
is a stable model of � � iff

�
is a stable model of � .

3 Computing stable models

Stable models for choice logic programs can be computed by a simple “backtrack-
ing fixpoint” procedure. Essentially, one extends an interpretation by applying an
immediate consequence operation, then makes a choice for every applicable rule2

which is not actually applied3, backtracking if this leads to an inconsistency (i.e.
the current interpretation cannot be extended to a model).

2A rule
�����

is applicable w.r.t. an interpretation � iff
�
	 � .

3An applicable (w.r.t. an interpretation � ) rule is applied iff
��� � is a singleton.
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function fix(set � atom � � ): set � atom ��
set � atom � � � � ;
repeat

for each � � � � 
 $ � do
if
� �

� ��� � $ � & ���$ � � ��� � �	� � � 	 
�� � then
� � � � � � 	

until no change in
�

return
�

	
Figure 2: fix is an auxiliary function for BF

Figure 3 on page 9 presents such a fixpoint computation procedure BF which is
called by the main program using

BF(fix( � ), � ) 

We believe this procedure to be simpler than a similar one presented in [SZ90]
for semi-negative logic programs. BF uses an auxiliary function fix depicted in
figure 2 on page 8. Fix is a variation on the immediate consequence operator: it
computes the least fixpoint of this operator given a fixed set

�
of atoms that are

considered to be false. Note that fix is deterministic since it only draws tentative
conclusions from an applicable rule if there is but one possible choice for an atom
in the head that will be true.

The main procedure BF in figure 3 takes two sets of atoms,
�

and
�

, containing
the atoms that already have been determined to be true and false, respectively.
Note that, because

� � fix � � 

upon entry, there are no applicable rules in �

that have but one undefined atom in the head. The procedure BF works by first
verifying that no rules are violated w.r.t. the current

�
and

�
(see the definition

of � in figure 3). It then computes the set
�

of applicable (but unapplied) rules
for which a choice can be made as to the atom from the head that needs to be true
in order to apply the rule. If there are no such rules, we have a model. Otherwise,
the algorithm successively selects a rule

�
from

�
and a possible choice � from

the head of
�

that would make it applied. This choice is “propagated” using fix,
after which BF is called recursively using the new versions of

�
and

� 4.

4Clearly, the algorithm can be made more efficient, e.g. by memoizing more intermediate
results.
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procedure BF(
�
� � �

set � atom � )�
set � rule � � � � � � � � 
 $ � � ���

� � ��� � � � �


����� �

� � 
 	
if � � �� � 


return /* because some rules are violated */
set � rule �

� � � � � � � 
 $ � � � �
� � � � �	� � � � � 
�


��� 	
if � � � � 


output
�

else
for each ��� � � � 
 $ ��
 �

set � atom � � � �	��� � � � 

for each � � $ � 
 �� � � � � � � � � 	 


BF(fix(
�

),
�

)			
Figure 3: The BF (backtracking fixpoint) procedure for choice logic Programs

Theorem 4 Let � be a choice logic program. Then BF(fix( � ), � ), where BF is
described in figure 3 terminates and computes exactly the set of stable models of
� .

Note that, because of theorem 1, BF can be easily modified to compute the stable
models of any semi-negative logic program through its equivalent choice logic
program.

4 An application to strategic games

A strategic game models a situation where several agents (called players) inde-
pendently make a decision about which action to take, out of a limited set of
possibilities. The result of the actions is determined by the combined effect of
the choices made by each player. Players have a preference for certain outcomes
over others. Often, preferences are modeled indirectly using the concept of payoff
where players are assumed to prefer outcomes where they receive a higher payoff.
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Figure 4: Bach or Stravinsky (BoS)

Example 3 (Bach or Stravinsky) Two people wish to go out together to a music
concert. They can choose for Bach in one theater or for Stravinsky in another one.
Their main concern is to be together, but one person prefers Bach and the other
prefers Stravinsky. If they both choose Bach then the person who preferred Bach
gets a payoff of 2 and the other one a payoff of 1. If both go for Stravinsky, it is the
other way around. If they pick different concerts, they both get a payoff of zero.
The game is represented in figure 4. One player’s actions are identified with the
rows and the other player’s with the columns. The two numbers in the box formed
by row

�
and column � are the players’ payoffs when the row player chooses

�
and the column player chooses � , the first component being the payoff of the row
player.

Definition 6 ([OR94]) A strategic game is a tuple � � � � � � 
 �����
� ��� � 
 � ���"! where

# � is a finite set of players;

# for each player � $ � , � � is a nonempty set of actions that are available to
her (we assume that � �	� �%$ ��� whenever �

��'& ) and,

# for each player � $ � , � � is a preference relation on ���)(*$������+$
An element , $ � is called a profile. For a profile , we use , � to denote the
component of , in � � . For any player � $ � , we define � � � � ( $-�.�0/21 �43 �+$ .
Similarly, an element of � � � will often be denoted as , � � . For , � ��$ � � � and� � $ � � we will abbreviate as �5, � � � � � 
 the profile ,

! $ � which is such that
,
!
� � � � and ,

!
$ �6,7$ for all &

�� � .

Playing a game � � � � � � 
 � �.�
� �2� � 
 � �.�"! consists of each player � $ � selecting a

single action from the set of actions � � available to her. Since players are thought
to be rational, it is assumed that a player will select an action that leads to a
“preferred” profile. The problem, of course, is that a player needs to make a
decision not knowing what the other players will choose.
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The notion of Nash equilibrium shows that, in many cases, it is still possible to
limit the possible outcomes (profiles) of the game.

Definition 7 A Nash equilibrium of a strategic game � � � � � � 
 � �.�
� ��� � 
 �����"! is a

profile ,�� satisfying

# � � $ � � & � , � � �
�
, ��



� � �5, � � �

� � � 


Intuitively, a profile , � is a Nash equilibrium if no player can unilaterally improve
upon his choice. Put in another way, given the other players’ actions , � � � , , �� is the
best player � can do5.

Given a strategic game, it is natural to consider those moves that are best for player
� , given the other players’ choices.

Definition 8 Let � � � � � � 
 � �.�
� �2� � 
 � �.�%! be a strategic game. The best response

function
�
� for player � $ � is defined by�

� �5, � � 
 � � � � $ � � � # � !� $ � � & �5, � � � � � 
 � � � , � � � � !� 
 	
The following definition shows how games allow an intuitive representation as
choice logic programs.

Definition 9 Let
� � � � � � � � 
 � �.�

� �2� � 
 � �.�"! be a strategic game. The choice
logic program ��� associated with

�
contains the following rules:

# For each player � , ��� contains the rule � �
�

. This rule ensures that each
player � chooses exactly one action from � � .

# For each player � and for each profile , $ � � � , ��� contains a rule6
�
� � , 
 � , .

It models the fact that a player will select a “best response”, given the other
players’ choices.

Essentially, ��� simply forces players to choose an action. Moreover, the action
chosen should be a “best response” to the other players’ actual choices.

5Note that the actions of the other players are not actually known to � .
6We abuse notation by writing � for the set of components of � .
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Theorem 5 For every strategic game
� � � � � � � � 
 � �.�

� ��� � 
 � ���"! there exists a
choice logic program ��� such that the set of stable models of � � coincides with
the set of Nash equilibria of

�
.

Example 4 Let us reconsider the Bach or Stravinsky game of example 3. This
game has two Nash equilibria, namely:

� ������� �
� � ����� �



and � �	�5
 ��
���������� �

� �	�5
���
���������� �



The corresponding choice logic program is:

� � � � �
�

� � � � �
�

� � � � �
� �

�
� �� � � � �

� �
�

� �
where

� � and � � are shorthands for player � choosing respectively
�������

or
�	��
���
����������

.
This program has two stable models, namely � � � � � � 	 and � � � � � � 	 that correspond
to the Nash equilibria of the game.

Example 5 The program in example 1 is the choice logic program corresponding
to the strategic game depicted in figure 5. Here two prisoners are interrogated

��� ����� ��������	���� 
�������	����
��� �����+��������	���� � � � �

��


�������	���� 
 �

� �
�
�

Figure 5: Prisoner’s Dilemma

in separate rooms. Each one must decide whether or not to confess. Confessing
implicates the other prisoner and may result in a lighter sentence, provided the
other prisoner did not confess. This game has one Nash equilibrium

� 
�������	���� �
� 
�������	���� � 	

corresponding the single stable model of the program of example 1.
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Note that the construction of � � can be regarded as an encoding of the fact that
the rationality and preferences of the players are common knowledge, as all rules
interact and “cooperate” to verify atoms. This observation opens the possibility
of extending the present approach to one where players may not be fully aware of
each other’s beliefs. This could be done, e.g. by considering a “choice” variation
of “ordered logic programs”[GV91, GVN94, LV90].

Another interesting aspect of theorem 5 is that, in combination with theorem 4, it
provides a systematic method for the computation of Nash equilibria for (finite)
strategic games.

Corollary 1 For every strategic game
� � � � � � � � 
 � �.�

� �2� � 
 � �.�%! there exists a
semi-negative datalog program program � � such that the set of stable models of
� � coincides with the set of Nash equilibria of

�
.

5 Relationship to other approaches and directions
for further research

The logical foundations of game theory have been studied for a long time in the
confines of epistemic logic, see e.g. [BB] for a good overview. However, to the
best of our knowledge, very little has been done on using logic programming-like
formalisms to model game-theoretic concepts.

An important exception is [Poo97] which introduces a formalism called “Indepen-
dent Choice Logic” (ICL) which uses (acyclic) logic programs to deterministically
model the consequences of choices made by agents. Since choices are external to
the logic program, [Poo97] restricts the programs further to not only be determin-
istic (i.e. each choice leads to a unique stable model) but also independent in the
sense that literals representing alternatives may not influence each other, e.g. they
may not appear in the head of rules. ICL is further extended to reconstruct much
of classical game theory and other related fields.

The main difference with our approach is that we do not go outside of the realm of
logic programming to recover the notion of Nash equilibria. Contrary to ICL, we
rely on nondeterminism to represent alternatives, and on the properties of stable
semantics to obtain Nash equilibria. As for the consequences of choices, these are
represented in choice logic programs, much as they would be in ICL.

The present paper succeeded in recovering Nash equilibria without adding any
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fundamentally new features to logic programs (on the contrary, we got rid of nega-
tion in the body). However, the results are restricted to so-called “pure” equilibria
where each participant must choose a single response. We would like to extend
the formalism further to cover, in a similar way, also other game-theoretic notions.
E.g. we are presently working on extending our approach to represent mixed equi-
libria (which are probability distributions over alternatives) as well. Finally, as
mentioned in section 4, using (an extension of) ordered logic could simplify the
introduction of epistemic features into the formalism.
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