
Dynamic Decision-Making in Logic Programming and
Game Theory

Marina De Vos and Dirk Vermeir
�

Dept of Computer Science
University of Bath

mdv@cs.bath.ac.uk
�

Dept. of Computer Science
Vrije Universiteit Brussel, VUB
dvermeir@vub.ac.be

Abstract. We present a framework for decision making with circumstance-de-
pendent preferences and decisions. This formalism, called Ordered Choice Logic
Programming, allows decisions that comprise multiple alternatives, which be-
come available only when a choice between them is forced. The skeptical seman-
tics is based on answer sets for which we provide a fixpoint characterization and
a bottom-up algorithm. OCLPs can be used to represent and extend game theory
concepts. We demonstrate that OCLPs allow an elegant translation of finite ex-
tensive games with perfect information such that the c-answer sets correspond to
the Nash equilibria of the game. These equilibria are not player-deterministic, in
the sense that a single player, given the other players’ actions, could rationally
leave an equilibrium state by changing her action profile. Therefor cautious Nash
equilibria are introduced as the answer sets of the transformed game.

1 Introduction

Preferences or order among defaults and alternatives for a decision play an important
role in knowledge representation and non-monotonic reasoning. In case of conflict, hu-
mans tend to prefer a default or alternative that corresponds to more reliable, more
complete, more preferred or more specific information. In recent years, several propos-
als for the explicit representation of preference in logic programming formalisms have
been put forward: [LV90,AAP

�

98] are just two examples.
Working with preferences/order has applications in various domains, e.g. law, object

orientation, model based diagnosis or configuration tasks. In this paper we present a
formalism that enables reasoning about decisions involving multiple alternatives that
are dependent on the situation. The dynamics of our formalism is demonstrated by the
following example.

Example 1. This year, the choice for a holiday destination has been reduced to a city trip
to London or a fortnight stay in either Spain or Cuba. A weekend London is rather short
and Cuba is expensive. With a larger budget however, we could have both a holiday in
Cuba and a trip to London. Given these considerations, there are two possible outcomes:
we have a small budget and we should opt for Spain, or with a larger budget, we can
combine Cuba and London.

In both situations we have that Cuba, Spain and London are alternatives for the choice
of a travel destination since to have no summer vacation is not an option. In the first
outcome, we simply take the best possible alternative: Spain. Otherwise, we have good
reason to take more than one alternative. So we take both Cuba and London.

To allow this kind of reasoning we need two mechanisms: one to set the conditional
decisions and one to allow circumstance-dependent preferences for the possible alter-
natives of the decisions. As argued in [DVV99], choice logic programs are an intuitive
tool for representing decision-problems, as the semantics ensures that exactly one alter-
native is chosen when the condition for the decision is met. For the preferences, we use a
multi-alternative generalization of the ideas behind ordered logic programming[LV90].
Our formalism, called Ordered Choice Logic Programming (OCLP), combines the best
of these formalisms by defining a strict partial order among choice logic programs,
called components. Each component inherits the rules from less specific components.
The normal semantics is used until a conflict arises; then the more specific alternative is
decided upon. We equip our OCLPs with an answer set semantics to obtain the rational
solutions for the represented decision-problem. A fixpoint characterization and an effi-
cient algorithm for our semantics will be provided. Furthermore we demonstrate that a
logic program or a choice logic program can be elegantly transformed to a negation-free
OCLP such that the stable models of the former are obtained as the answer sets of the
latter.

Although ordered choice logic programming can add new viewpoints to the above
mentioned application domains, we will focus on a novel application in Game Theory.
In [DVV00], it was shown that an extensive game with perfect information can be trans-
formed into an OCLP such that the c-answer sets of the latter correspond to the Nash
equilibria of the former. Although these equilibria are very useful for predicting the
outcome of a game, it is possible that a player, given the other players’ actions, still has
a rational choice between multiple outcomes. To overcome this, we introduce cautious
Nash equilibria as the answer sets of the transformed programs.

2 Choice Logic Programming

A Choice Logic Program [DVV99], CLP for short, is a finite set of rules of the form�����
where

�
and

�
are finite sets of ground atoms. Intuitively, atoms in

�
are

assumed to be mutually exclusive while
�

is read as a conjunction (note that
�

may be
empty, i.e. constraints are allowed). The set

�
is called the head of the rule � , denoted���

, while
�

is its body, denoted
� �

. In examples, we often use “ 	 ” to denote exclusive
or, while “
 ” is used to denote conjunction.

The Herbrand base of a CLP � , denoted ��
 , is the set of all atoms that appear in
� . An interpretation is a consistent1 subset of �
���� �
 . For an interpretation � , we
use � �

to denote its positive part, i.e. � ��� �����
 . Similarly, we use ��� to denote
the negative part of � , i.e. ��� � ��� ��� � �
�� . An atom � is true (resp. false) w.r.t. to
an interpretation � for a CLP � if � �!� �

(resp. � �"�#�). An interpretation is total iff
� � � �#� � �
 . The set of all interpretations is denoted $
 . The positive complement
of an interpretation � , denoted � , equals ��
 %&� �

.

1 A set ' is consistent iff ')(+*,'.-./ .

A rule � in a CLP is said to be applicable w.r.t. an interpretation � when
� ��� � .

Since we are modeling choice, we have that � is applied when � is applicable and� � � ��� � ���
2. A model is defined in the usual way as a total interpretation that makes

every applicable rule applied. A model � is said to be minimal if there does not exist
a model � such that � ��� � �

. For choice logic programs, the stable model3 and the
minimal model semantics coincides.

3 Ordered Choice Logic Programming

An ordered choice logic program [DVV00] is a collection of choice logic programs,
called components, each representing a portion of information. The relevance or pre-
ciseness of each component with respect to the other components is expressed by a
strict pointed partial order4.

Definition 1. An Ordered Choice Logic Program, or OCLP, is a pair 	�

��� where

is a finite set of choice logic programs, called components, and “ � ” is a strict pointed
partial order on
 .

For two components ���
���� ��
 , ��������� implies that ��� contains more general

� �

��� ��� �"!$#&% !('*),+-'.0/(132,/(1 #&% !4'*)4+5'
.0/(132,/(176 ��� �"! 6�8,9 !(: 1 #<;='>!(?�+-%;='>!4?@+5%�#
8,9 !4: 1 #�BA

�BC

��� �"!D#
� � .E/(1324/(1 #

FHG !(%I% 6 % !4'*)4+5'J#

Fig. 1 The OCLP of Example 2

information than ��� . Throughout the ex-
amples, we will often represent an OCLP
� by means of a directed acyclic graph
(dag) in which the nodes represent the
components and the arcs the � -relation.

Example 2. The decision problem from
the introduction (Example 1) can easily be
written as the OCLP in Figure 1.

For an OCLP � , we introduce �LK as the
CLP that contains all the rules that appear
in one of the components of the OCLP.
Each rule �+� �NM is assumed to be labeled

by the component it was taken from and we use O � � � to retrieve this component.
Having �PK , we can define an interpretation for an OCLP as an interpretation of the

underlying �LK , leaving the definitions for an applicable and applied rule unchanged.

Example 3. The sets � �RQTSVU�W@X
4Y(Z X\[�[
 ��]3^ X_�`
 ��a"b X3c d,[He , f �RQ agb X\c\d4[
 SVU�W�X
4Y(Z X\[�[

�ihkj `Tl j `
 ��]3^ X_�`
 � [mX bgn d b e , o �RQ a"b X\c\d4[
]3^ X_�`
4Y(Z X\[�[
 � [*X bgn d b
 �ihkj `Tl j `
 � SVU�W�X�e
and p �RQ a"b X\c\d,[
 [mX bgn d b
 hqj `rl j `
]3^ X_�`
 SVU�W�X
 � Y(Z X3[�[se

are all interpretations for the
OCLP of Example 2. The interpretation � makes the rule Y(Z X3[�[[mX b"n d b � applied
while the rule hqj `rl j ` � is applicable but not applied. While f , o and p are total, �
is not.

2 For a a set t , we use u tDu do denote its cardinality.
3 [DVV99] for detailed information.
4 A relation v on a set ' is a strict partial order iff v is anti-reflexive, anti-symmetric and

transitive. v is pointed if there is an element wyx�' such that wzv�{ for all {�x ' .

A decision involves a choice between several alternatives, as indicated by so-called
choice rules, i.e. rules with multiple head atoms. To determine which atoms are alter-
natives for each other, we also need to take into account the preference order: an atom
� is an alternative for an atom � in a component � if there is an applicable choice rule
present in a component at least as preferred as � , such that � and � appear together in
the head.

Definition 2. Let � � 	

��� be an OCLP, � an interpretation and let � �$
 . The set
of alternatives in � for an atom � � ��
�� w.r.t. � , denoted ���� � � � , is defined as5:

� �� � � � � Q � ��� ����� K
	 O � � ��� ��
 � � � ��
 �
�� � � � with ���� � e��

As long as we do not encounter any conflict, we can adapt the usual ordered logic se-
mantics [LV90] where defeat among rules is used to select a more preferred alternative.
But what happens if two alternatives are equally preferred? In this paper, we adopt a
cautious approach6 where a rule � is only defeated if there are more preferred rules
suggesting alternatives for each atom in

� �
.

Definition 3. Let � be an interpretation for an OCLP � . A rule � � � K is defeated
w.r.t. � iff � � � � � 	 � ��� ���PK 	 O � ��� � � O � � �
 � ��� � ��
 � ���V� ������ ��� � � � �
The reason for requiring that the head of a defeater contains only alternatives makes
sure that the defeater is operational in the same context as the defeated rule.

Example 4. Reconsider the interpretations from Example 3. The alternatives for
SVU�W@X

in � � w.r.t. f are ���
! � SVU�W�X � �RQ]3^ X_�`
 hqj `Tl j ` e . W.r.t. � we obtain ���
" � S U�W�X � �$# ,
since the choice rule in �&% is not applicable. When we take �&' instead of � � , we obtain,
w.r.t. f : ���
! � SVU�W�X � �$# .

The rule hqj `rl j ` � is defeated w.r.t. f by the rule
SVU�W�X �

. The rule hkj `Tl j ` 	S U�W�X]z^ X3_�` � is defeated w.r.t. p by the two rules in �(' .
Definition 4. Let � be an OCLP. A total interpretation � is a model iff every rule in
�PK is either not applicable, applied or defeated w.r.t. � . A model � is called minimal
iff � is minimal according to set inclusion.

Example 5. In Example 3, only o and p are models. Model p is not minimal because
of the model) � Q a"b X\c\d4[
 [mX bgn d b
 SVU�W�X
 hqj `rl j `
 ��]3^ X_�`
 � Y(Z X3[�[se

. The minimal mod-
els o and) correspond to the intuitive outcomes of the problem.

4 The Answer Set Semantics

4.1 Definition

The simple minimal semantics presented above does not always yield intuitive out-
comes, as demonstrated by the program below.

5 * is the reflexive closure of + .
6 A credulous approach to this program can be found in [DVV00].

Example 6. Consider the program � � 	 Q O �
5O,�
@O % e
,��� where O � � Q � � e
, O4� �Q � � e

, O % � Q ��	 � � O e and O % � O,� � O
� . The minimal models are
Q �
�� e , where

no choice between � and � is forced, and
Q O
 � e . The latter is not intuitive due to the

gratuitous assumption of O .
We introduce the so-called answer set semantics which, while preserving minimality,
prevents unnatural models such as the one from Example 6.

Definition 5. Let � be a total interpretation for an OCLP � . The Gelfond-Lifschitz
transformation for � w.r.t. � , denoted � � , is the choice logic program obtained from
�PK by removing all defeated rules. � is called an answer set for � iff � is a stable
model for � � .

4.2 Fixpoint Characterization

Although negation is not explicitly present in an ordered choice logic program, it does
appear implicitly. Taking a decision implies that you select one alternative to be true
while the others need to be falsified. To group all atoms that may be considered false,
we extend the notion of unfounded set for choice logic programs[DVV99] to handle
preference. In order to do so, the notion of indefeasible rules is introduced to guarantee
that a rule will not be defeated if one extends the current interpretation.

Definition 6. Let � be an interpretation for an OCLP � . A rule � from � is said to be
indefeasible w.r.t. � iff � is not defeated w.r.t. any interpretation f such that � � f . A
set
��� �
�� is called an unfounded set w.r.t. � iff for each � � � one of the following

conditions is satisfied:

1.
� ��� � � 	 � � � � � �PK 	 � � ��
 � � � ��$#
 � is indefeasible w.r.t. � ; or

2.
� � �
 � 	 � � � ; or

3. � � � �PK where � � � � , one of the following conditions holds:
(a)
� � � � ���� # ; or

(b)
� � � � �� # ; or

(c) � is defeated w.r.t. � ; or
(d) � � � % Q � e � � � �� # ; or
(e)
� � � � � ��$# .

The set of all unfounded sets for � w.r.t. � is denoted �&
 � � � . The greatest unfounded
set for � w.r.t. � , denoted ���	��
 � � � , is the union of all unfounded sets for � w.r.t. � . �
is said to be unfounded-free iff � �
���	��
 � � � � # .
Condition (1) above expresses that the choice is exclusive (� cannot be defeated, so� � � � � � has to be 1 in order for � to be or become a model) and thus alternatives to the
actual choice are to be considered false. Condition (2) implies that any atom that would
cause a constraint to be violated must be considered false. Condition (3) generalizes
the definition in [DVV99] where we have added conditions c) and d). The latter is a
weaker version of condition (1). In case condition (3) is satisfied, we know that there is
no reason to consider � true.

It is easy to verify that ���	�
 � � � is itself an unfounded set for � w.r.t. � and that
the ���	�&
 -operator is monotonic.

The greatest unfounded set is a useful tool for the detection of models and answer
sets, as demonstrated by the following theorem.

Theorem 1. Let � be a model for an OCLP � . Then � � � �
 � � � . Moreover, �
is an answer set iff � is unfounded-free, i.e. � � ���	�
 � � � � #

, which is itself
equivalent to ���	��
 � � � � � � .

While the ���	��
 -operator yields false atoms, the next operator produces atoms that
must be true in any model extension of its argument. Combined with ���	�
 , we obtain
an operator that gives an indication on how to change an interpretation in order to extend
it to a model.

Definition 7. The immediate consequence operator
�
���� �
 � ��� �
 ��� �	��
 � ,

where � be an OCLP, is defined by
�
 � � � � Q �.� �
 � � � � 	 � � � � �PK 	 � �

� ��
 � � ��
 � is indefeasible w.r.t. � e .

The operator �

� $,
 � � �
�� ��� �
�� is defined by �
 � � � � �
 � � �#� � ���	�&
 � � � .
Theorem 2. Let � be an OCLP. A total interpretation � � $
 is an answer set iff �
is a fixpoint of �
 .

The least fixpoint ���
 of �
 , if it exists7, can be regarded as the ”kernel” of any answer
set (e.g ���
 is a subset of every answer set). If ���
 does not not exist, we know that the
program does not have an answer set. If ���
 is total, it must be the unique answer set
of �

4.3 Algorithm

For �
 to be useful in the computation of answer sets, we need a way to compute great-
est unfounded set. The best way of dealing with this is providing a fixpoint-operator.
This operator, given a program, an interpretation and a set of atoms, should maintain
those atoms that can belong to an unfounded set w.r.t. the given interpretation. By re-
peating this process, starting from the Herbrand base, one automatically obtains the
greatest unfounded set. Doing this, we immmediately have a tool to verify unfounded-
freeness of an interpretation. The operator taking care of this is called the ��
�� � -operator.
The selection of atoms from the input is identical to verifying whether the input would
be an unfounded set, with this difference that instead of having a yes/no answer the
operator returns those atoms in the set fulfilling the conditions.

If ���
 is total, it is the unique answer set. Otherwise, a mechanism is required to
proceed from � �
 toward an answer set. Since � �
 � � � �
 cannot be a model, we
know that there must exist an applicable rule which is not defeated and not yet applied.
In this case we have to choose which of the head elements we will assume to be true;
the others will then be assumed false. The combination of such literals is called a choice
set. The collection of all these choice sets w.r.t. an interpretation � is denoted

 � � � .
Thus we can go from ���
 to any answer set by simply adding choice sets until there
are no more choice sets available. There is no telling which choice sets should be taken,

7 The fixpoint may not exists because ��������	� can become inconsistent, i.e outside of the domain
of � � , for some � �"! .

Procedure Compute-Answer(� � :SetOfLiterals); (* � � always consistent *)
var t , ���� , � � � � : SetOfLiterals;
begin

if
� � ��� � � - / (* no choices available *)

then if ��� ��� 	�

��� 	�
 ��� �� � - / (* and unfounded-free *)

output ” � �
� * � � is an answer set of � ”;

end-if;
else for each t x � � ��� � � do (* branch over all choice sets *)

� �
� ��� - � � � t ; (* Assume the truth of a choice set *)

repeat (* add atoms by means of the � � -operator *)
� �
�
� - � � � � ;

� �
� ��� -�� � ��� � �

� � � ;
until � �

� � - ���� or � �
� � (�* � � � ���-./ ;

if � �
� � (�* � � � � -./ (* � �

� � is consistent *)
then Compute-Answer(� �

� �);
end-if;

end-for;
end-if;

end-procedure;

var � , � : SetOfLiterals;�
: SetOfAtoms;

begin (*Main *)
� � -./ ;
repeat (* Computation of � �� if it exists *)

� � - � ;� � -������ � � � � ; (* by means of � � ��� �"! � � � *)
if
� (#� �-./ (* � not unfounded-free *)

then exit
end-if;
� � -$� � � � � � * � ; (* - � � � � � *)

until � -$� ;
if �

� � ��% - ! � �
then output ” � is the unique answer set for � ”;
else Compute-Answer(I)
end-if;

end.

Fig. 2 The Algorithm for the computation of answer sets.

so we need to branch over all of them. To prevent too much wild guessing, we will
use a combination of applying choice sets and the immediate consequence operator.
Because it is possible that a wrong choice is made, we also need some consistency
testing along the way and an unfounded-freeness test of the final interpretation made
total by adding the negation of any remaining undecided atoms. An answer set is found
if an interpretation survives all the tests. The algorithm is depicted in Fig. 2. For a finite
OCLP this program halts in a finite amount of time returning the answer sets.

5 Logic Programming in OCLP

In [DVV99] it was shown that choice logic programs can represent semi-negative logic
programs However, the stable models of the logic program did not exactly match with
the stable models of the CLP: an extra condition, namely rationality, was required.
Generalizing to OCLP, we do obtain a full one-to-one correspondence.

We can take it even a step further to the answer set semantics of general logic pro-
grams8.

Definition 8. Let � be a general semi-negative logic program. The corresponding OCLP
��� is defined by 	 Q �
 �
5� e
@� � � � � � with

� �RQ ��� � � � � �
 e
� �RQ � � �
�� � � � � � � � � �
 � � � � e �Q ��� � �
���� � � � � � � � � �
 � � e �Q � �
@� � � � � � � � �
 � � e

� �RQ � 	 ��� � � � � ���
 e

where, for � ���
 , � � is a fresh atom representing � � .
Intuitively, the choice rules in � force a choice between � and � � while the rules in �
encode “negation by default” and the rules in

�
ensure consistency.

Theorem 3. Let � be a general logic program. Then, � � �&
 is an answer set of �
iff � is an answer set for � � with9. � �.� � � �"� �
)%�� � � .

The proof of this theorem relies on the choice rules to be of the form � 	 � � � � . The
next example demonstrates that this is indeed essential.

Example 7. Consider the very simple logic program � :
c\X	��X a _ j ` � c\X	��X a _ j ` .

Obviously, we obtain
#

as the only answer set of this program. When we apply the
transformation of Definition 8, we obtain a OCLP �
� with a single answer set � with
� � � Q c\X	��X a _ j ` � e . Suppose we would use choice rules with empty body. Then the
program � � would produce two answer sets: � and � with � �.�RQ0c X��@X a _ j ` e .

6 Extensive Games with Perfect Information

An extensive game[OR96] is a detailed description of a sequential structure represent-
ing the decision problems encountered by agents (called players) in strategic decision
making (agents are capable of reasoning about their actions in a rational manner). The
agents in the game are perfectly informed of all events that previously occurred. Thus,
they can decide upon their action(s) using information about the actions which have
already taken place. This is done by means of passing histories of previous actions to
the deciding agents. Terminal histories are obtained when all the agents/players have

8 Programs that also allow negation-as-failure in the head of their rules [Lif00]
9 For a set t x ! � , t � -
�4w � u
wyx t�� .

made their decision(s). Players have a preference for certain outcomes over others. Of-
ten, preferences are indirectly modeled using the concept of payoff where players are
assumed to prefer outcomes where they receive a higher payoff.

Summarizing, an extensive game with perfect information is a 4-tuple 	>�
 �
 ��
 �����
������� � , containing the players � of the game, the histories

�
, where each history is a

sequence of actions, a player function � � � � � telling who’s turn it is after a
certain history and a preference relation � � for each player 	 over the set of terminal
histories. We will use

� ��
 � to denoted the set of actions a player can choose from after
an non-terminal history
 .

For the examples, we use a more convenient tree representation: each path starting at
the root represents a history. The terminal histories are the paths ending in the leafs. The
numbers next to the nodes represent the players while the labels on the arcs represent
actions. The numbers below the terminal histories are payoffs representing the players’
preferences (the first number is the payoff of the first player, the second number is the
payoff of the second player).

A strategy of a player in an extensive game is a plan that specifies the actions chosen
by the player for every history after which it is her turn to move. A strategy profile
contains a strategy for each player.

The first solution concept for an extensive game with perfect information ignores
the sequential structure of the game; it treats the strategies as choices that are made
once and for all before the actual game starts. A strategy profile is a Nash equilibrium if
no player can unilaterally improve upon her choice. Put in another way, given the other
players’ strategies, the strategy stated for the player is the best she can do.

Example 8. The game in Fig. 3 models an individuals’ predicament in the following

�

� � � �

1W,U�� W@X��zd
� �

���
 � �
�

� � � �

2Y agb X�� W�d b(b _>d Y ����d b(b _>d Y� �
� �
 � �

�

 � � �
1� b d@X Z ` j � b d@X Z�

���
 � �
�
� �
 � �

Fig. 3 The cake game of Example 8

situation: two ladies have decided that they
wanted fruit cake for dessert. There are
two possibilities: they either bake a cake
or they buy one. At the bakery shop one
can choose strawberry and cherry cake. For
strawberry cake there is the possibility to
have whipped cream on top or not. They
agree that the first lady will decide on how
to get the cake and, if necessary, whether a
topping is wanted or not. The second lady

will be picking the type of fruit cake. This game has two Nash equilibria:QzQEW,U��
 � b d�X Z e
 Q Y agb X�� W�d b(b _>d Y e e and
QzQBW4U��
 ` j � b d�X Z e
 Q�����d b(b _>d Y e e��

In [DVV00], it was shown that OCLPs an be used to represent this type of game in
order to obtain the equilibria. However, the correspondence relies on a more credulous
notion of defeating, which we reproduce below.

Definition 9. Let � be an interpretation for a OCLP � . A rule �"� � K is c-defeated
w.r.t. � iff � � � � � 	 � � � ���PK 	 O � � � �� O � ��� �
 ��� is applied w.r.t. �
 � ���V� ������ ��� � � � .
The difference with ordinary defeat is that we here allow that c-defeaters come from
the same or an unrelated component. However in return we demand that this c-defeater
is applied instead of just applicable.

The definitions for c-models and c-answer sets are the same (see Definition 4 and
Definition 5) as the definitions for ordinary models and answer sets except that c-
defeating is used instead of defeating. The credulous semantics can be used to obtain a
game’s Nash equilibria.

Definition 10. Let 	>�
 �
 ��
 ��� � � � ���N� be a extensive game with perfect information.
The corresponding OCLP � � can be constructed in the following way:

1.
 � Q � � e � Q ��� ��� 	 �D�

 ��) 	�� ��� � ��
 � e ;
2. � � � � � for all � � �
 ;
3. � � �
@��	 �
 	 � � � ��	 iff ��

� ;
4. �
 � � � %�) � 	 � � ��
 � � � � � � ;
5. �
 �
 � �
 � ��) 	 � � � � � � with

� � Q � ���
�� 10 �
 �
 % �
��
 � �
 % � ��
� ��
 � � e and � ���
 ����� � ��
 � .

The set of components consists of a component containing all the decisions that
need to be considered and a component for each payoff. The order among the compo-
nents follows the expected payoff (higher payoffs correspond to more specific compo-
nents) with the decision component at the bottom of the hierarchy (the most specific
component). Since Nash equilibria do not take into account the sequential structure of
the game, players have to decide upon their strategy before starting the game, leaving
them to reason about both past and future. This is reflected in the rules: each rule in a
payoff component is made out of a terminal history (path from top to bottom in the tree)
where the head represents the action taken when considering the past and future created
by the other players according to this history. The component of the rule corresponds
with the payoff the deciding player would receive in case the history was carried out.

Theorem 4. Let � � 	>�)
 �
 ��
 ��� � ������� � be a finite extensive game with perfect in-
formation and let � � be its corresponding OCLP. Then, � K is a Nash equilibrium for �
iff �\K is a c-answer set for � � .

Example 9. Fig 4 depicts the corresponding OCLP � � of the game in Example 8.

� ��� #���� +5's's:m+ F

�!
� �

� �

� A
�#" �5'>+H! G 6 13/ �5'>+H! G #F ;='>!%$r�"+-'s's:*+ F 6 ��� +5's's:m+ F #�-��� 6 �"!'&4+ #F ;='>!%$r�"+-'s's:*+ F #<� ���)(*�5'>+H! G

�-��� # F ;='>!%$r�"+-'s's:*+ F�5'>+H! G # F ;*'g!%$T�"+5's's:m+ F

�+� +5's's:m+ F #<�-���F ;='>!%$r�"+-'s's:*+ F #<� ���)(13/ �5'>+H! G
�-��� # F ;='>!%$r�"+-'s's:*+ F13/ �5'>+H! G # F ;='>!,$T�"+-'s's:*+ F
�"!'&4+J#

Fig. 4 � � of Example 4

This program has two c-answer sets corre-
sponding to the Nash equilibria of the game.

When rational players engage in a game they
will always choose strategy profiles that be-
long to a Nash equilibrium. A deterministic
game would be a game for which the outcome
was already known from the start. An exam-
ple of such a game is the Prisoner’s Dilemma.
Real determinism can only exist when there
is a single Nash equilibrium. Demanding that
every game should have only one logical out-
come would be unrealistic.

However, we feel that having multiple outcomes should be a strategic decision of many

10 We use - .0/ to denote the set of actions appearing in a sequence . .

players and not just a single player. In other words, it should not be possible for a single
player, given the other players’ actions, to deviate rationally from the envisioned out-
come. We call this player-determinism. The equilibrium

QzQBW4U��
 ` j � b d@X Z e
 ����d b(b _>d Y e
of Example 8 makes the game not player-deterministic. Given the actions of the first
player, e.g.

QEW,U��
 ` j � b d�X Z e
, the second player can still rationally decide between

Y a"b X�� W@d b(b _>d Y and
����d b(b _>d Y . Both actions would yield her a payoff of 1. So, the first

player cannot be certain that she will receive the payoff of Nash equilibrium.

To characterize such situations, we introduce cautious Nash equilibria as the (skeptical)
answer sets of the corresponding program.

Definition 11. Let � � 	>�)
 �
 ��
 ��� � � ����� � be a finite extensive game with perfect
information and let � � be its corresponding OCLP. A strategy profile �zK is a cautious
Nash equilibrium iff �3K is an answer set for � � .

Example 10. Consider the extensive game from Example 8. This program has one cau-
tious Nash equilibrium: M =

QzQBW4U��
 � b d@X Z e
 Q Y agb X�� W�d b(b _>d Y eze .

Theorem 5. Let 	g�
 �
 ��
 � � � � �����N� be an extensive game with perfect information.
Then, every cautious Nash equilibrium for this game is also a Nash equilibrium.

Cautious Nash equilibria have some interesting properties that distinguish them from
normal Nash equilibria. E.g. two cautious Nash equilibria cannot have the same strate-
gies for all but one player unless the same outcome is reached.

7 Relationship with Other Approaches

7.1 OCLP and Game Theory

In the previous section we not only demonstrated that OCLP can be used to retrieve
game theoretic notions but that they also allow to extend game theory. Besides defin-
ing new equilibria, OCLPs are capable to represent more complex games more easily:
variables, depending on the their unification different decisions need to be made and
external information influencing the game’s outcome are just two examples. Perhaps
even more important is the ability for a player to take more than one action as demon-
strated by the Travel OCLP of the introduction (Examples 1 and 2). If we just consider
the first three components (� � , �q� and ��%), we see the representation extensive game
with a single player (the person who wants to go on vacation). In this case the equilib-
rium would be

Q Y ^ X_�`qe which corresponds to the situation with a smaller budget. With
a larger budget, you will be able to afford more than one vacation. In game theory this
is simply not possible: every player is forced to take a single action.

7.2 Preferences/Order

Over the years various logic (programming) formalisms have been introduced to deal
with the notions of preference, order and updates. Most of these systems can be di-
vided into two groups: the ones that uses the mechanism of preference to filter out

unwanted models and the once that incorporate preference into their model semantics
from the start. Examples of the former are: [SI96] with a preference on atoms and
[BE99] to obtain the most preferred answer sets. Our OCLPs can found in the latter
group. Other examples of such formalisms are: [Bre96] with preferences being part of
rules, [BLR98] and [LV90] which use a similar defeating strategy as us for respectively
disjunctive logic programs and extended logic programs. The main difference between
our systems is the way alternatives are defined. In previous systems alternatives are
fixed as an atoms and its (classical) negation. An other example is the dynamic logic
programming of [AAP

�

98]. A stable model of such a dynamic logic program is a stable
model of the generalized program obtained by removing the rejected rules. The defini-
tion of a rejected rule corresponds to our definition of a defeated rule when � and � �
are considered alternatives. Since the stable model semantics and the answer set se-
mantics coincide for generalized logic programs. it is not hard to see that Definition 8,
with some minor changes, can used to retrieve the stable models of the dynamic logic
program. The only thing we need to do is to replace the component

�
by the � � s of the

dynamic logic program � Q � ����	�� � e and to replace every occurrence of � � by � � .

References

[AAP
�

98] José Júlio Alferes, Leite J. A., Luı́s Moniz Pereira, Halina Przymusinska, and
Teodor C. Przymusinski. Dynamic logic programming. In Cohn et al. [CSS98], pages
98–111.

[BE99] Gerhard Brewka and Thomas Eiter. Preferred answer sets for extended logic pro-
grams. Artificial Intelligence, 109(1-2):297–356, April 1999.

[BLR98] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Disjunctive ordered logic:
Semantics and expressiveness. In Cohn et al. [CSS98], pages 418–431.

[Bre96] Gerhard Brewka. Well-Founded Semantics for Extended Logic Programs with Dy-
namic Preferences. Journal of Artificial Intelligence Research, 4:19–36, 1996.

[CSS98] Anthony G. Cohn, Lenhard K. Schubert, and Stuart C. Shapiro, editors. Proceedings
of the Sixth International Conference on Principles of Knowledge Representation and
Reasoning, 1998. Morgan Kaufmann.

[DVV99] Marina De Vos and Dirk Vermeir. On the Role of Negation in Choice Logic Pro-
grams. In Michael Gelfond, Nicola Leone, and Gerald Pfeifer, editors, Logic Pro-
gramming and Non-Monotonic Reasoning Conference (LPNMR’99), volume 1730 of
LNAI, pages 236–246, 1999. Springer Verslag.

[DVV00] Marina De Vos and Dirk Vermeir. A Logic for Modelling Decision Making with Dy-
namic Preferences. In Proceedings of the Logic in Artificial Intelligence (Jelia2000)
workshop, number 1999 in LNAI, pages 391–406, 2000. Springer Verslag.

[Lif00] Vladimir Lifschitz. Answer set programming and plan generation. Journal of Artifi-
cial Intelligence, page to appear, 2000.

[LV90] Els Laenens and Dirk Vermeir. A Fixpoint Semantics of Ordered Logic, Journal of
Logic and Computation, 1(2), pp. 159–185, 1990.

[OR96] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. The MIT Press,
Cambridge, Massachusets, London, England, third edition, 1996.

[SI96] Chiaki Sakama and Katsumi Inoue. Representing Priorities in Logic Programs. In
Michael Maher, editor, Proceedings of the 1996 Joint International Conference and
Symposium on Logic Programming, pages 82–96, 1996. MIT Press.

