Silicon Graphics, Inc.

copy_backward

Category: algorithms Component type: function

Prototype

template <class BidirectionalIterator1, class BidirectionalIterator2>
BidirectionalIterator2 copy_backward(BidirectionalIterator1 first, 
                                     BidirectionalIterator1 last, 
                                     BidirectionalIterator2 result);

Description

Copy_backward copies elements from the range [first, last) to the range [result - (last - first), result) [1]. That is, it performs the assignments *(result - 1) = *(last - 1), *(result - 2) = *(last - 2), and so on. Generally, for every integer n from 0 to last - first, copy_backward performs the assignment *(result - n - 1) = *(last - n - 1). Assignments are performed from the end of the input sequence to the beginning, i.e. in order of increasing n. [2]

The return value is result - (last - first)

Definition

Declared in algo.h. The implementation is in algobase.h.

Requirements on types

Preconditions

Complexity

Linear. Exactly last - first assignments are performed.

Example

vector<int> V(15);
iota(V.begin(), V.end(), 1);
copy_backward(V.begin(), V.begin() + 10, V.begin() + 15);

Notes

[1] Result is an iterator that points to the end of the output range. This is highly unusual: in all other STL algorithms that denote an output range by a single iterator, that iterator points to the beginning of the range.

[2] The order of assignments matters in the case where the input and output ranges overlap: copy_backward may not be used if result is in the range [first, last). That is, it may not be used if the end of the output range overlaps with the input range, but it may be used if the beginning of the output range overlaps with the input range; copy has opposite restrictions. If the two ranges are completely nonoverlapping, of course, then either algorithm may be used.

See also

copy, copy_n
[Silicon Surf] [STL Home]
Copyright © 1996 Silicon Graphics, Inc. All Rights Reserved. TrademarkInformation webmaster@www.sgi.com