RFC 841

FIPS Pub 98

SPECIFICATION FOR MESSAGE FORMAT FOR COMPUTER
BASED MESSAGE SYSTEMS

27 January 1983

National Bureau of Standards

This RFC is FIPS 98. The purpose of distributing this document as an RFC is to make it easily accesible to the ARPA research community. This RFC does not specify a standard for the ARPA Internet.


TABLE OF CONTENTS

Page

      EXECUTIVE SUMMARY                                               5

1. INTRODUCTION 7
1.1 Guide to Reading This Document 7
1.2 Vendor-Defined Extensions to the Specification 8 1.3 The Scope of the Message Format Specification 8 1.4 Issues Not Within the Scope of the Message Format 8 Specification 1.5 Relationship to Other Efforts 9
2. A SIMPLE MODEL OF A CBMS ENVIRONMENT 10
2.1 Logical Model of a CBMS 12
2.2 Relationship to the ISO Reference Model for Open 14 Systems Interconnection 2.3 Messages and Fields 14 2.4 Message Originators and Recipients 15
3. SEMANTICS 17
3.1 Semantics of Message Fields 17
3.1.1 Types of fields 17 3.1.2 Semantic Compliance Categories 18 3.1.3 Originator fields 18 3.1.4 Recipient fields 19 3.1.5 Date fields 20 3.1.6 Cross-reference fields 21 3.1.7 Message-handling fields 22 3.1.8 Message-content fields 23 3.1.9 Extensions 23

i


               3.2.1  Message creation and posting                   24
               3.2.2  Message reissuing and forwarding               25
                    3.2.2.1  Redistribution                          26
                    3.2.2.2  Assignment                              28
               3.2.3  Reply generation                               28
               3.2.4  Cross-referencing                              29
                    3.2.4.1  Unique identifiers                      29
                    3.2.4.2  Serial numbering                        30
               3.2.5  Life span functions                            30
               3.2.6  Requests for recipient processing              31
                    3.2.6.1  Message circulation                     31
          3.3  Multiple Occurrences and Ordering of Fields           31

4. SYNTAX 34
4.1 Introduction 34
4.1.1 Message structure 34 4.1.2 Data elements 35 4.1.2.1 Primitive data elements 36 4.1.2.2 Constructor data elements 36 4.1.3 Properties 36 4.1.3.1 Printing-names 37 4.1.3.2 Comments 37 4.1.4 Data compression and encryption 37 4.2 Overview of Syntax Encoding 37 4.2.1 Identifier Octets 38 4.2.2 Length code and Qualifier components 39 4.2.2.1 Length Codes 41 4.2.2.2 Qualifier 42 4.2.3 Property-List 44 4.2.4 Data Element Contents 44 4.3 Data Element Syntax 44 4.3.1 Data elements 45 4.3.1.1 Primitives 47 4.3.1.2 Constructors 49 4.3.1.3 Data Elements that Extend this Speci- 52 fication 4.3.2 Using data elements within message fields 53 4.3.3 Properties and associated elements 54 4.3.4 Encryption identifiers 54 4.3.5 Compression identifiers 54 4.3.6 Message types 55

ii


      APPENDIX A.  FIELDS -- IMPLEMENTORS' MASTER REFERENCE          57

      APPENDIX B.  DATA ELEMENTS -- IMPLEMENTORS' MASTER REFERENCE   63

      APPENDIX C.  DATA ELEMENT IDENTIFIER OCTETS                    71

      APPENDIX D.  SUMMARY OF MESSAGE FIELDS BY COMPLIANCE CATE-     72
                   GORY

D.1 REQUIRED Fields 72
D.2 BASIC Fields 72 D.3 OPTIONAL Fields 72 APPENDIX E. SUMMARY OF MESSAGE SEMANTICS BY FUNCTION 74
E.1 Circulation 74
E.2 Cross-Referencing 74 E.3 Life Spans 74 E.4 Delivery System 74 E.5 Miscellaneous Fields Used Generally 75 E.6 Reply Generation 75 E.7 Reissuing 75 E.8 Sending (Normal Transmission) 75 APPENDIX F. SUMMARY OF DATA ELEMENT SYNTAX 76 APPENDIX G. SUMMARY OF DATA ELEMENTS BY COMPLIANCE CATEGORY 78
G.1 BASIC Data Elements 78
G.2 OPTIONAL Data Elements 78

iii


          H.1  Primitive Data Elements                               80
          H.2  Constructor Data Elements                             82
          H.3  Data Elements that Extend this Specification          87
          H.4  Fields                                                88
          H.5  Messages                                              90
          H.6  Unknown Lengths                                       94
          H.7  Message Encoding Using Vendor-Defined Fields          97
               H.7.1  Example of a JANAP-128 Message                 97
               H.7.2  Encoding of Example using the FIPS Message     97
                      Format
               H.7.3  Field Mappings of JANAP-128 to FIPS Format    101
               H.7.4  Vendor-Defined Fields                         101

      REFERENCES                                                    103

      INDEX                                                         105

iv


      FIG. 1.    LOGICAL MODEL OF A COMPUTER-BASED MESSAGE SYSTEM    12
      FIG. 2.    MESSAGE FORWARDING AND REDISTRIBUTION               27
      FIG. 3.    EXAMPLE OF MESSAGE CIRCULATION                      32
      FIG. 4.    STRUCTURE OF IDENTIFIER OCTETS                      39
      FIG. 5.    ENCODING MECHANISM FOR QUALIFIERS AND LENGTH        40
                 CODES
      FIG. 6.    REPRESENTATION OF LENGTH CODES                      42
      FIG. 7.    EXAMPLES OF QUALIFIER VALUES                        43

v


      TABLE 1.    FIELDS USED IN MESSAGE PROCESSING FUNCTIONS        24
      TABLE 2.    HIGH-ORDER BITS IN THE IDENTIFIER OCTET            39

vi


Processing Standards Publication 98
27 January 1983
Announcing the Standard for

MESSAGE FORMAT
FOR
COMPUTER BASED MESSAGE SYSTEMS

Federal Information Processing Standards Publications are issued by the National Bureau of Standards pursuant to section 111(f)(2) of the Federal Property and Administrative Services Act of 1949, as amended, Public Law 89-306 (79 Stat. 1127), Executive Order 11717 (38 FR 12315, dated May 11, 1973), and Part 6 of Title 15 Code of Federal Regulations (CFR).

Name of Standard. Message Format for Computer Based Message Systems (FIPS PUB 98).

Category of Standard. Software Standard; Interchange Codes, Media and Data Files.

Explanation. This standard separates information so that a Computer Based Message System can locate and operate on that information (which is found in the fields of messages). This is the first of a family of standards which will ensure information interchange among Computer Based Message Systems.

Approving Authority. Secretary of Commerce

Maintenance Agency. Department of Commerce, National Bureau of Standards (Institute for Computer Sciences and Technology).

Cross Index. Not Applicable.

Related Documents.

         a. American   National   Standard   Code  for  Information
            Interchange (ASCII), X3.4-1977,FIPS PUBS 1-1.

b. American National Standard Code Extension Techniques
for Use with the 7-bit Coded Character Set of American
            National  Standard   Code   (ASCII)   for   Information
            Interchange, X3.41-1974, FIPS PUB 35.

c. National Bureau of Standards. Calendar Date. Federal
Information Processing Standards Publication 4, U.S.

1


November, 1968.

d. National Bureau of Standards. Data Encryption Standard.
Federal Information Processing Standards Publication 46, U.S. Department of Commerce/National Bureau of Standards, January, 1977.

e. National Bureau of Standards. Representation of Local
Time of the Day for Information Interchange. Federal Information Processing Standards Publication 58, U.S. Department of Commerce / National Bureau of Standards, February 1979.

         f. National  Bureau  of   Standards.   Representation   of
            Universal  Time,  Local  Time Differentials, and United
            States   Time   Zone   References    for    Information
            Interchange.  Federal  Information Processing Standards
            Publication 59, U.S. Department of Commerce /  National
            Bureau of Standards, February, 1979.

Applicability. This message format standard applies to Federal

      departments  and  agencies  in  their  acquisition  and  use   of
      computer-based  message  systems (CBMS) and services in networked
      systems,   except   for   certain    single-processor    systems.
      Specifically,  the  standard  does not apply to a CBMS if it is a
      stand-alone system which is not  interconnected  with  any  other
      CBMS:  nevertheless, conformance with the standard is recommended
      under these circumstances particularly if there is a  possibility
      that  use  of another central processing unit, or interconnection
      with another system, will be required in the future.  Where a new
      CBMS node is incorporated into an existing network, the  standard
      applies  at  the  interface  between  CBMS's.  In  this instance,
      previously existing nodes may  accommodate  the  standard  either
      through  retrofit  or  by  the use of a translator.  In addition,
      networks  that  are  established  strictly  for  the  purpose  of
      supporting  research  in  computer  science or communications are
      exempt from complying with this standard.

Subcommittee TC97/SC16 of the International Organization for

      Standardization   (ISO)  has  developed  a  reference  model  for
      describing communications between "open" systems.  (ISO/TC97/SC16
      DIS7498) This model is known as the ISO Reference Model for  Open
      Systems   Interconnection   (OSI).    It  divides  communications
      protocols   into   seven   layers,    ranging    from    physical
      interconnection   at   the  lowest  layer  to  data  exchange  by
      applications programs at the top.

The NBS message format deals with data used by an application within a system; it is not a protocol. Messages defined by the

2


      (Application) protocol.

A message as referenced by the NBS message format is a unit of communication from an originator to a recipient, exclusive of any message heading or control information (often referred to as a message envelope). An originator and recipient are typically people but may be roles or processes. A role identifies a function within an organization as opposed to an individual who performs that function. A process refers to a computer process that might originate or receive a message.

Special Information. Certain characteristics distinguish a CBMS

      from  other  systems  for  sending  messages.    Originators  and
      recipients  may  be  terminal  users   or   processes   (discrete
      software).    A  system  in  which  the  originator  addresses  a
      particular terminal device rather than a particular recipient  is
      not  considered to be a CBMS.  The recipient's system need not be
      available when the originator sends a message.  The  message  can
      be  stored  in the originator's system or at an intermediate node
      in the network until the recipient's  system  becomes  available.
      In  addition,  a  CBMS  offers  both message creation and message
      processing facilities as part of the system.  A CBMS offers  text
      editing  facilities  to  assist  the user in the preparation of a
      message.   The  recipient  CBMS  stores  the  message  until  the
      recipient  chooses  to  read  it.    Message systems which do not
      provide these minimum functions are not considered CBMS's.

The intent of the message format standard is to allow users of different computer based message systems to send messages to each

      other.    The  standard  does  not  make  demands  on the message
      transfer system except that it transports messages transparently.
      The standard makes some simple demands on the  CBMS.    The  CBMS
      must  recognize  fields  within  the  message,  process fields in
      predetermined ways, create messages  in  the  correct  form,  and
      recognize  and  create  data  elements of messages in the correct
      format.  The standard does not dictate or constrain the  services
      that  the  CBMS  provides for users, or the way that messages are
      stored, represented, manipulated, or presented to the user by the
      CBMS.

The standard does constrain the format of the message at the interface between systems. This guarantees that, whatever the source of the message, it arrives at the receiving system in the

      standard   format.      The  message  format  standard  separates
      information into fields so that the CBMS can locate  and  operate
      on  that  information.   The message is converted from the format
      used within the originator's CBMS  to  the  standard  format  (if
      different)  on  leaving  the  originator's  CBMS.  The message is
      converted from the standard format to the format used within  the
      recipient's CBMS (if different) on entering the recipient's CBMS.

3


Message Format for Computer Based Message Systems (affixed).

Qualifications. None

Implementation Schedule. All applicable equipment or services ordered on or after 24 months from the date of issuance of this FIPS PUB, and all CBMS development initiated inhouse on or after 12 months from the date of issuance of this FIPS PUB must be in conformance with this standard unless a waiver has been obtained in accordance with the procedure described below. An exception to this standard is made when procurement actions are into the solicitation phase on the date of issuance of this FIPS PUB.

Waivers. Heads of agencies may request that the requirements of this standard be waived in instances where it can be clearly demonstrated that there are appreciable performance or cost advantages to be gained and that the overall interests of the Federal Government are best served by granting the requested waiver. Such waiver requests will be reviewed by and are subject to the approval of the Secretary of Commerce. The waiver request must address the criteria stated above as the justification for the waiver.

Forty-five days should be allowed for review and response by the Secretary of Commerce. Waiver requests shall be submitted to the Secretary of Commerce, Washington, D.C. 20230, and labeled as a

      Request   for  a  Waiver  to  a  Federal  Information  Processing
      Standard.  No agency shall take any action to  deviate  from  the
      standard  prior  to  the  receipt  of  a waiver approval from the
      Secretary of Commerce.  No agency  shall  begin  any  process  of
      implementation  or acquisition of non-conforming equipment unless
      it has already obtained such approval.

Where to Obtain Copies. Either paper or microfiche copies of this Federal Information Processing Standard, including technical specifications, may be purchased from the National Technical

      Information  Service  (NTIS)  by  ordering  Federal   Information
      Processing Standard Publication (FIPS-PUB-98), Message Format for
      Computer  Based Message Systems.  Ordering information, including
      prices and delivery alternatives, may be obtained  by  contacting
      the   National   Technical   Information  Service  (NTIS),  U. S.
      Department of Commerce, Springfield,  Virginia  22161,  telephone
      number  (703)  487-4650.    Payment  may  be made by check, money
      order, purchase order, credit card, or deposit account.

4


EXECUTIVE SUMMARY

The message format specification addresses the problem of exchanging messages between different computer-based message

      systems  (CBMSs).    This interchange problem can be addressed on
      several  levels.    One  level  specifies  the  physical   inter-
      connections,  another  specifies  how information travels between
      CBMSs, another specifies  form  and  meaning  of  messages  being
      interchanged.    The  highest  level  specifies  operations  on a
      message.  Each of these levels would be covered  by  a  different
      standard.

This message format specification addresses only the issues of form and meaning of messages at the points in time when they are sent from one CBMS and received by another. Messages are composed of fields, containing different classes of information. These fields contain information about the message originator, message recipient, subject matter, precedence and security, and references to previous messages, as well as the text of the message. Standard formats (syntax) for messages provide a basis for the contents of messages generated by one CBMS to be processed by another CBMS. Standard meanings (semantics) for the components of a message facilitate standard interpretation of a message, so that everyone receiving a message gets the meaning intended by its sender.

Each CBMS that implements this message format specification will be compatible with any other CBMS that implements the specification, provided that the use of optional fields and data

      elements  is  negotiated  in  advance.    This  ensures  that the
      contents of a message posted by one  CBMS  can  be  received  and
      interpreted by a different CBMS.

This message format specification has been developed as a result of examining CBMSs currently in use in commercial and

      research  environments.    Three major design perspectives helped
      shape the message format specification.

5


The message format specification defines the form and meaning of message contents and their components as they pass from one CBMS to another through a message transfer system. The

      message   format  specification  does  not  address  any  of  the
      following major issues.

6


1. INTRODUCTION

A computer-based message system (CBMS) allows communication

      between "entities" (usually people) using computers.    Computers
      serve  both  to mediate the actual communications between systems
      and to provide users with facilities for creating and reading the
      messages.

           CBMSs have  been  developing  for  over  ten  years.    More
      recently,  CBMSs  have  been one of the bases in industry for the
      introduction of office automation.  A growing number  of  organi-
      zations  use  either  their own or a commercially available CBMS.
      The design and complexity of these systems  vary  widely.    This
      message  format  specification  provides  a basis for interaction
      between different CBMSs by defining the format of messages passed
      between them.

1.1 Guide to Reading This Document

The method of presenting the material in this specification is to combine the technical specification with tutorial infor- mation. This approach has been taken to place the specification in context and improve its readability.

The core of the technical information in the document is in Section 2, "A Simple Model of a CBMS Environment"; Section 3.1, "Semantics of Message Fields"; Section 4.2, "Overview of Syntax Encoding"; and Section 4.3, "Data Element Syntax". Appendixes A and B consolidate the technical information. These appendices are designed for ease of reference and should be read in

      conjunction   with   the  body  of  the  report  for  a  complete
      understanding of the message format  presented  in  the  specifi-
      cation.

Section 2 presents a simple model of operation of a CBMS. Section 3 discusses the components of messages and their meaning

      (semantics),    including    discussions   of   the   recommended
      relationship between message components and CBMS user  functions.
      (See  Section  3.2.)    Section  4  presents  details of the form
      (syntax) required for components of a message.

Appendix D summarizes the components of messages according to whether they are required or optional for CBMSs implementing

      the message format  specification.    Appendix  E  organizes  the
      message  components  according  to  the  functional  class of the
      components.  Appendix F provides an  overview  of  the  syntactic
      elements defined by this message format specification; Appendix G

7


summarizes those elements according to whether they are required or optional for a CBMS implementing the message format specifi- cation. Examples of each syntactic element appear in Appendix H, displaying syntax and describing the associated semantics.

1.2 Vendor-Defined Extensions to the Specification

This specification provides the capability of extending the range of functionality by the use of vendor-defined qualifiers

      and  vendor-defined  data  elements.    Any  vendor who uses this
      capability to provide services which are  essentially  equivalent
      to  those already designated as required, basic, or optional does
      not comply with the specification.

1.3 The Scope of the Message Format Specification

The purpose of this message format specification is to present the semantics and syntax to be used for messages being exchanged between CBMSs. Specifically, it defines the following:

1.4 Issues Not Within the Scope of the Message Format Specifi-
cation

The message format specification does not address the following issues, some of which are being covered by other NBS standards development programs at the Institute for Computer Sciences and Technology (ICST). (See [BlaR-80] for a description of the ICST network protocols program.)

8


1.5 Relationship to Other Efforts

The message format specification is based on several docu- ments and the current state of many CBMSs available both in industry and the research community. These documents include the standardization efforts in the ARPANet [CroD-77, PosJ-79] and the CCITT, proposed ISO and ANSI header format standards [TasG- 80, ISOD-79], the work of IFIPS Working Group 6.5, and various papers about the general nature of mail systems, addressing, and mail delivery. (See [FeiE-79] for references.

9


2. A SIMPLE MODEL OF A CBMS ENVIRONMENT

In order to provide a framework for presenting the message format specification, this section describes a simple functional model for a CBMS. The model provides a high-level description of both user facilities and system architecture. Discussions of messages, message originators, and message recipients serve to further clarify the nature of a CBMS.

A CBMS permits the transfer of a message from an originator to a recipient. "Originator" and "recipient" are used in their

      normal  English  senses.    (See Section 2.4.)  A message (in its
      most abstract definition) is simply a unit of communication  from
      an  originator  to a recipient.  A CBMS offers several classes of
      functions to its users:

These classes of functions are presented in more detail in Section 3.2.

CBMSs differ from other office automation/communications systems in a number of ways.

10


of data that an originator wishes to send to a recip- ient. By contrast, Teletex systems and communicating word processors handle the transfer of final form documents; compatible communicating word processors can exchange documents in editable form; Telex and TWX deal in unformatted text.

. The ability to retain a copy of a message on-line after it has been read.

. The ability to examine or delete stored messages individually.

. The ability to organize messages using some form of electronic "file folder."

. The ability to determine if a message is recent (has arrived since the last time the recipient used the CBMS) or unseen (has never been examined by the recipient).

             .  The  ability  to  summarize  stored  messages.    A
                summary   usually   includes  information  such  as
                whether the message is recent or  unseen,  when  it
                was  received,  its length, who it is from, and its
                subject.

. The ability to retrieve a stored message based upon

11


one or more of its attributves (for example, when the message was received, whether or not it has been seen or deleted, and the values contained in its fields).

. A forward facility that allows users to include all or part of a message in a new outgoing message.

. A reply facility that allows users to answer mes- sages without having to enter a new list of recip- ients.

2.1 Logical Model of a CBMS

CBMS facilities for message creation, transfer, and recip- ient processing are reflected in a logical model of a CBMS developed by IFIP Working Group 6.5. (An essentially identical model is being used by CCITT Study Group VII, Question 5,

      regarding  Message  Handling  Systems [CCIT-82].)     The   model
      consists  of  a  Message  Transfer  System  and  a number of User
      Agents.  (See Figure 1.)

                    |                  |
                    |     *************     |
      *********  ------>  *  Message  *  ------->  *********
      * User  *  Posting  * Transfer  *  Delivery  * User  *
      * Agent *  Protocol *  System   *  Protocol  * Agent *
      *********  <------- *************  <-------  *********
                    |                       |
                    |                       |
                 Posting                Delivery
                  Slot                    Slot

Message Flow
Originator --------------------------------> Recipient

FIG. 1. LOGICAL MODEL OF A COMPUTER-BASED MESSAGE SYSTEM

A User Agent (UA) is a functional entity that acts on behalf of a user, assisting with creating and processing messages and communicating with the Message Transfer System.

The Message Transfer System(MTS) is an entity that accepts a

12


message from its originator's User Agent and ultimately passes it to each of its recipients' User Agents. The Message Transfer System may perform routing and storage functions (among others) in order to accomplish its task.

Transferring a message from an originator's User Agent to the Message Transfer System is called Posting; the originator's User Agent and Message Transfer System engage in a Posting Protocol in order to accomplish Posting. Transferring a message from the Message Transfer System to a recipient's User Agent is called Delivery; the recipient's User Agent and Message Transfer System engage in a Delivery Protocol in order to accomplish Delivery.

The point at which responsibility for a message is trans- ferred is called a Slot. The Posting Slot is the point at which responsibility for a message passes from an originator's User Agent to the Message Transfer System; the Delivery Slot is the point at which responsibility for a message passes from the Message Transfer System to a recipient's User Agent.

The model divides messages into two parts, the message content and the message envelope. The message content is the information that the originator wishes to send to the recipient; this message format specification deals solely with the message

      content.    The  message envelope consists of all the information
      necessary for the Message Transfer System to  do  its  job;  this
      message   format  specification  does  not  specify  the  message
      envelope.  Some of the data appearing  on  the  message  envelope
      could  be  redundant with some data found in the message content.
      The Message Transfer  System  is  not  expected  to  examine  the
      message content unless it is told to do so by the originator's or
      recipient's User Agent.

This message format specification places no restrictions on the Message Transfer System itself, except that it be able to transfer messages between originating and receiving UAs without reading or altering the contents of messages unless otherwise instructed by the UAs. In addition, this message format specifi- cation does not dictate the form or nature of any protocol used by the Message Transfer System. Finally, this message format specification does not specify the content or form of the message envelope. That is, the message format specification defines the format for the contents of messages, not the manner in which they are transmitted.

Many of today's commercially available CBMSs incorporate all

      of the facilities  represented  in  the  logical  model.    Their
      architectures  may  reflect  the economies that can be taken when
      implementing systems  that  are  self-contained.    For  example,
      stand-alone  systems  that  store  messages  in  a single central

13


database require no Message Transfer System; an implementation may integrate software for User Agent and Message Transfer System functions, doing away with Posting or Delivery Protocols.

2.2 Relationship to the ISO Reference Model for Open Systems
Interconnection

Subcommittee TC97/SC16 of the International Organization for

      Standardization  (ISO)  has  developed  a  reference  model   for
      describing communications between "open" systems [ISOD-82].  This
      model  is  known  as  the  ISO  Reference  Model for Open Systems
      Interconnection (OSI).  It divides communications protocols  into
      seven layers, ranging from physical interconnection at the lowest
      layer to data exchange by application programs at the top.

This message format specification deals with data used by an

      application  within  a  system.    Thus, the message format being
      specified here is not a protocol.  Since it is not a protocol, it
      lies outside of the model for open systems interconnection.  User
      Agents are application layer entities (layer 7), however, and the
      protocols used by a message transfer system are above the session
      layer (layer 5).

2.3 Messages and Fields

A message is a unit of communication from an originator to a recipient. A message consists of a series of components called fields. Fields can be described according to their meaning in a message (semantics) and according to the format required for them in a message (syntax).

Semantically, a field is just a component of a message; the meanings of particular fields are defined by this message format specification. Syntactically, a field is a unit of data whose form is defined by this message format specification. Additional fields can be defined by users or vendors as long as they conform to the syntactic and semantic rules that this message format specification defines for additional fields.

(A note on terminology: A message consists of components called fields. The words "message" and "field" are used both in the informal sense of the previous sentence and in a more restricted sense as names of particular syntactic elements. As

      syntactic  element  names,   Message   and   Field   are   always
      capitalized.)

14


Some CBMS functions are based on the contents of particular fields; other functions (such as the ability to read a message) may have little to do with the fields themselves. Section 3.2 discusses some of the specific functions that a CBMS might provide to users and the fields that must be used to support those functions.

2.4 Message Originators and Recipients

This message format specification refers to message origi- nators and recipients. These terms were defined functionally in Figure 1. When the message format specification refers to the identity of a message originator or recipient, it means "that information which uniquely identifies the message originator or recipient within the domain of the given message system." The syntax and semantics of message addressing are not within the scope of the message format specification.

Originators and recipients can be people, roles, processes or groups.

People. People as originators and recipients are specific individuals.

           Roles.    Roles  identify  functions within organizations as
      opposed to the  specific  individuals  who  perform  them.    For
      example,  consider  a  newspaper  that  produces both morning and
      evening editions and therefore operates with more than one shift.
      Someone wishing to contact the city desk would send a message  to
      the  city  desk  role rather than trying to determine exactly who
      was assigned to the city desk at a specific time.    (Of  course,
      messages  can usually be sent to the individuals directly whether
      or not they are actually performing a role at the time.)

Processes. A process in a computer could serve as either an originator or a recipient for messages. A computer system might originate a message to notify a recipient about the status of some task. For example, an archive utility could notify users about files that have been archived; a distributed file system could notify a user that a remote file has been deposited on a local file system. Messages could be used by computer systems to warn about some impending condition or even to monitor the performance of the computer itself. Some computer processes may also be message recipients, taking action based upon message contents.

In addition, some CBMSs allow messages to be sent to groups.

      A group is a predefined list of  message  recipients.    Using  a

15


      group   name  as  a  recipient  permits  message  originators  to
      designate a potentially large number of recipients using a single
      recipient identifier.  This makes using the CBMS more  convenient
      and accurate.

16


3. SEMANTICS

This section discusses two major topics, message processing functions and message field meanings. Section 3.1 describes the six functional groups of message fields. The functional groups are Origination, Dates, Recipients, Cross-referencing, Message- handling, and Message-contents. They are explained more fully in Section 3.1.1, along with detailed discussion of the semantics of all the fields in each functional group. Section 3.2 describes message processing functions whose operation is based on the meanings of particular message fields.

3.1 Semantics of Message Fields

The definition of a message is discussed generally in Sections 1 and 2. Semantically valid messages must contain one From field, one To field, and one Posted-Date field. They may contain, in addition, any number of other fields, depending on the processing and functions supplied by the originating or receiving CBMS. (Section 3.2 describes classes of functions supplied by CBMSs.)

3.1.1 Types of fields

Message receiving programs are required to interpret fields according to the semantics described in the remainder of this section. The message fields defined in this document are grouped into the following functional categories.

17


message's sender requested of a message transfer system or indicate how the message should be treated by its recipients. (See Section 3.1.7.)

3.1.2 Semantic Compliance Categories

For purposes of determining whether a CBMS complies with the semantic requirements of this message format specification, mes- sage fields have been divided into three categories:

REQUIRED These fields must be present in all messages and must be processed by message receiving programs as defined by the message format specification.

      BASIC     These fields need not be present in  all  messages  but
                when  they do appear, they must be processed by message
                receiving programs as defined  by  the  message  format
                specification.

OPTIONAL These fields need not be present in all messages and

                may be ignored by  message  receiving  programs.    The
                exact  meaning  of  "ignored"  is  not specified by the
                message format specification.   However,  a  CBMS  must
                recognize  the existence of an optional field (that is,
                optional fields should not cause errors) and  must  not
                process the field in a manner contrary to the semantics
                defined  for  that field by the message format specifi-
                cation.  It is left to the discretion of a  recipient's
                CBMS  what  action is to be taken when an instance of a
                locally unimplemented optional field is detected.

(Syntactic compliance is defined in Section 4.1.2.)

3.1.3 Originator fields

A message originator may be a person, role, or process. Originator fields identify a message's author, who is responsible

      for   the   message,   who   or  what  sent  it,  and  where  any
      replies should be directed.  (See Section 2.4.)

18


      From                     (REQUIRED)

This field contains the identity of the originator(s)

                taking formal responsibility for  this  message.    The
                contents  of  the  From field is to be used for replies
                when no Reply-to field appears in a message.

      Reply-To                 (BASIC)

This field identifies any recipients of replies to the message.

      Author                   (OPTIONAL)

This field identifies the individual(s) who wrote the primary contents of the message. Use of the Author field is discouraged when the contents of the Author field and the From field would be completely redundant.

      Sender                   (OPTIONAL)

This field identifies the agent who sent the message. It is used either when the sender is not the originator responsible for the message or to indicate who among a

                group  of  originators  responsible  for  the   message
                actually   sent  it.    Use  of  the  Sender  field  is
                discouraged when the contents of the Sender  field  and
                From  field  would be completely redundant.  The sender
                field may specify  only  one  originator  identity  and
                appear only once in a message.

3.1.4 Recipient fields

Message recipients may be people, roles, processes, or groups. (See Section 2.4). Recipient fields identify who or what is to receive the message.

      To                       (REQUIRED)

This field identifies the primary recipients of a message.

      Bcc                      (OPTIONAL)

                This  field  identifies  additional  recipients  of   a
                message  (a  "blind carbon copies" list).  The contents
                of this field are not to be included in copies  of  the
                message  sent  to the primary and secondary recipients.
                See section 3.2.1 for further discussion of the use  of
                blind carbon copies lists.

19


      Cc                       (BASIC)

This field identifies secondary recipients of a message (a "carbon copies" list).

      Circulate-Next           (OPTIONAL)

This field is used in conjunction with the Circulate-To

                field.    (See  Section  3.2.6.1.)    It identifies all
                recipients in a circulation list who have not  received
                the message.

      Circulate-To             (OPTIONAL)

                This   field  identifies  recipients  of  a  circulated
                message.   (See  Section  3.2.6.1.)    It  is  used  in
                conjunction with the Circulate-Next field.

3.1.5 Date fields

Date fields for two kinds of uses are provided. Dates can be associated with some event in the history of a message and dates can delimit the span of time during which the message is meaningful (its life span).

      Posted-Date              (REQUIRED)

This field contains the posting date, which is the point in time when the message passes through the posting slot into a message transfer system. Only one Posted-Date field is permitted in a message.

      Date                     (OPTIONAL)

                This   field   contains   a  date  that  the  message's
                originator wishes to associate with  a  message.    The
                Date field is to the Posted-Date field as the date on a
                letter is to the postmark added by the post office.

      End-Date                 (OPTIONAL)

This field contains the date on which a message loses effect. (See also Section 3.2.5.)

      Received-Date            (OPTIONAL)

                This field is also called Delivery date.    This  field
                may  be  added  to a message by the recipient's message
                receiving program.  It indicates when the message  left

20


the delivery system and entered the recipient's message processing domain.

      Start-Date               (OPTIONAL)

This field contains the date on which a message takes effect. (See also Section 3.2.5.)

      Warning-Date             (OPTIONAL)

This field is used either alone or in conjunction with

                an  End-Date  field.    It  contains one or more dates.
                These dates could  be  used  by  a  message  processing
                program  as  warnings of an impending end-date or other
                event.  (See also Section 3.2.5.)

3.1.6 Cross-reference fields

Cross-reference fields can be used to identify a message and

      to provide cross-references to  other  messages.    (See  Section
      3.2.4.)

      In-Reply-To              (OPTIONAL)

This field designates previous correspondence to which this message is a reply. The usual contents of this field would be the contents of the Message-ID field of the message(s) being replied to.

      Message-ID               (OPTIONAL)

This field contains a unique identifier for a message. This identifier is intended for machine generation and processing. Further definition appears in Section

                3.2.4.1.    Only one Message-ID field is permitted in a
                message.

      Obsoletes                (OPTIONAL)

This field identifies one or more messages that this one replaces.

Originator-Serial-Number (OPTIONAL)

This field contains one or more serial numbers assigned by the message's originator. Messages with multiple

                recipients  should  have  the   same   value   in   the
                Originator-Serial-Number field.

21


      References               (OPTIONAL)

This field identifies other correspondence that this

                message  references.    If  the  other   correspondence
                contains  a  Message-ID  field,  the  contents  of  the
                References field must be the message identifier.

3.1.7 Message-handling fields

Message-handling fields describe aspects of how a message is to be handled or categorized.

      Precedence               (OPTIONAL)

This field indicates the precedence at which the message was posted. Ordinarily, message precedence or priority is a service request to a message transfer

                system.    A  message  originator, however, can include
                precedence information in a message.   One  example  of
                precedence  categories  are  those  used  by  the  U.S.
                Military: "ROUTINE,"  "PRIORITY,"  "IMMEDIATE,"  "FLASH
                OVERRIDE,"  and "EMERGENCY COMMAND PRECEDENCE."

      Message-Class            (OPTIONAL)

This field indicates the purpose of a message. For example, it might contain values indicating that the 1 message is a memorandum or a data-base entry.

      Reissue-Type             (OPTIONAL)

                This   field   is  used  in  conjunction  with  message
                encapsulating  (see  Section  3.2.2)  to  differentiate
                between messages being assigned or redistributed.

      Received-From            (OPTIONAL)

This field contains a record of a message's path

                through   a   message    transfer    system.        The
                recipient's  message receiving program could store here
                any information about the  transfer  that  it  obtained
                from a message transfer system.
      _______________

1
The message format specification is not intended to be used as a specification for exchanging data-base records. Messages, however, sometimes contain data from or for a database.

22


3.1.8 Message-content fields

           The   intent   of  most  messages  is  to  communicate  some
      particular information from originator  to  recipient.    Several
      fields in a message are designed to contain that information.

      Subject                  (BASIC)

This field contains any information the originator provided to summarize or indicate the nature of the message.

      Text                     (BASIC)

This field contains the primary content of the message.

      Attachments              (OPTIONAL)

This field contains additional data accompanying a message. It is similar in intent to enclosures in a conventional mail system.

      Comments                 (OPTIONAL)

This field permits adding comments to the message

                without  disturbing  the  original  contents   of   the
                message.

      Keywords                 (OPTIONAL)

This field contains keywords or phrases for use in retrieving a message.

3.1.9 Extensions

This message format specification allows two additional types of fields, vendor-defined fields and as-yet-undefined (extension) fields that will be introduced by extensions to this message format specification.

vendor-defined-field
Any field not defined in this message format specifi- cation or any extension or successor to it is a vendor- defined field. Names for vendor-defined fields could be preempted by extensions to this message format specification.

23


extension-field
Any field that is defined in a document published as a formal extension or replacement to this message format specification.

3.2 Message Processing Functions

A CBMS provides three basic classes of functions: creating messages, transmitting messages to their recipient, and post-

      receipt  processing.    Although the message format specification
      does not define the number or nature of user functions in  CBMSs,
      the  meanings  for  the  fields  clearly  assume certain kinds of
      functions.  For example, fields specifying recipients of  replies
      to messages assume some kind of reply function; fields specifying
      message life span assume some kind of date processing functions.

This section provides more detail on the processing that might be done by these kinds of functions, discussing the message

      fields that would be used and how  they  would  be  used.    (See
      summary in Table 1.)

      Processing Function    Fields Involved

      Message creation       Author, From, Sender, To,
        and posting          Cc, Bcc
      Message reissuing      Reissue-Type
      Reply generation       Reply-To
      Cross-referencing      Message-ID, In-Reply-To, References,
                             Obsoletes, Originator-Serial-Number
      Life span functions    Start-Date, End-Date,
                             Warning-Date
      Recipient processing   Circulate-To, Circulate-Next

TABLE 1. FIELDS USED IN MESSAGE PROCESSING FUNCTIONS

3.2.1 Message creation and posting

Messages can be created either by reissuing an existing message to a new recipient (see Section 3.2.2) or by creating a

      new  message.    The  process of message creation might mean that
      some fields of a new message are filled in from the  contents  of
      some  other  message.  Reply functions (Section 3.2.3) provide an
      example of this.

24


Different individuals could be involved in different phases of originating a message: creating it, taking responsibility for it, and explicitly interacting with a CBMS to send it to its recipient. One or more individuals may create a message (that is, write, but not necessarily enter it into the CBMS); they are said to be the message's authors, identified by the Author field. One or more individuals may take responsibility for its contents and the decision to post it; they are identified by the From field. One individual explicitly posts a given message; this person is called the message's sender (identified by the Sender field).

The sender and author(s) are often, but not always, respon- sible for the message. A common case in which the sender is not responsible for the message is when a secretary enters and posts messages for someone else. An example of a situation in which a message's author is not responsible for the message itself is when an administrative assistant prepares a report that is sent under a manager's signature.

The use of the Cc field is identical to current business practice. This field contains the formal secondary recipients of the message.

Messages containing Bcc fields are treated specially by CBMSs. The contents of this field are not included in copies of the message sent to the recipients other than the originator who are not included in the Bcc field itself. Some systems include the contents of the Bcc field only in the originator's copy; others include all or part of the Bcc field in the copies sent to

      the recipients indicated in the Bcc field.    This  specification
      does not indicate exactly how the Bcc field is to be treated.

3.2.2 Message reissuing and forwarding

Reissuing and forwarding both serve the general user goal of passing a message on to a new set of recipients. Forwarding is the term used for an informal mechanism, which CBMSs implement by copying some or all of the original message into the contents of a field in the new message. Reissuing is the term used for a formal mechanism to ensure that the message being passed on never

      loses its integrity as a previously  sent  message.    CBMSs  use
      reissuing  to implement several different functions, depending on
      the purposes being served:

25


These purposes are exemplified in Figure 2.

When a CBMS examines a forwarded message, it cannot always distinguish the old message from what was added when the forwarding took place. In addition, the forwarded information

      might no longer have the form of a  message.    This  is  usually
      because  the format of the message has been changed (for example,
      to pure unformatted text).  (See Figure 2 for an example of how a
      CBMS might forward a message.)  In contrast, a  reissued  message
      can  always  be  separated  from  its enclosing message and never
      loses its identity as a correctly formed message.

This specification provides the Reissue-Type field for supporting reissuing. Forwarding, since it is an informal means of serving the purpose of passing on information, has no supporting fields in the specification.

This specification provides for reissuing of messages by encapsulating. This method embeds the entire original message inside a new message. Encapsulating adds structure around the

2
message . This allows any part of it to be easily extracted.

This procedure for passing on previously sent messages is a matter of organizational policy and has authentication as an associated issue. Each organization must decide if the CBMS it acquires should support reissuing or simply supply forwarding.

3.2.2.1 Redistribution

Redistribution is a CBMS function for sending the original contents of a message intact and unchanged to new recipients. A redistributed message is identical to the original message with the exception of added information about the reissuing. For reissuing with this purpose, the Reissue-Type field contains the

      ASCII  string  "Redistribution."    The original message has been
      included directly in a new message.  (See Figure 2.)

_______________

2
A message can contain another message, and that message can contain another message, and so on to any depth of encapsulating. This can occur by reissuing a message repeatedly.

26


The Original Message
John Doe wishes Jane Jones to get a copy of the following message:
Message:
Field: From "Jean Smith"
Field: Posted-Date "27 January 1983" Field: To "John Doe"
Field: Subject "Next Project Meeting" Field: Text "The agenda for ..."

Redistribution
Message:

        Field: From "John Doe"                  John Doe is responsible
        Field: Posted-Date "28 January 1983"    for the redistribution.
        Field: To "Jane Jones"
        Field: Reissue-Type "Redistribution"    This message directly
        Message:                                incorporates a
          Field: From "Jean Smith"              redistributed message.
          Field: Posted-Date "27 January 1983"
          Field: To "John Doe"
          Field: Subject "Next Project Meeting"
          Field: Text "The agenda for ..."

Forwarding
Message:
Field: From "John Doe"
Field: Posted-Date "28 January 1983"
Field: To "Jane Jones"

        Field: Text                             A realization of the
          "From Jean Smith                      original message is
           To John Doe                          copied into the Text field.
           Sent on 27 January 1983              Note that John's CBMS
           Subject Next Project Meeting         has chosen to represent
                                                it as a text string.
           The agenda for ..."

FIG. 2. MESSAGE FORWARDING AND REDISTRIBUTION

27


3.2.2.2 Assignment

Assignment is the process of designating responsibility. In some organizations, formal message traffic is distributed to one or more parts of the organization (called offices) where it is directed to the appropriate individuals or other offices for final disposition. Assignment is done by reissuing a message

      with   the   Reissue-Type   field  containing  the  ASCII  string
      "Assigned."  A  message  which  contains  this  field  is  to  be
      interpreted as meaning that the addressees in the "To" field have
      had  the  reissued message assigned to them for some action.  Any
      addressee in the "Cc" field has  had  the  message  assigned  for
      information.    The "From" field records who assigned the message
      and  the  "Posted-Date"  field  records  when  the  message   was
      assigned.

3.2.3 Reply generation

Reply generation involves creating a new message in direct reply to some other message by drawing on the contents of fields in the other message to fill fields in the new message. Many CBMSs provide reply facilities that determine the intended recip- ients of a reply.

A Reply-To field is defined by this message format specifi-

      cation.    When  a  message  contains  a Reply-To field, the CBMS
      should send replies to the recipients designated in the  Reply-To
      field  instead of to the recipients designated in the From field.
      This statement applies to original messages only, not to reissued
      messages.     The   message   format   specification   makes   no
      recommendations concerning replies to reissued messages.

Reply-To has several possible applications:

28


When the message does not contain a Reply-To field, the recipient should reply to the originators enumerated in the From field. The sender and authors should not be added automatically to the list of those receiving the reply.

Replies could also be sent to the other recipients of the

      original  message.    Vendors might offer additional reply facil-
      ities, depending on their view of users' organizational  require-
      ments.

3.2.4 Cross-referencing

A CBMS message may include designator(s) which identify other message(s). The designators are used to refer to related messages so that all information in a chain of correspondence can be determined by a CBMS user. The designator used to identify and cross-reference messages can take either of two forms, unique identifiers or serial numbers.

3.2.4.1 Unique identifiers

Unique identifiers are machine-generated and are intended

      primarily  for  processing  by  computers.    While they could be
      examined by a human user, unique identifiers are not  necessarily
      useful or convenient for people.

Unique identifiers occur in several contexts. They are often used to identify the contents of idual messages

      unambiguously.    When unique identifiers are used this way, they
      are called message identifiers.  Different versions of a  message
      receive  new message identifiers; an example of this is reissuing
      a message with comments.

When a CBMS generates a message identifier, it must be able to guarantee that it is unique, both within the domain of the individual CBMS and globally, across all connected CBMSs. CBMSs could generate globally unique identifiers in several ways, all of which require prior agreement on behalf of the connected

      CBMSs.    One  method  is  to assign each connected CBMS a unique
      code.  A CBMS then generates unique identifiers by using its code
      as a prefix to some other value  that  it  can  guarantee  to  be
      unique  within its domain.  (This second value could be a counter
      or a timestamp/user-id combination.)

A CBMS can provide functions for tracing chains of corre-

      spondence  by  using  unique  identifiers.    The  message format
      specification defines fields for which  a  CBMS  provides  unique
      identifiers   as   values.    They  are  Message-ID,  References,
      Obsoletes, and In-Reply-To.  (See Section 3.1.6.)

29


3.2.4.2 Serial numbering

Serial numbers are for users to maintain a personal num- bering system for messages. The numbers are composed of both letters and digits so that users could maintain several sets of sequences concurrently (for example, A1, A2, A3... and B1, B2, B3...).

Serial numbers are assigned at a defined point in the history of a message. Serial numbers are not unique identifiers; they differ from unique identifiers in that they are not neces- sarily generated or processed by a CBMS. They are designed to be entered and read by CBMS users. They can be as simple or complex as the user requires. Serial numbers are intended to be used to designate messages about a specific topic, or messages a given

      user  has  sent.    Serial numbers are intended to be a permanent
      part of the message, just as unique identifiers are.

A CBMS can provide functions allowing originators to add

      serial  numbers  to  messages.    Originator-Serial-Number is the
      field provided for an originator to add  a  serial  number  to  a
      message before sending it.

3.2.5 Life span functions

Messages have life spans, usually delimited by the creation date and the time when the last copy of the message is destroyed. Messages could be meaningless before a certain time or irrelevant after a certain time. For example, a reminder to attend a meeting on 5 June loses most of its value on the sixth; a reminder to attend that same meeting may be of little use on 5 May (although not for the same reason).

A CBMS can define a message's life span explicitly using the Start-Date and End-Date fields. A third field, Warning-Date, when used in conjunction with the End-Date, may be used to signal the approach of the End-Date. Warning-Date may also stand alone and be used by a periodic warning (alarm clock) mechanism.

A CBMS could use these fields to help users manage their message stores. For example, a message whose start date has not yet passed could be bypassed by a retrieval command unless the user requested such messages explicitly. A CBMS could use the end date to help with message store housekeeping either by archiving or deleting the expired messages automatically or by asking the user for some action to be taken on them. The warning date could be used to remind the user automatically of an impending end date, such as a meeting reminder.

30


3.2.6 Requests for recipient processing

Recipients have a wide variety of needs for examining and processing a message, ranging from automatic output on some specified device to the execution of a program embedded in the

      message  itself.    Because  many  of  these  needs  are   highly
      specialized,  and  support  for them not widely implemented, this
      message format specification does not constrain the requests  for
      processing that may be included in a message.

The message format specification does provide two fields that permit an originator to request circulation list processing from the recipient. These fields are Circulate-To and Circulate- Next.

3.2.6.1 Message circulation

Message circulation involves serial distribution of a mes- sage to its recipients, based on a distribution list that is part of the message. The message is delivered first to the first recipient on the distribution list. This recipient, or someone the recipient delegates, sends the message on to the second recipient on the list, perhaps after commenting on or adding to

      the  message.    This  continues  until  all  recipients  on  the
      distribution list have received the message.

This message format specification provides two fields to support message circulation. The Circulate-To field contains the complete distribution list, indicating the full set of recip- ients, and the Circulate-Next field indicates which recipients have not seen the message. See Figure 3 for an example of message circulation using these two fields.

3.3 Multiple Occurrences and Ordering of Fields

Most message fields may occur more than once in a message; the exceptions are the Posted-Date, Sender, and Message-ID fields, which may occur once, at most. What this means is that a received message may contain any number of instances of a particular field (such as the "To" field). If a message contains more than one instance of a particular field, that field "occurs multiply" and that message has "multiple occurrences" of that field.

A particular instance of a message field is not superseded by later instances of the same field. The To field is an example of this.

31


      -----------------------------------------------------------------

A message originator wishes to circulate a message to recipients A, B and C. The originator includes the following fields in the message:

                     To:              A
                     Circulate-To:    A, B, C
                     Circulate-Next:  B, C

When recipient A or someone A delegates causes the message to be further circulated, the message is sent to the first address in the Circulate-Next field, and that name is removed from that field:

                     To:              B
                     Circulate-To:    A, B, C
                     Circulate-Next:  C

B now sends the message on to its final recipient:

                     To:              C
                     Circulate-To:    A, B, C

FIG. 3. EXAMPLE OF MESSAGE CIRCULATION

      -----------------------------------------------------------------

Multiple occurrences of a field are not necessarily equiv- alent to a single field containing the concatenated contents of the several instances of the given field. For example, with the Text field, concatenating the contents of several instances might lose important distinctions between the contents. A single message could be used to send three different documents, each one in a different Text field. However, putting the three documents into a single Text field would make it much more difficult to extract any individual document.

           Encapsulated  messages  are  exceptions  to   the   multiple
      occurrences  rule.   For example, the To field in an encapsulated
      message is not a multiple occurrence  of  the  To  field  in  the
      enclosing message.

The fields found in a single message may occur in any order. The order in which they occur does not necessarily reflect the

32


order in which they were created. Nor does it constrain the order in which the message recipient examines, processes, or displays them.

33


4. SYNTAX

This section begins with an introduction to the concepts and elements that constitute the syntax for messages. The second section presents an overview of the encoding scheme. The third section describes in detail the elements of the message syntax.

4.1 Introduction

This specification defines syntactic requirements for mes-

      sages when they are  passed  from  one  CBMS  to  another.    The
      specification is designed to meet the following goals.

4.1.1 Message structure

           Messages   have   two  classes  of  components,  fields  and
      messages.  A field corresponds to one of the semantic  components
      defined  in  this  message  format  specification.   A message is
      simply another message.

The type of a field in a message determines both its meaning and the form for its contents. (See Section 4.3.2.)

Fields in a message are composed of syntactic elements

      called  data  elements.    A  Message  data  element  is  used to
      represent messages; a Field data element  is  used  to  represent
      fields.    (The  term  "field"  is  simply  a semantic construct,
      distinct  from  "Field  Data  Element,"  which  is  a   syntactic

_______________

3
While this message format specification is not intended to be used as a basis for the interchange of all facsimile information, it does recognize that CBMS messages may contain facsimile components.

34


      construct.)    Many  of the fields defined in this message format
      specification are restricted to containing only one kind of  data
      element.  (See Section 4.3.2.)

Each field defined in this message format specification has been assigned a unique numeric identifier that is used in conjunction with the Field data element. Separate identifiers are provided for vendor-defined fields and for extending the

      identifier  encoding  space.    A  list of fields and identifiers
      appears in Section 4.3.2 and in Appendix C.

Throughout the message format specification, fields are referred to by label name rather than by their numeric identi- fiers. Field labels are names like "Sender," "Warning-Date," or

      "Circulate-To."    The  field labels chosen for the specification
      are names  that  are  in  common  use  in  current  CBMSs.    The
      specification  does  not require a CBMS to use these field labels
      in displaying fields to the user.  

4.1.2 Data elements

For the purpose of determining compliance with the syntax defined in this specification, data elements are divided into two groups:

      BASIC     All   message  receiving  systems  must  process  these
                syntactic elements, interpreting their values according
                to the message format specification.

      OPTIONAL  Message  receiving  systems  need  not  process   these
                syntactic elements in order to be in compliance.

           In   addition,   complying   CBMSs  must  meet  requirements
      regarding their ability to process the  components  found  inside
      data  elements.    These  requirements  are  discussed in Section
      4.2.2.

This message format specification classifies data element types as either primitives or constructors. Primitive data elements, such as ASCII-String, are basic building blocks. Constructor data elements, such as Message or Sequence, contain

      one or  more  primitive  or  constructor  data  elements.    Some
      constructors, such as Sequence, may be composed of any other data
      element.    Some,  such as Message, may contain only certain data
      elements. Two data elements, Extension and Vendor-Defined, may be
      classified as either primitives or constructors, depending on how
      they  are  used  to  extend  this  specification.    The  general
      syntactic form for data elements is discussed in section 4.3.1.

35


4.1.2.1 Primitive data elements

           A   primitive   data   element  contains  a  basic  item  of
      information; it is not composed  of  other  data  elements.    In
      current  CBMSs,  the most commonly used primitive data element is
                                                 4
      ASCII-String, a series of ASCII characters.  Other primitive data
      elements are Integer,  2's  complement  integers;  Bit-String,  a
      series of bits; and Boolean, either True or False.

One primitive data element, End-Of-Constructor, is used only as a structural element within constructor data elements and has no meaning by itself. End-of-Constructor is used to provide an end marker for constructor data elements that do not have an explicit length; any other use is not valid syntactically.

4.1.2.2 Constructor data elements

The Data Element Contents of constructor data elements contain one or more data elements. The most general form of a constructor is a Sequence or a Set, since both Sequences and Sets may contain any data element. Other constructors are specialized forms of sequences.

           A Message data element is a constructor.    It  may  contain
      only  Field  data  elements,  other  Message  data  elements,  or
      encrypted or data compressed forms of these elements.    A  Field
      data  element  can  contain  any data element.  It also indicates
      which specific field is being represented.  The contents of  some
      fields  are  restricted to a single type of data element, such as
      ASCII-String or Date.

4.1.3 Properties

Any data element may have associated with it a Property- List, which contains properties such as a Printing-Name or one or

      more  Comments.    Comment  A mechanism to support vendor-defined
      properties has been supplied by this specification, as well as  a
      mechanism to extend the list of property identifiers.

_______________

4
An ASCII-String is not limited to ASCII characters however. The ASCII code table can be extended through standardized techniques as described in FIPS Pub 35, Code Extension Techniques in 7 or 8 Bits [NatB-75].

36


4.1.3.1 Printing-names

Printing-Names are used to provide labels that can be

      displayed  along  with  their  respective  data  elements.    For
      example, a message originator may use a Printing-Name property to
      request that the To field of a message be labeled "Distribution:"
      when it is printed by its recipients.

4.1.3.2 Comments

The Comment property is used to allow comments to be associated with any data element without affecting its actual

      contents.    For example, someone reviewing the text of a message
      could add the comment "This looks good" to the Text field without
      either altering the body itself  or  adding  a  separate  comment
      field.

4.1.4 Data compression and encryption

Two constructor data elements, Compressed and Encrypted, have been provided for use by a CBMS that supports data

      compression  or  encryption.    They  may  be  used  to  hold the
      compressed or encrypted contents of any data  element,  including
      Messages  and  Fields, and may occur wherever their compressed or
      encrypted contents may appear.  A mechanism is included to  allow
      the user to identify the encryption or compression algorithm used
      (Sections 4.3.4 and 4.3.5).

4.2 Overview of Syntax Encoding

This section provides an overview of the notation and terminology used to represent the syntactic elements (data elements) defined in this message format specification.

All data elements consist of a series of components. Each of the components is composed of a series of 8-bit groups called

      octets.    In  this document, the bits are numbered starting from
      the low-order bit.  That is, the low-order (or least significant)
      bit is called "bit 0" and the high-order  (or  most  significant)
      bit is called "bit 7."  

Five different components may appear in a data element.

37


These components always appear in this order. Not all components are present in all data elements, but the components that are present maintain this relative order.

4.2.1 Identifier Octets

The identifier octet is a numeric code containing infor- mation that identifies a data element. It is always the first component in a data element. The Identifier octet contains a one-bit flag, indicating whether or not the data element contains a Property-List, and a 7-bit unique identifier for the data element. The value of the data element identifier also indicates whether the data element has a Qualifier.

The most significant bit (Bit 7) of the identifier octet is set to 1 if there are properties associated with the data element; it is set to 0 if there are none. This bit is independent of the remaining seven bits in the identifier octet, which are called the identifier, and provide unique identifi-

      cation  for  data  elements.    The  associated  properties   are
      specified in a Property-List component.

The second most significant bit (Bit 6) of the identifier octet (the most significant bit of the identifier itself) signifies whether or not the data element has a Qualifier. If the bit is set to 1, then the data element has a Qualifier; if it

      is a 0, the data element does not have a Qualifier.    The  seven
      bits of the identifier uniquely identify the data element.

Table 2 shows the settings of the high-order bits of the

      identifier  octet  and  their  associated  meaning.    Figure   4
      demonstrates the bit-level structure of the identifier octet.  In
      this figure, bit 7 is indiciated with P to show its special use.

38


      -----------------------------------------------------------------

bit 7 6 5 4 3 2 1 0

              +---------------+
              |P 0 x x x x x x|     0xxxxxx uniquely identifies a
              +---------------+     data element without a Qualifier.

              +---------------+
              |P 1 x x x x x x|     1xxxxxx uniquely identifies a
              +---------------+     data element with a Qualifier.

FIG. 4. STRUCTURE OF IDENTIFIER OCTETS

      -----------------------------------------------------------------

          Bit Value     Meaning

           7    0   The data element does not have properties asso-
                      ciated.
                1   The data element has properties associated.

           6    0   The data element does not have a Qualifier.
                1   The data element has a Qualifier.

TABLE 2. HIGH-ORDER BITS IN THE IDENTIFIER OCTET

4.2.2 Length code and Qualifier components

The Length Code and the Qualifier are both usually one octet

      in  length.    They use an encoding scheme that permits extending
      the component to the size necessary to represent  the  length  of
      the data element or the value of the Qualifier component.

The most significant bit of the Length Code or Qualifier components determines whether it is one or several octets in length. When the most significant bit is 0, the component is one

39


octet in length. When the most significant bit is 1, the other seven bits of the first octet encode the number of octets in the rest of the component. The actual value begins in the next octet and is interpreted as an unsigned integer.

A single octet is sufficient for most Length Code and Qualifier components. For those cases where the value of the Length Code or the Qualifier must be greater than 127, extra

      octets can be added, up to a maximum of 127  octets.    Figure  5
      shows  the encoding scheme, as well as an example of a value less
      than 127 and one greater than 127.

      -----------------------------------------------------------------

bit 7 6 5 4 3 2 1 0

              +---------------+
              |0 x x x x x x x|                   xxxxxxx is the value.
              +---------------+

              +---------------+------//-------+
              |1 n n n n n n n|y y y y y y y y|          nnnnnnn is the
              +---------------+------//-------+        number of octets
                                                       that contain the
                                                        value yyyyyyyy.

              +---------------+
              |0 0 0 0 1 0 0 1|               This is an example with a
              +---------------+                   value of 9 (decimal).

              +---------------+---------------+
              |1 0 0 0 0 0 0 1|1 0 0 0 0 0 1 0|      This example has a
              +---------------+---------------+ value of 130 (decimal).

              +---------------+---------------+
              |1 0 0 0 0 0 1 0|0 0 0 0 0 0 0 1|
              +---------------+---------------+

                              +---------------+
                              |0 0 1 0 1 1 0 0|      This example has a
                              +---------------+ value of 300 (decimal).

FIG. 5. ENCODING MECHANISM FOR QUALIFIERS AND LENGTH CODES

      -----------------------------------------------------------------

40


In order to comply with this message format specification, CBMSs must be able to determine the value of any length code or qualifier that is expressed in three octets or less. (The

16

      2  -1).    This message format specification places no limitation
      on the value of a length code or qualifier generated  by  a  CBMS
      (except  for  the  absolute  limitation inherent in the represen-
      tation scheme).  However, the use of length codes and  qualifiers
                                                                  32
      with  larger  values  (particularly  values  in  excess of 2  -1)
      should be avoided unless it is known that  the  receiving  system
      can handle them.  

Both Length Codes and Qualifiers have a special convention for dealing with special situations. Length Codes can specify that a data element has indeterminate length; a Qualifier can

      specify that a data element is  implementation  defined.    These
      cases are explained further in the next two sections.

4.2.2.1 Length Codes

The length code component immediately follows the identifier

      octet.    It  is  present in every data element.  The Length Code
      indicates the number of octets following it  in  a  data  element
      (that  is,  excluding  the  identifier  octet and the length code
      itself).  Length Codes appear in one  of  three  formats:  short,
      long, and indefinite.

A short Length Code is one octet long. Its most significant bit (Bit 7) is set to 0 and its value is in the range 0 through 127.

A long Length Code is at least two octets long. The first octet always has its most significant bit (Bit 7) set to 1. The other seven bits of this octet contain the number of octets making up the rest of the Length Code, and these octets contain

1016

      (2     - 1) (that is, 127 octets to represent the value).

An indefinite Length Code is one octet long. Its most significant bit (Bit 7) is set to 1 and its other bits are all 0. (See Figure 6.) An indefinite Length Code may appear only as part of a constructor data element; it may not occur in a

41


      -----------------------------------------------------------------

bit 7 6 5 4 3 2 1 0

              +---------------+
              |0 x x x x x x x|             xxxxxxx is the value of the
              +---------------+                            length code.

              +---------------+------//-------+
              |1 n n n n n n n|y y y y y y y y|   nnnnnnn is the number
              +---------------+------//-------+  of octets that contain
                                                the value of the length
                                            code; these are represented
                                                            as yyyyyyy.
              +---------------+
              |1 0 0 0 0 0 0 0|            The "indefinite" length code
              +---------------+

FIG. 6. REPRESENTATION OF LENGTH CODES

      -----------------------------------------------------------------

5

      primitive  data  element .    A  constructor data element with an
      indefinite length code has an End-Of-Constructor data element  as
      the  last data element in its Data Element Contents.  (The length
      of such a constructor data element is unrestricted,  although  it
      must  contain at least one data element -- the End-of-Constructor
      that terminates it -- in its Data Element Contents.)

4.2.2.2 Qualifier

If present,the Qualifier component immediately follows the code component. It is used to provide information essential to the interpretation of the data element contents that is beyond that encoded in the identifier octet or length code. For example, the identifier octet could contain the code for a field, and the Qualifier component would specify what kind of field.

The Qualifier component appears in only a few data elements.

_______________

5
This is the result of most primitive elements being able to contain any bit pattern (including the identifier for End-Of- Constructor).

42


In the Bit-String data element, it indicates the number of unused bits in the final octet of the Data Element Contents. In the Field and Property data elements, it indicates which field or property the data element represents. In the Compressed and Encrypted data elements, it indicates which compression or encryption algorithm has been used. In the Message data element, it indicates the type of message.

The length of the Qualifier component depends on the encoding of the Qualifier. (See Figure 7.) A short Qualifier is one octet long. Its most significant bit is 0 and its value is in the range 0 through 127. A long Qualifier is at least two octets in length. The most significant bit is always 1 and the other 7 bits indicate the number of octets in the value of the Qualifier.

      -----------------------------------------------------------------

               +--------+--------+--------+
               |10000010|00000001 00001010|        Qualifier with value
               +--------+--------+--------+              266 (decimal).

               +--------+--------+--------+--------+
               |10000011|00000000|00000001 00001010|     Vendor-Defined
               +--------+--------+--------+--------+     Qualifier with
                                                             value 266.

               +--------+
               |10000000|              Undefined value for a Qualifier.
               +--------+

FIG. 7. EXAMPLES OF QUALIFIER VALUES

      -----------------------------------------------------------------

This message format specification allows implementations to define their own values for Qualifiers. A vendor-defined Qual- ifier is any long Qualifier in which the first octet in the value

      is 0.    The  value  used  to  identify  this  Qualifier  is  not
      guaranteed  to  be  unique  and  the  same  value  may be used by
      different implementations to define different Qualifiers.

43


4.2.3 Property-List

A Property is an attribute being associated with, but not

      essential  to  the  interpretation  of,  a  data  element.    The
      properties currently defined by this message format specification
      are  Printing-Name  and  Comment.  A Property-List component of a
      data element is represented by a Property-List data element  that
      in turn contains Property data elements.

A data element contains at most one Property-List. The most significant bit in the identifier octet of the data element indicates whether a Property-List is present.

4.2.4 Data Element Contents

The Data Element Contents component of a data element is the

      actual data or information represented by a data element.    (The
      other  components  provide  the information necessary to identify
      and interpret the Data Element Contents.)

In a primitive data element, the Data Element Contents is a series of octets interpreted according to the identifier octet and any qualifier.

In a constructor data element, the Data Element Contents is a series of data elements. When the Length Code component of a constructor data element is "indefinite," the last data element in the constructor's Data Element Contents is End-of-Constructor.

The length of the Data Element Contents (in octets) is the difference between the value of the Length Code and the sum of the following:

4.3 Data Element Syntax

This message format specification defines nineteen (19) different data elements. Section 4.3.1 defines the encoding form for data elements in general and the syntax for each data element. Section 4.3.2 describes the use of specific data

44


elements as part of the Data Element Contents of a Field data element. A summary of the syntactic form appears in Appendix F; summaries of the data element syntax appear in Appendix G.

4.3.1 Data elements

This section presents the general syntactic form for all data elements defined by this message format specification and the detailed syntax for each data element. The data elements are presented by syntactic class: primitive data elements (Section 4.3.1.1), constructors (Section 4.3.1.2), and data elements which can be either (Section 4.3.1.3).

For convenience, the following terminology is used in this section.

                  Term            Meaning

              Primitive       a Primitive Data Element

              Constructor     a Constructor Data Element

              Element         any Data Element

The syntax of each Element is presented in graphic form. The following conventions apply in the diagrams. A single octet is represented as follows.

          +--------+
          |        |
          +--------+

Components that vary in length are represented as follows.

          +---//---+
          |        |
          +---//---+

Each Element has up to five components: an Identifier, a Length Code, a Qualifier, a Property-List, and the Data Element Contents.

In the diagrams, the contents of the identifier octet is

45


shown as a "P" followed by an identifier represented in binary. (See Figure 4.)

A length code is always represented in the following manner:

          +---//---+
          |Lxxxxxxx|
          +---//---+

A qualifier is always represented in the following manner:

          +---//---+
          |Qxxxxxxx|
          +---//---+

A Property-List (if present) always immediately precedes any occurrence of Data Element Contents.

The Data Element Contents appears in diagrams as one of the following:

Two data elements have been reserved for special purposes. The Extension data element is provided to allow for future expansion of the possible data elements. The Vendor-Defined data element allows CBMS vendors to define their own data elements. Vendor-Defined data elements are not guaranteed to be unique, since two implementations could define different data elements using the same identifier. Vendor-Defined data elements should be used and interpreted by prior agreement.

In the following sections, each element is presented with its name, compliance classification (BASIC or OPTIONAL), its

      identifier   (both   in   hexadecimal  and  in  octal),  a  brief
      description of its use, and a graphic representation.  Each  data
      element description has the following form.

46


      -----------------------------------------------------------------

      Data Element             (Compliance)   identifier   identifier
          Name                 ( Category )    octet         octet 
                                                    16            8

Description of the syntax of the data element.

                 +---//---+
                 |        |     Diagram representing data element
                 +---//---+

      -----------------------------------------------------------------

4.3.1.1 Primitives

           The   data   elements   in  this  section  are  arranged  in
      alphabetical order by name.  (Appendix C presents the identifiers
      in numeric order.)

      ASCII-String             (BASIC)        02        002 
                                                16         8
                   This  data  element  contains  a  series  of   ASCII
                characters [NatB-80], each character right-justified in
                one  octet.    For  7-bit  ASCII  characters,  the most
                significant bit of each octet must be 0.

Note: The ASCII code table can be extended through standardized techniques [NatB-75] to introduce addi- tional 7-bit or 8-bit characters or additional code tables.

                 +--------+---//---+----//-----+
                 |P0000010|Lxxxxxxx|ASCII chars|
                 +--------+---//---+----//-----+

47


      Bit-String               (OPTIONAL)     43        103 
                                                16         8
                This  data  element contains a series of bits.  It uses
                the Qualifier data  element  component  to  record  the
                number  of  bits  of  padding (as an eight bit unsigned
                integer) needed to fill the final  octet  of  the  Data
                Element  Contents  to  an  even  octet boundary.  These
                padding bits have no meaning and occur in the low order
                bits of the final octet.   The  valid  values  for  the
                Qualifier  component  are  0  through 7.  The number of
                bits in the Data Element Contents  is  calculated  from
                the following formula.

                8   *   number of octets   -   value of
                        in the Data            Qualifier component
                        Element Contents

                 +--------+---//---+---//---+---//---+
                 |P1000011|Lxxxxxxx|Qxxxxxxx|  bits  |
                 +--------+---//---+---//---+---//---+

      Boolean                  (OPTIONAL)     08        010 
                                                16         8
                This  data  element  contains  one octet whose value is
                either true or false.  False is represented by all bits
                being 0; true  is  represented  by  all  bits  being  1
                (although  any  non-zero value should be interpreted as
                true).

                 +--------+---//---+--------+
                 |P0001000|Lxxxxxxx| T or F |
                 +--------+---//---+--------+

      End-of-Constructor       (BASIC)        01        001 
                                                16         8
                This data element terminates the Data Element  Contents
                in  a  constructor  data  element  that  has indefinite
                length.  This data element has no  Contents  component.
                (Use of this element is described in Section 4.2.2.1.)

                 +--------+---//---+
                 |P0000001|Lxxxxxxx|
                 +--------+---//---+

48


      Integer                  (OPTIONAL)     20        040 
                                                16         8
                This  data element contains a 2's complement integer of
                variable  length,  high  order  octet  first.    It  is
                recommended  that the data element contents be either 2
                or 4 octets long whenever possible.

                 +--------+---//---+---//---+
                 |P0100000|Lxxxxxxx| Integer|
                 +--------+---//---+---//---+

      No-Op                    (OPTIONAL)     00        000 
                                                16         8
                This data element does nothing.  No-Op is used whenever
                it is necessary to include a data  element  that  means
                "no operation."  It is a short placeholder.

                 +--------+---//---+
                 |P0000000|Lxxxxxxx|
                 +--------+---//---+

      Padding                  (OPTIONAL)     21        041 
                                                16         8
                This data element is used to fill any number of octets.
                The  contents  of  a  Padding element are undefined and
                convey no information.

                 +--------+---//---+---//---+
                 |P0100001|Lxxxxxxx|anything|
                 +--------+---//---+---//---+

4.3.1.2 Constructors

The data elements in this section are arranged in alpha- betical order.

49


      Compressed               (OPTIONAL)     46        106 
                                                16         8
                This  data  element  must  contain  a  Bit-String  data
                element.  It is used to represent  any  data  that  has
                been   compressed;   it   may   be  used  wherever  its
                uncompressed contents may appear.    A  Qualifier  data
                component  appears  in each Compressed data element; it
                contains a  compression identifier  (CID)  to  identify
                the  compression  algorithm used.  (See Section 4.3.5.)
                The Data Element Contents contains the product  of  the
                compression process.

                 +--------+---//---+---//---+--------//--------+
                 |P1000110|Lxxxxxxx|Qxxxxxxx|Bit-String Element|
                 +--------+---//---+---//---+--------//--------+

      Date                     (BASIC)        28        050 
                                                16         8
                This   data   element  contains  an  ASCII-String  data
                element, which is a representation of a date  and  time
                formatted   in   accordance   with   PUBS  4 [NatB-68],
                58 [NatB-79a] and 59 [NatB-79b].  The use of  time  and
                time  zone is optional.  It is recommended that numeric
                offsets be used  to  indicate  time  zone  rather  than
                alphabetic abbreviations.

                 +--------+---//---+------//------+
                 |P0101000|Lxxxxxxx| ASCII-String |
                 +--------+---//---+------//------+

      Encrypted                (OPTIONAL)     47        107 
                                                16         8
                This  data  element  must  contain a Bit-String.  It is
                used to represent any data that has been encrypted;  it
                may  be  used  wherever  its  unencrypted  contents may
                appear.  A Qualifier data  component  appears  in  each
                Encrypted  data  element;  it  contains  an  encryption
                identifier (EID) identifying the  encryption  algorithm
                used.   The Data Element Contents is the product of the
                encryption process.

                 +--------+---//---+---//---+--------//--------+
                 |P1000111|Lxxxxxxx|Qxxxxxxx|Bit-String Element|
                 +--------+---//---+---//---+--------//--------+

50


      Field                    (BASIC)        4C        114 
                                                16         8
                This   data  element  uses  a  Qualifier  data  element
                component.  The Qualifier component  contains  a  Field
                Identifier  (FID)  indicating  which  specific field is
                being represented.

                 +--------+---//---+---//---+---//---+
                 |P1001100|Lxxxxxxx|Qxxxxxxx|elements|
                 +--------+---//---+---//---+---//---+

      Message                  (BASIC)        4D        115 
                                                16         8
                This data element may contain  Field  or  Message  data
                elements.    Its Qualifier component contains a Message
                type (MID) indicating the type of the  message.    (The
                MID is completely different from the message identifier
                in the Message-ID field and should not be confused with
                it.)

                 +--------+---//---+---//---+
                 |P1001101|Lxxxxxxx|Qxxxxxxx|
                 +--------+---//---+---//---+

                 +--------//---------//---------//---------//--------+
                 | Field, Message, Encrypted, or Compressed Elements |
                 +--------//---------//---------//---------//--------+

      Property-List            (OPTIONAL)     24        044 
                                                16         8
                This  data  element  contains a series of Property data
                elements to be associated with another data element.

                 +--------+---//---+-------//--------+
                 |P0100100|Lxxxxxxx|Property Elements|
                 +--------+---//---+-------//--------+

      Property                 (OPTIONAL)     45        105 
                                                16         8
                This  data  element  uses  a  Qualifier  data   element
                component.       The   Qualifier   component   contains
                a  Property-Identifier (PID) to indicate which specific
                property is being represented.

                 +--------+---//---+---//---+---//---+
                 |P1000101|Lxxxxxxx|Qxxxxxxx|elements|
                 +--------+---//---+---//---+---//---+

51


      Sequence                 (OPTIONAL)     0A        012 
                                                16         8
                This data element contains any series of data elements.
                Sequence  differs  from  Set  in that the data elements
                making up the Data Element Contents must be  considered
                as  an  ordered  sequence  (according to their order of
                appearance in the sequence.)

                 +--------+---//---+---//---+
                 |P0001010|Lxxxxxxx|elements|
                 +--------+---//---+---//---+

      Set                      (OPTIONAL)     0B        013 
                                                16         8
                This data element contains any series of data  elements
                with  no  ordering  of the elements implied.  (Sequence
                provides  an  ordered  series.)    Although  the   data
                elements   contained   in   a   Set   must   be  stored
                sequentially, the order in which they are stored is not
                defined and not processed.

                 +--------+---//---+---//---+
                 |P0001011|Lxxxxxxx|elements|
                 +--------+---//---+---//---+

      Unique-ID                (OPTIONAL)     09        011 
                                                16         8
                This data element is a unique identifier.  It need  not
                be human-readable.  The Data Element Contents may be an
                ASCII-String, a Bit-String, or an Integer.

                 +--------+---//---+---//---+
                 |P0001001|Lxxxxxxx| element|
                 +--------+---//---+---//---+

4.3.1.3 Data Elements that Extend this Specification

There are two data elements that are used to extend this specification. They can be classified as either primitive or constructor data elements, depending on the extension.

52


      Extension                (OPTIONAL)     7E        176 
                                                16         8
                This  data  element  is  used  to  extend the number of
                available  data  elements  beyond  the  128  that   are
                possible   using  a  7-bit  identifier.    A  Qualifier
                component extends the encoding space  for  identifiers.
                (Extension and Vendor-Defined have the same syntax.)

                 +--------+---//---+---//---+---//---+
                 |P1111110|Lxxxxxxx|Qxxxxxxx|Anything|
                 +--------+---//---+---//---+---//---+

      Vendor-Defined           (OPTIONAL)     7F        177 
                                                16         8
                This  data  element  is  used  to represent vendor- and
                user-defined data  elements.    A  Qualifier  component
                extends  the  encoding  space  for  identifiers.    The
                Qualifier component is  not  guaranteed  to  be  unique
                among all interconnected systems.  This data element is
                interpreted   according   to  prior  agreement  between
                systems.  (Extension and Vendor-Defined  data  elements
                have the same syntax.)

                 +--------+---//---+---//---+---//---+
                 |P1111111|Lxxxxxxx|Qxxxxxxx|Anything|
                 +--------+---//---+---//---+---//---+

4.3.2 Using data elements within message fields

The Data Element Contents of a particular field in a message must contain at least one data element. The types of data elements that can appear in the Data Element Contents of a field are restricted according to what kind of field it is. Appendix A (the master reference appendix for fields) defines which data elements are valid as the Contents for each of the fields.

Some fields have a Data Element Contents that contains

      "originators"  or  "recipients."   No data element represents the
      identities of originators or recipients (because that encoding is
      not within the  scope  of  this  message  format  specification.)
      These  descriptions  simply  list  "originators" or "recipients",
      implying no restrictions on how the identifiers  for  originators
      or recipients are represented.

53


4.3.3 Properties and associated elements

This message format specification defines two properties.

      Comment                                 01        001 
                                                16         8
                This  property may contain any series of data elements;
                it most commonly contains one or more ASCII-Strings.

      Printing-Name                           02        002 
                                                16         8
                This property contains one ASCII-String.  In this case,
                the ASCII-String may contain only  the  printing  ASCII
                characters plus the "space" character.

4.3.4 Encryption identifiers

This message format specification defines two encryption identification codes.

      Unspecified                             00        000 
                                                16         8
                Use of  this  encryption  identifier  as  part  of  the
                Encrypted  data  element  indicates that the encryption
                method being used was not specified  for  inclusion  as
                part of the data element.

      FIPS-Standard                           01        001 
                                                16         8
                Use  of  this  encryption  identifier  as  part  of the
                Encrypted  data  element  indicates  that  the  Federal
                Information   Processing   Standard   method  for  data
                encryption was [NatB-77].

4.3.5 Compression identifiers

This message format specification defines one compression identification code for use with the Compressed data element.

      Unspecified                             00        000 
                                                16         8
                Use  of  this  compression  identifier  as  part of the
                Compressed data element indicates that the  compression
                method  being  used  was not specified for inclusion as
                part of the data element.

54


4.3.6 Message types

This message format specification defines message type (MID) codes for use in classifying the type of a message. The message type could be confused with the message identifier in the Message-Id field; they are completely distinct concepts.

      FIPS-Standard                           01        01 
                                                16        8
                This  message  type  marks  messages  defined  by  this
                message format specification.

55


Appendix A Defines the fields in the message format specifi- cation. This alphabetical appendix is for reference
                  use   by   implementors.      It   contains  semantic
                  definitions of fields from  Section  3.1.    It  also
                  defines  Field  Identifier values and specifies which
                  data elements are valid as the Contents for  each  of
                  the fields.

Appendix B Defines the data elements in the message format specification. This alphabetically ordered appendix is for reference use by implementors. It consol- idates information from Section 4.3.

Appendix C Provides a reference table listing the data elements in numerical order by their identifier octets.

Appendix D Provides a reference table summarizing the components of messages according to whether they are required or optional for CBMSs implementing the specification.

Appendix E Provides a reference table organizing the message components according to the functional class of the components.

      Appendix F  Provides   an  overview  of  the  syntactic  elements
                  defined by this message format specification.

Appendix G Summarizes syntactic elements according to whether they are required or optional for a CBMS implementing the message format specification.

Appendix H Examples of each syntactic element displaying their syntax and describing their associated semantics.

56


APPENDIX A
FIELDS -- IMPLEMENTORS' MASTER REFERENCE

This appendix defines all of the fields in the message

      format specification for  reference  use  by  implementors.    It
      contains  semantics  definitions  of fields from Section 3.1.  It
      also defines Field Identifier values and which data elements  are
      valid  as  the  Contents  for  each  of  the  fields.   The field
      definitions appear alphabetically.

Each field in the list has the following form:

      ------------------------------------------------------------

      Field Name               Compliance   identifier  identifier
                                              value       value 
                                                   16          8

Description of the field semantics. Names of data elements that are valid in the Data Element Contents of this kind of field.

      ------------------------------------------------------------

      Attachments              OPTIONAL       08        010 
                                                16         8
                This field  contains  additional  data  accompanying  a
                message.    It  is similar in intent to enclosures in a
                conventional mail system.  Contents of this  field  are
                unrestricted.

      Author                   OPTIONAL       0C        014 
                                                16         8
                This  field  identifies the individual(s) who wrote the
                primary contents of the message.   Use  of  the  Author
                field  is  discouraged  when the contents of the Author
                field and the From field would be completely redundant.
                This field contains one or more originator identities.

57


      Bcc                      OPTIONAL       0D        015 
                                                16         8
                This  field  identifies  additional  recipients  for  a
                message (a "blind carbon copies list").   The  contents
                of  this  field are not to be included in copies of the
                message sent to the primary and  secondary  recipients.
                See  section 3.2.1 for further discussion of the use of
                blind carbon copies lists. This field contains  one  or
                more recipient identities.

      Cc                       BASIC          06        006 
                                                16         8
                This   field  identifies  secondary  recipients  for  a
                message (a "carbon copies" list).  This field  contains
                one or more recipient identities.

      Circulate-Next           OPTIONAL       0E        016 
                                                16         8
                This field is used in conjunction with the Circulate-To
                field.    (See Section 3.2.6.1 for further discussion.)
                It identifies all recipients in a circulation list  who
                have not yet received the message.  This field contains
                one or more recipient identities.

      Circulate-To             OPTIONAL       0F        017 
                                                16         8
                This  field  identifies  recipients  for  a  circulated
                message.  (See Section 3.2.6.1 for further discussion.)
                It is  used  in  conjunction  with  the  Circulate-Next
                field.    This  field  contains  one  or more recipient
                identities.

      Comments                 OPTIONAL       10        020 
                                                16         8
                This field permits adding  comments  onto  the  message
                without   disturbing   the  original  contents  of  the
                message.  While the Comments field will usually contain
                one or more ASCII-Strings, there are no restrictions on
                its contents.

      Date                     OPTIONAL       11        021 
                                                16         8
                This  field  contains  a  date   that   the   message's
                originator  wishes  to  associate  with a message.  The
                Date field is to the Posted-Date field as the date on a
                letter is to the postmark added  by  the  post  office.
                This field contains one Date.

58


      End-Date                 OPTIONAL       12        022 
                                                16         8
                This  field  contains the date on which a message loses
                effect.    (See  also   Section   3.2.5   for   further
                discussion.)  This field contains one Date.

      From                     REQUIRED       01        001 
                                                16         8
                This  field  contains  the  identity of the originators
                taking formal responsibility for  this  message.    The
                contents  of  the  From field is to be used for replies
                when no Reply-to field appears  in  a  message.    This
                field contains one or more originator identities.

      In-Reply-To              OPTIONAL       13        023 
                                                16         8
                This  field designates previous correspondence to which
                this message is a reply.  The usual  contents  of  this
                field  would be the contents of the Message-ID field of
                the message(s) being replied to.  This  field  contains
                one or more Unique-IDs or ASCII-Strings.

      Keywords                 OPTIONAL       14        024 
                                                16         8
                This  field  contains  keywords  or  phrases for use in
                retrieving a message.  This field contains one or  more
                ASCII-Strings.   (Each keyword or phrase is represented
                by a separate ASCII-String.)

      Message-Class            OPTIONAL       15        025 
                                                16         8
                This field indicates the purpose of  a  message.    For
                example,  it  might  contain values indicating that the
                message is a memorandum or a  data-base  entry.    This
                field contains one data element, an ASCII-String.

      Message-ID               OPTIONAL       16        026 
                                                16         8
                This  field contains a unique identifier for a message.
                This identifier is intended for machine generation  and
                processing.    Further  definition  appears  in Section
                3.2.4.1.  Only one Message-ID field is permitted  in  a
                message.    This  field  contains  one  data element, a
                Unique-ID.

      Obsoletes                OPTIONAL       26        046 
                                                16         8
                This field identifies one or more  messages  that  this
                one  supplants.    This  field  contains  at  least one
                Unique-ID and may contain more than one.

59


      Originator-Serial-Number OPTIONAL       17        027 
                                                16         8
                This field contains one or more serial numbers assigned
                by  the  message's originator.  (Messages with multiple
                recipients should  all  have  the  same  value  in  the
                Originator-Serial-Number  field.    This field contains
                one or more ASCII-Strings.  (One ASCII-String  is  used
                for each serial number.)

      Posted-Date              REQUIRED       02        002 
                                                16         8
                This  field  contains  the  posting  date, which is the
                point in time  when  the  message  passes  through  the
                posting  slot into a message transfer system.  Only one
                Posted-Date field is permitted  in  a  message.    This
                field contains one Date.

      Precedence               OPTIONAL       18        030 
                                                16         8
                Ordinarily, message precedence or priority is a service
                request  to  a  message  transfer  system.    A message
                originator, however, can include precedence information
                in a message.  This field indicates the  precedence  at
                which  the  message  was  posted.    One  example  of a
                precedence  scheme  is  the  US   Military   categories
                "ROUTINE",  "PRIORITY",  "IMMEDIATE", "FLASH OVERRIDE",
                and  "EMERGENCY  COMMAND  PRECEDENCE".     This   field
                contains one ASCII-String.

      Received-Date            OPTIONAL       19        031 
                                                16         8
                This  field  is  also  called Delivery date.  It may be
                added to a message by the recipient's message receiving
                program.   It  indicates  when  the  message  left  the
                delivery  system  and  entered  the recipient's message
                processing domain.  This field contains one Date.

      Received-From            OPTIONAL       1A        032 
                                                16         8
                This field  contains  a  record  of  a  message's  path
                through    a    message    transfer    system.      The
                recipient's message receiving  program  may  store  any
                such   information  that  it  obtains  from  a  message
                transfer system in this field.  The  contents  of  this
                field are unrestricted.

60


      References               OPTIONAL       20        040 
                                                16         8
                This  field  identifies  other correspondence that this
                message  references.    If  the  other   correspondence
                contains  a  Message-ID  field,  the  contents  of  the
                References field must be the message identifier.   This
                field contains one or more Unique-IDs or ASCII-Strings.

      Reissue-Type             OPTIONAL       25        045 
                                                16         8
                This   field   is  used  in  conjunction  with  message
                encapsulating  (see  Section  3.2.2)  to  differentiate
                between messages being assigned or redistributed.  This
                field  contains  one  data  element,  usually an ASCII-
                String.

      Reply-To                 BASIC          03        003 
                                                16         8
                This field identifies any recipients for replies to the
                message.  This field contains  one  or  more  recipient
                identities.

      Sender                   OPTIONAL       22        042 
                                                16         8
                This  field  identifies the agent who sent the message.
                It is intended either for when the sender  is  not  the
                originator  responsible  for the message or to indicate
                who among a group of originators  responsible  for  the
                message  actually  sent it.  Use of the Sender field is
                discouraged when the contents of the Sender  field  and
                From  field  would  be  completely redundant.  Only one
                Sender field is permitted in a  message.    This  field
                contains one originator identity.

      Start-Date               OPTIONAL       23        043 
                                                16         8
                This  field  contains the date on which a message takes
                effect.  (See Section 3.2.5  for  further  discussion.)
                This field contains one Date.

      Subject                  BASIC          07        007 
                                                16         8
                This field contains whatever information the originator
                provided  to  summarize  or  indicate the nature of the
                message.   This  field  contains  one  or  more  ASCII-
                Strings.

      Text                     BASIC          04        004 
                                                16         8
                This field contains the primary content of the message.
                Contents of this field are unrestricted.

61


      To                       REQUIRED       05        005 
                                                16         8
                This field identifies primary recipients for a message.
                This field contains one or more recipient identities.

      Warning-Date             OPTIONAL       24        044 
                                                16         8
                This  field is used either alone or in conjunction with
                an End-Date field.  It  contains  one  or  more  dates.
                These  dates  could  be  used  by  a message processing
                program as warnings of an impending end-date  or  other
                event.    (See  Section  3.2.5 for further discussion.)
                This field contains one or more Dates.

62


APPENDIX B
DATA ELEMENTS -- IMPLEMENTORS' MASTER REFERENCE

The appendix defines all of the data elements in the message format specification, for reference use by implementors. It contains no new information but rather consolidates the syntactic information from Section 4.3.

Each data element description has the following form.

      -----------------------------------------------------------------

      Data Element        (Compliance)   identifier   identifier
          Name            ( Category )    octet         octet 
                                               16            8

Constructive class (primitive or constructor)

Description of the syntax of the data element.

                +---//---+
                |        |     Diagram representing data element
                +---//---+

      -----------------------------------------------------------------

63


      ASCII-String             (BASIC)        02        002 
                                                16         8
                primitive

This data element contains a series of ASCII characters

                 [NatB-80],   each  character  right-justified  in  one
                octet.    For  7-bit   ASCII   characters,   the   most
                significant bit of each octet must be 0.

Note: The ASCII code table can be extended through standardized techniques [NatB-75] to introduce addi- tional 7-bit or 8-bit characters or additional code tables.

                 +--------+---//---+----//-----+
                 |P0000010|Lxxxxxxx|ASCII chars|
                 +--------+---//---+----//-----+

      Bit-String               (OPTIONAL)     43        103 
                                                16         8
                primitive

This data element contains a series of bits. It uses the Qualifier data element component to record the number of bits of padding (as an 8-bit unsigned integer) needed to fill the final octet of the Data

                Element Contents to an  even  octet  boundary.    These
                padding bits have no meaning and occur in the low order
                bits  of  the  final  octet.   The valid values for the
                Qualifier component are 0 through 7.    The  number  of
                bits  in  the  Data Element Contents is calculated from
                the following formula.

                8   *   number of octets   -   value of
                        in the Data            Qualifier component
                        Element Contents

                 +--------+---//---+---//---+---//---+
                 |P1000011|Lxxxxxxx|Qxxxxxxx|  bits  |
                 +--------+---//---+---//---+---//---+

64


      Boolean                  (OPTIONAL)     08        010 
                                                16         8
                primitive

This data element contains one octet whose value is either true or false. False is represented by all bits being 0; true is represented by all bits being 1 (although any non-zero value should be interpreted as true).

                 +--------+---//---+--------+
                 |P0001000|Lxxxxxxx| T or F |
                 +--------+---//---+--------+

      Compressed               (OPTIONAL)     46        106 
                                                16         8
                constructor

This data element must contain a Bit-String data

                element.    It  is  used to represent any data that has
                been  compressed;  it  may   be   used   wherever   its
                uncompressed  contents  may  appear.   A Qualifier data
                component appears in each Compressed data  element;  it
                contains a compression identifier (CID) to identify the
                compression  algorithm used.  (See Section 4.3.5.)  The
                Data Element  Contents  contains  the  product  of  the
                compression process.

                 +--------+---//---+---//---+--------//--------+
                 |P1000110|Lxxxxxxx|Qxxxxxxx|Bit-String Element|
                 +--------+---//---+---//---+--------//--------+

      Date                     (BASIC)        28        050 
                                                16       8
                constructor

                This   data   element  contains  an  ASCII-String  data
                element, which is a representation of a date  and  time
                formatted  in  accordance  with  FIPS PUBS 4 [NatB-68],
                58 [NatB-79a], and 59 [NatB-79b].  The use of time  and
                time  zone is optional.  It is recommended that numeric
                offsets be used  to  indicate  time  zone  rather  than
                alphabetic abbreviations.

                 +--------+---//---+------//------+
                 |P0101000|Lxxxxxxx| ASCII-String |
                 +--------+---//---+------//------+

65


      Encrypted                (OPTIONAL)     47        107 
                                                16         8
                constructor

This data element must contain a Bit-String. It is used to represent any data that has been encrypted; it may be used wherever its unencrypted contents may appear. A Qualifier data component appears in each Encrypted data element; it contains an encryption identifier (EID) identifying the encryption algorithm used. (See Section 4.3.4 for further discussion.) The Data Element Contents is the product of the encryption process.

                 +--------+---//---+---//---+--------//--------+
                 |P1000111|Lxxxxxxx|Qxxxxxxx|Bit-String Element|
                 +--------+---//---+---//---+--------//--------+

      End-of-Constructor       (BASIC)        01        001 
                                                16         8
                primitive

This data element terminates the Data Element Contents in a constructor data element that has indefinite length. This data element has no Contents component. (Use of this element is described in Section 4.2.2.1.)

                 +--------+---//---+
                 |P0000001|Lxxxxxxx|
                 +--------+---//---+

      Extension                (OPTIONAL)     7E        176 
                                                16         8
                either

This data element is used to extend the number of

                available  data  elements  beyond  the  128  that   are
                possible   using  a  7-bit  identifier.    A  Qualifier
                component extends the encoding space  for  identifiers.
                (Extension and Vendor-Defined have the same syntax.)

                 +--------+---//---+---//---+---//---+
                 |P1111110|Lxxxxxxx|Qxxxxxxx|Anything|
                 +--------+---//---+---//---+---//---+

66


      Field                    (BASIC)        4C        114 
                                                16         8
                constructor

                This   data  element  uses  a  Qualifier  data  element
                component.  The Qualifier component  contains  a  Field
                Identifier  (FID)  indicating  which  specific field is
                being represented.   (See  Section  4.3.2  for  further
                discussion.)

                 +--------+---//---+---//---+---//---+
                 |P1001100|Lxxxxxxx|Qxxxxxxx|elements|
                 +--------+---//---+---//---+---//---+

      Integer                  (OPTIONAL)     20        040 
                                                16         8
                primitive

This data element contains a 2's complement integer of

                variable  length,  high-order  octet  first.    It   is
                recommended  that the data element contents be either 2
                or 4 octets long whenever possible.

                 +--------+---//---+---//---+
                 |P0100000|Lxxxxxxx| Integer|
                 +--------+---//---+---//---+

      Message                  (BASIC)        4D        115 
                                                16         8
                constructor

This data element may contain Field or Message data

                elements.    Its Qualifier component contains a Message
                type (MID) indicating the type of the  message.    (See
                Section  4.3.6  for  further  discussion.)  (The MID is
                completely different from the message identifier in the
                Message-ID field and should not be confused with it.)

                 +--------+---//---+---//---+
                 |P1001101|Lxxxxxxx|Qxxxxxxx|
                 +--------+---//---+---//---+

                 +--------//---------//---------//---------//--------+
                 | Field, Message, Encrypted, or Compressed Elements |
                 +--------//---------//---------//---------//--------+

67


      No-Op                    (OPTIONAL)     00        000 
                                                16         8
                primitive

This data element does nothing. No-Op is used whenever it is necessary to include a data element that means "no operation." It is a short placeholder.

                 +--------+---//---+
                 |P0000000|Lxxxxxxx|
                 +--------+---//---+

      Padding                  (OPTIONAL)     21        041 
                                                16         8
                primitive

This data element is used to fill any number of octets. The contents of a Padding element are undefined and convey no information.

                 +--------+---//---+---//---+
                 |P0100001|Lxxxxxxx|anything|
                 +--------+---//---+---//---+

      Property-List            (OPTIONAL)     24        044 
                                                16         8
                constructor

This data element contains a series of Property data elements to be associated with another data element.

                 +--------+---//---+-------//--------+
                 |P0100100|Lxxxxxxx|Property Elements|
                 +--------+---//---+-------//--------+

68


      Property                 (OPTIONAL)     45        105 
                                                16         8
                constructor

                This   data  element  uses  a  Qualifier  data  element
                component.      The   Qualifier   component    contains
                a  Property-Identifier (PID) to indicate which specific
                property  is being represented.  (See Section 4.3.3 for
                further discussion.)

                 +--------+---//---+---//---+---//---+
                 |P1000101|Lxxxxxxx|Qxxxxxxx|elements|
                 +--------+---//---+---//---+---//---+

      Sequence                 (OPTIONAL)     0A        012 
                                                16         8
                constructor

This data element contains any series of data elements. Sequence differs from Set in that the data elements making up the Data Element Contents must be considered as an ordered sequence (according to their order of appearance in the sequence.)

                 +--------+---//---+---//---+
                 |P0001010|Lxxxxxxx|elements|
                 +--------+---//---+---//---+

      Set                      (OPTIONAL)     0B        013 
                                                16         8
                constructor

This data element contains any series of data elements

                with no ordering of the elements  implied.    (Sequence
                provides   an  ordered  series.)    Although  the  data
                elements  contained   in   a   Set   must   be   stored
                sequentially, the order in which they are stored is not
                defined and not processed.

                 +--------+---//---+---//---+
                 |P0001011|Lxxxxxxx|elements|
                 +--------+---//---+---//---+

69


      Unique-ID                (OPTIONAL)     09        011 
                                                16         8
                constructor

This data element is a unique identifier. It need not be human-readable. The Data Element Contents may be an ASCII-String, a Bit-String, or an Integer.

                 +--------+---//---+---//---+
                 |P0001001|Lxxxxxxx| element|
                 +--------+---//---+---//---+

      Vendor-Defined           (OPTIONAL)     7F        177 
                                                16         8
                either

This data element is used to represent vendor-defined

                data  elements.    A  Qualifier  component  extends the
                encoding  space  for  identifiers.      The   Qualifier
                component  is  not  guaranteed  to  be unique among all
                interconnected  systems.     This   data   element   is
                interpreted   according   to  prior  agreement  between
                systems.  (Extension and Vendor-Defined  data  elements
                have the same syntax.)

                 +--------+---//---+---//---+---//---+
                 |P1111111|Lxxxxxxx|Qxxxxxxx|Anything|
                 +--------+---//---+---//---+---//---+

70


APPENDIX C
DATA ELEMENT IDENTIFIER OCTETS

Identifier Identifier Data Element Name

      00          000         No-Op
      01          001         End-of-Constructor
      02          002         ASCII-String
      08          010         Boolean
      09          011         Unique-ID
      0A          012         Sequence
      0B          013         Set
      20          040         Integer
      21          041         Padding
      24          044         Property-List
      28          050         Date
      43          103         Bit-String
      45          105         Property
      46          106         Compressed
      47          107         Encrypted
      4C          114         Field
      4D          115         Message
      7E          176         Extension
      7F          177         Vendor-Defined

71


APPENDIX D
SUMMARY OF MESSAGE FIELDS BY COMPLIANCE CATEGORY

This appendix is for reference use. It contains no new information, but rather abstracts from that presented in Section 3.1.

This appendix contains the message field names arranged alphabetically within compliance category. (Appendix E orders the field names within functional category.) Complete field definitions appear in Appendix A.

Required fields must appear in a message. Basic fields must be recognized and processed by all CBMS systems. Optional fields need not be supported by a CBMS but, if supported, must be processed according to the meanings defined by the message format specification.

D.1 REQUIRED Fields

From
Posted-Date
To

D.2 BASIC Fields

Cc
Reply-To
Subject
Text

D.3 OPTIONAL Fields

Attachments
Author
Bcc
Circulate-Next
Circulate-To
Comments

72


Date
End-Date
In-Reply-To
Keywords
Message-Class
Message-ID
Obsoletes
Originator-Serial-Number
Precedence
Received-Date
Received-From
References
Reissue-Type
Sender
Start-Date
Warning-Date

73


APPENDIX E
SUMMARY OF MESSAGE SEMANTICS BY FUNCTION

This appendix is for reference use. It contains no new information, but rather abstracts from that presented in Section 3.1.

This appendix contains the message field names arranged alphabetically within functional class. (Appendix D orders the field names within compliance class.) Complete field definitions appear in Appendix A.

E.1 Circulation

Circulate-Next
Circulate-To

E.2 Cross-Referencing

In-Reply-To
Message-ID
Obsoletes
Originator-Serial-Number
References

E.3 Life Spans

End-Date
Start-Date
Warning-Date

E.4 Delivery System

Received-Date
Received-From

74


E.5 Miscellaneous Fields Used Generally

Attachments
Comments
Keywords
Message-Class
Precedence
Subject
Text

E.6 Reply Generation

Reply-To

E.7 Reissuing

Reissue-Type

E.8 Sending (Normal Transmission)

Author
Bcc
Cc
Date
From
Posted-Date
Sender
To

75


APPENDIX F
SUMMARY OF DATA ELEMENT SYNTAX

This appendix summarizes data element syntax by diagramming the components of data elements. Detailed presentation of data element syntax appears in Section 4.3.1.

In these diagrams, required components of a data element appear as follows. (The double border signifies "required.")

                +========+        +===//===+
                |        |        |        |
                +========+        +===//===+
                always one        one or more
                octet long        octets long

Optional components of data elements are represented as follows. (The single border signifies "not required.")

                +--------+        +---//---+
                |        |        |        |
                +--------+        +---//---+
                always one        one or more
                octet long        octets long

The first octet in a data element is the identifier octet. In diagrams of data elements, all eight bits of the identifier octet are always shown. Bits with fixed values show the fixed values as 1s and 0s. Bits with variable values are shown as x's and y's.

The first bit in an identifier octet is the P-bit. Its value indicates whether a data element contains a property list. (A P-bit value of 1 indicates the presence of a property list.) The remaining seven bits contain the rest of the identifier.

Other octets in a data element belong to one of four

      classes:    Length  Code, Qualifier, Property-List, and Contents.
      In diagrams of syntax the data  element  components  are  labeled
      according to their class.

76


           Component Class             Label

          Length code                  Length
          Qualifier                    Qual
          Property-List                P-List
          Contents                     Contents

Data elements must follow this form.

                +========+===//===+---//---+---//---+---//---+
                |Pxxxxxxx| Length |  Qual  | P-List |contents|
                +========+===//===+---//---+---//---+---//---+

The value of the Length component is the total number of octets following the length code octet in the data element.

77


APPENDIX G
SUMMARY OF DATA ELEMENTS BY COMPLIANCE CATEGORY

Compliance categories for syntactic elements are basic and optional. Every CBMS is required to recognize and process basic

      elements.    A  CBMS is not required to process optional elements
      although many are strongly recommended by the semantics.

This appendix summarizes data elements by listing them according to their compliance category.

G.1 BASIC Data Elements

      ASCII-String             (primitive)    02        002 
                                                16         8
      Date                     (constructor)  28        050 
                                                16         8
      End-Of-Constructor       (primitive)    01        001 
                                                16         8
      Field                    (constructor)  4C        114 
                                                16         8
      Message                  (constructor)  4D        115 
                                                16         8

G.2 OPTIONAL Data Elements

      Bit-String               (primitive)    43        103 
                                                16         8
      Boolean                  (primitive)    08        010 
                                                16         8
      Compressed               (constructor)  46        106 
                                                16         8
      Encrypted                (constructor)  47        107 
                                                16         8
      Extension                (either)       7E        176 
                                                16         8
      Integer                  (primitive)    20        040 
                                                16         8
      No-Op                    (primitive)    00        000 
                                                16         8
      Padding                  (primitive)    21        041 
                                                16         8

78


      Property                 (constructor)  45        105 
                                                16         8
      Property-List            (constructor)  24        044 
                                                16         8
      Sequence                 (constructor)  0A        012 
                                                16         8
      Set                      (constructor)  0B        013 
                                                16         8
      Unique-ID                (constructor)  09        011 
                                                16         8
      Vendor-Defined           (either)       7F        377 
                                                16         8

79


APPENDIX H
EXAMPLES

This appendix presents at least one example for each of the

      data elements defined in this message format specification.    In
      these examples, identifier octets are represented in binary form.
      All  other  numbers  are presented in hexadecimal.  ASCII strings
      are shown as characters rather  than  their  numerical  represen-
      tation.    Although  this  message  format specification does not
      define the syntax of names and addresses, message originators and
      recipients are identified by their names.  This  does  not  imply
      anything  about  how naming and addressing can or should be done;
      it is simply a convenient way to identify message originators and
      recipients in these examples.

H.1 Primitive Data Elements

This section contains an example of each of the primitive data elements. Each example contains a short explanation and a series of octets.

No-Op data element:

           +--------+--------+
           |00000000|00000000|
           +--------+--------+

End-of-Constructor data element:

           +--------+--------+
           |00000001|00000000|
           +--------+--------+

80


Boolean data element whose value is true:

           +--------+--------+--------+
           |00001000|00000001|11111111|
           +--------+--------+--------+

Integer data element containing five octets of data. Its value is 4,294,967,296 (decimal):

           +--------+--------+--------+--------+--------+
           |00100000|  0   5 |  0   1    0   0    0   0
           +--------+--------+--------+--------+--------+

                    +--------+--------+
                       0   0    0   0 |
                    +--------+--------+

Padding data element containing three octets of padding. The values of those three octets are meaningless:

           +--------+--------+--------+--------+--------+
           |00100001|  0   3 |  F   F    F   F    F   F |
           +--------+--------+--------+--------+--------+

ASCII-String data element containing nine characters. Its value is "Hi There.":

           +--------+--------+---- ----+
           |00000010|  0   9 |Hi There.|
           +--------+--------+---- ----+

81


Bit-String data element containing 44 bits of data (((7-1) x 8) - 4). Six octets are used to hold those 44 bits. The last 4 bits in the final octet are padding and are therefore ignored.

           Bit-String  Length   Spare
           +--------+--------+--------+--------+--------+
           |01000011|  0   7 |  0   4 |  0   A    3   B
           +--------+--------+--------+--------+--------+

                    +--------+--------+--------+--------+
                       5   F    2   9    1   C    D   0 |
                    +--------+--------+--------+--------+

H.2 Constructor Data Elements

This section contains an example of each of the constructor

      data  elements.    Each  example contains a short explanation and
      then an annotated series of  the  data  elements  making  up  the
      constructor.

Property-List data element containing one Property data

      element.    The  property  is  Printing-Name  and  its  value  is
      "Distribution":

           Prop-List  Length  Property  Length    PID
           +--------+--------+--------+--------+--------+
           |00100100|  1   1 |01000101|  0   F |  0   2 |
           +--------+--------+--------+--------+--------+

                      ASCII    Length
                    +--------+--------+----    ----+
                    |00000010|  0   C |Distribution|
                    +--------+--------+----    ----+

82


Printing-Name Property. The value of the Printing-Name is "Distribution":

            Property  Length    PID     ASCII    Length
           +--------+--------+--------+--------+--------+
           |01000101|  0   F |  0   2 |00000010|  0   C |
           +--------+--------+--------+--------+--------+

                    +----    ----+
                    |Distribution|
                    +----    ----+

Compressed data element. Its contents were compressed using an unspecified data compression algorithm. The compressed data is in a bit-string that is 56 bits long, fully filling 7 octets:

           Compressed  Length   CID   Bit-String  Length
           +--------+--------+--------+--------+--------+
           |01000110|  0   B |  0   0 |01000011|  0   8 |
           +--------+--------+--------+--------+--------+

Spare

                    +--------+--------+--------+--------+
                    |  0   0 |  1   C    5   F    2   D
                    +--------+--------+--------+--------+

                    +--------+--------+--------+--------+
                       7   7    B   A    F   6    2   9 |
                    +--------+--------+--------+--------+

83


           Encrypted  data  element.    The  encryption  method used to
      encrypt its contents has been intentionally not specified.   This
      element contains a Bit-String which contains 22 bits (((4-1) x 8)
      - 2) of data.  These 22 bits are represented in octets; the final
      2 bits in the final octet are padding and are therefore ignored:

           Encrypted   Length   EID   Bit-String  Length
           +--------+--------+--------+--------+--------+
           |01000111|  0   7 |  0   0 |01000011|  0   4 |
           +--------+--------+--------+--------+--------+

Spare

                    +--------+--------+--------+--------+
                    |  0   2 |  A   3    7   8    1   C |
                    +--------+--------+--------+--------+

           Date  data  element.    This  example includes a date but no
      time.  The date shown in this example is August 15, 1980:

             Date     Length   ASCII    Length
           +--------+--------+--------+--------+---  ---+
           |00101000|  0   A |00000010|  0   8 |19800815|
           +--------+--------+--------+--------+---  ---+

Unique-ID data element, which is represented as an Integer data element whose value is 129 (decimal).

           Unique-ID  Length   Integer  Length
           +--------+--------+--------+--------+--------+--------+
           |00001001|  0   4 |00100000|  0   2 |  0   0    8   1 |
           +--------+--------+--------+--------+--------+--------+

84


Sequence data element containing two ASCII-String data ele- ments. The first ASCII-String is "This is" while the second string is " a list":

            Sequence  Length   ASCII    Length
           +--------+--------+--------+--------+--- ---+
           |00001010|  1   2 |00000010|  0   7 |This is|
           +--------+--------+--------+--------+--- ---+

                      ASCII    Length
                    +--------+--------+--- ---+
                    |00000010|  0   7 | a list|
                    +--------+--------+--- ---+

Set data element containing two Integer data elements. The first integer has a value of 519 (decimal) while the value of the second is 71 (decimal). (These two values have no ordering because they belong to a set.)

              Set     Length   Integer  Length
           +--------+--------+--------+--------+--------+--------+
           |00001011|  0   8 |00100000|  0   2 |  0   2    0   7 |
           +--------+--------+--------+--------+--------+--------+

Integer Length

                    +--------+--------+--------+--------+
                    |00100000|  0   2 |  0   0    4   7 |
                    +--------+--------+--------+--------+

Field data element. The specific field shown is the Text field with the contents "I will see you at lunch.":

             Field    Length    FID      ASCII   Length
           +--------+--------+--------+--------+--------+
           |01001100|  1   B |  0   4 |00000010|  1   8 |
           +--------+--------+--------+--------+--------+

                    +----                ----+
                    |I will see you at lunch.|
                    +----                ----+

85


Message containing four fields, Posted-Date, From, Text, and To. It was sent on July 4, 1980 at 6 p.m. eastern daylight time. It is from a person named Smith. The text of the message is a question asking the recipient "Are you going to watch the fireworks?". The message is sent to Jones:

            Message   Length    Type    Field    Length
           +--------+--------+--------+--------+--------+
           |01001101|  5   A |  0   1 |01001100|  1   9 |
           +--------+--------+--------+--------+--------+

                       FID      Date    Length   ASCII
                    +--------+--------+--------+--------+
                    |  0   2 |00101000|  1   6 |00000010|
                    +--------+--------+--------+--------+

Length

                    +--------+----            ----+
                    |  1   4 |19800704-180000-0400|
                    +--------+----            ----+

                      Field    Length    FID     ASCII
                    +--------+--------+--------+--------+
                    |01001100|  0   8 |  0   1 |00000010|
                    +--------+--------+--------+--------+

Length

                    +--------+-- --+
                    |  0   5 |Smith|
                    +--------+-- --+

                       Field   Length    FID     ASCII
                    +--------+--------+--------+--------+
                    |01001100|  2   8 |  0   4 |00000010|
                    +--------+--------+--------+--------+

Length

                    +--------+
                    |  2   5 |
                    +--------+

                    +----                             ----+
                    |Are you going to watch the fireworks?|
                    +----                             ----+

                      Field    Length    FID     ASCII
                    +--------+--------+--------+--------+
                    |01001100|  0   8 |  0   5 |00000010|
                    +--------+--------+--------+--------+

86


Length
                    +--------+-- --+
                    |  0   5 |Jones|
                    +--------+-- --+

H.3 Data Elements that Extend this Specification

This section contains examples of data elements used to extend this specification. These data elements can be either primitives or constructors, depending on the extension. Extension data element containing a length code and 3 octets. The octet immediately following the length code iden- tifies it as Extension Data Element 7. The Data Element Contents is the final two octets. The interpretation of the Data Element Contents would be defined in an extension or successor to this

      message  format  specification.    [Note: this is an example. Any
      actual extension data element 7 (if it were ever used)  would  be
      completely different from anything done here.]:

Extension Length

           +--------+--------+--------+--------+--------+
           |01111110|  0   3 |  0   7 |  4   A    E   9 |
           +--------+--------+--------+--------+--------+

Vendor-Defined data element containing a length code and 3 octets. The first octet identifies this as vendor-defined data element number 114 (decimal), which this particular vendor has defined to contain three printable ASCII characters in two

      octets.    (Data  element 114 (decimal) for another user would be
      completely different.  For example, it might contain  a  floating
      point number.):

              User    Length
           +--------+--------+--------+--------+--------+
           |01111111|  0   3 |  7   2 |   P    O    E   |
           +--------+--------+--------+--------+--------+

87


H.4 Fields

This section contains examples of Field data element con- structors for each of several different fields (Keywords, Text, Subject, Vendor-Defined).
Field data element for keywords . The field contains two keywords, Message and Computer, each represented in a separate ASCII-string data element.

              Field   Length  Keywords   ASCII   Length
           +--------+--------+--------+--------+--------+
           |01001100|  1   4 |  1   4 |00000010|  0   7 |
           +--------+--------+--------+--------+--------+

                    +--- ---+
                    |Message|
                    +--- ---+

                      ASCII    Length
                    +--------+--------+---  ---+
                    |00000010|  0   8 |Computer|
                    +--------+--------+---  ---+

88


Field data element for Text with a Property-List data element containing a comment attached. The text field contains the ASCII-String data element "Do you want lunch?"; the Property- List data element contains a comment property, which consists of an ASCII-string data element containing "Now?":

             Field    Length   Text    Prop-List  Length
           +--------+--------+--------+--------+--------+
           |11001100|  2   0 |  0   4 |00100100|  0   9 |
           +--------+--------+--------+--------+--------+

                     Property  Length    PID     ASCII
                    +--------+--------+--------+--------+
                    |01000101|  0   7 |  0   1 |00000010|
                    +--------+--------+--------+--------+

Length

                    +--------+-  -+
                    |  0   4 |Now?|
                    +--------+-  -+

                      ASCII    Length
                    +--------+--------+----          ----+
                    |00000010|  1   2 |Do you want lunch?|
                    +--------+--------+----          ----+

Field data element for Subject containing an ASCII-String data element ("Good restaurants in Detroit" followed by a carriage return and a line feed). (A recipient would expect the message to contain some information about restaurants in the Detroit area.):

             Field    Length   Subject   ASCII   Length
           +--------+--------+--------+--------+--------+
           |01001100|  2   1 |  0   7 |00000010|  1   E |
           +--------+--------+--------+--------+--------+

                    +----                            ----+
                    |Good restaurants in Detroit.<cr><lf>|
                    +----                            ----+

89


Field data element whose form and meaning was defined by a
      vendor.    This  vendor  has  defined  vendor-defined  field   12
      (decimal)  to  be  a field with a printing name of "Reply-by" and
      contents consisting of a date; January  7,  1981  in  this  case.
      (The  meaning of vendor-defined field 12 is unique to the vendor;
      the same field number would  have  different  meaning  for  other
      vendors.):

             Field    Length  Qualifier   User   number
           +--------+--------+--------+--------+--------+
           |11001100|  1   F |  8   2 |  0   0    0   C |
           +--------+--------+--------+--------+--------+

Prop-List Length Property Length

                    +--------+--------+--------+--------+
                    |00100100|  0   E |01000101|  0   C |
                    +--------+--------+--------+--------+

                        PID    ASCII    Length
                    +--------+--------+--------+---- ----+
                    |  0   2 |00000010|  0   9 |Reply-By:|
                    +--------+--------+--------+---- ----+

                       Date    Length   ASCII    Length
                    +--------+--------+--------+--------+
                    |00101000|  0   A |00000010|  0   8 |
                    +--------+--------+--------+--------+

               +---  ---+
                    |19810107|
                    +---  ---+

H.5 Messages

This section contains several examples of complete messages

      and shows the results of  reissuing  a  message.    (See  Section
      3.2.2.)

90


The following sample message had Stevens as its originator and Johnson as its recipient. The message was sent on August 14, 1980 at 10 a.m. EDT. The subject of the message is "Project Deadline" and the message is a reminder that the deadline is the next day and that the section of the report for the project being done by Johnson should be turned in to Stevens by 3 p.m. that day.

            Message       Length         Type
           +--------+--------+--------+--------+
           |01001101|  8   1 |  B   6 |  0   1 |
           +--------+--------+--------+--------+

              Field   Length    FID     ASCII
           +--------+--------+--------+--------+
           |01001100|  0   A |  0   5 |00000010|
           +--------+--------+--------+--------+

Length

                    +--------+--- ---+
                    |  0   7 |Johnson|
                    +--------+--- ---+

             Field    Length    FID      ASCII
           +--------+--------+--------+--------+
           |01001100|  0   A |  0   1 |00000010|
           +--------+--------+--------+--------+

Length

                    +--------+--- ---+
                    |  0   7 |Stevens|
                    +--------+--- ---+

             Field    Length    FID     ASCII    Length
           +--------+--------+--------+--------+--------+
           |01001100|  1   3 |  0   7 |00000010|  1   0 |
           +--------+--------+--------+--------+--------+

                    +----        ----+
                    |Project Deadline|
                    +----        ----+

             Field    Length    FID      Date    Length
           +--------+--------+--------+--------+--------+
           |01001100|  1   7 |  0   2 |00101000|  1   4 |
           +--------+--------+--------+--------+--------+

91


                      ASCII    Length
                    +--------+--------+----          ----+
                    |00000010|  1   2 |19800814-1000-0400|
                    +--------+--------+----          ----+

             Field    Length    FID      ASCII   Length
           +--------+--------+--------+--------+--------+
           |01001100|  6   D |  0   4 |00000010|  6   A |
           +--------+--------+--------+--------+--------+

                    +----
                    |Don't forget the project report is
                    +----

due tomorrow. Please have<CrLf>

your section to me by three this

                           ----+
                     afternoon.|
                           ----+

The following example illustrates the results of reissuing the first message in this section. This message contains the original message (as a Message data element), To, From, and Posted-Date fields, and a Reissue-Type field with Redistributed as its value:

            Message       Length         Type
           +--------+--------+--------+--------+
           |01001101|  8   1 |  F   C |  0   1 |
           +--------+--------+--------+--------+

              Field   Length    FID      ASCII
           +--------+--------+--------+--------+
           |01001100|  0   9 |  0   5 |00000010|
           +--------+--------+--------+--------+

Length

                    +--------+--  --+
                    |  0   6 |Cooper|
                    +--------+--  --+

92


             Field    Length    FID      ASCII
           +--------+--------+--------+--------+
           |01001100|  0   A |  0   1 |00000010|
           +--------+--------+--------+--------+

Length

                    +--------+--- ---+
                    |  0   7 |Johnson|
                    +--------+--- ---+

             Field    Length    FID      Date    Length
           +--------+--------+--------+--------+--------+
           |01001100|  1   7 |  0   2 |00101000|  1   4 |
           +--------+--------+--------+--------+--------+

                       ASCII   Length
                    +--------+--------+----          ----+
                    |00000010|  1   2 |19800814-1030-0400|
                    +--------+--------+----          ----+

             Field    Length    FID      ASCII   Length
           +--------+--------+--------+--------+--------+
           |01001100|  1   0 |  2   5 |00000010|  0   D |
           +--------+--------+--------+--------+--------+

                    +----     ----+
                    |Redistributed|
                    +----     ----+

            Message       Length         Type
           +--------+--------+--------+--------+
           |01001101|  8   1 |  B   6 |  0   1 |
           +--------+--------+--------+--------+

              Field   Length    FID      ASCII
           +--------+--------+--------+--------+
           |01001100|  0   A |  0   5 |00000010|
           +--------+--------+--------+--------+

Length

                    +--------+--- ---+
                    |  0   7 |Johnson|
                    +--------+--- ---+

             Field    Length    FID      ASCII
           +--------+--------+--------+--------+
           |01001100|  0   A |  0   1 |00000010|
           +--------+--------+--------+--------+

93


Length
                    +--------+--- ---+
                    |  0   7 |Stevens|
                    +--------+--- ---+

             Field    Length    FID     ASCII    Length
           +--------+--------+--------+--------+--------+
           |01001100|  1   3 |  0   7 |00000010|  1   0 |
           +--------+--------+--------+--------+--------+

                    +----        ----+
                    |Project Deadline|
                    +----        ----+

             Field    Length    FID      Date    Length
           +--------+--------+--------+--------+--------+
           |01001100|  1   7 |  0   2 |00101000|  1   4 |
           +--------+--------+--------+--------+--------+

                      ASCII    Length
                    +--------+--------+----          ----+
                    |00000010|  1   2 |19800814-1000-0400|
                    +--------+--------+----          ----+

             Field    Length    FID      ASCII   Length
           +--------+--------+--------+--------+--------+
           |01001100|  6   D |  0   4 |00000010|  6   A |
           +--------+--------+--------+--------+--------+

                    +----
                    |Don't forget the project report is
                    +----

due tomorrow. Please have<CrLf>

your section to me by three this

                           ----+
                     afternoon.|
                           ----+

H.6 Unknown Lengths

This section contains two examples of data elements with an unknown length. The two examples have been presented in sections H.2 and H.5, but with a known rather than an unknown length.

94


Set data element with an unknown length containing two Integer data elements. The first integer has a value of 519 (decimal) while the value of the second is 71 (decimal). (These two values have no ordering because they belong to a set.)

              Set     Length   Integer  Length
           +--------+--------+--------+--------+--------+--------+
           |00001011|  8   0 |00100000|  0   2 |  0   2    0   7 |
           +--------+--------+--------+--------+--------+--------+

Integer Length

                    +--------+--------+--------+--------+
                    |00100000|  0   2 |  0   0    4   7 |
                    +--------+--------+--------+--------+

End-of-Con Length

                    +--------+--------+
                    |00000000|00000000|
                    +--------+--------+

The following sample message with an unknown length had Stevens as its originator and Johnson as its recipient. The message was sent on August 14, 1980 at 10 a.m. EDT. The subject of the message is "Project Deadline" and the message is a reminder that the deadline is the next day and that the section of the report for the project being done by Johnson should be turned in to Stevens by 3 p.m. that day.

            Message   Length    Type
           +--------+--------+--------+
           |01001101|  8   0 |  0   1 |
           +--------+--------+--------+

              Field   Length    FID     ASCII
           +--------+--------+--------+--------+
           |01001100|  0   A |  0   5 |00000010|
           +--------+--------+--------+--------+

Length

                    +--------+--- ---+
                    |  0   7 |Johnson|
                    +--------+--- ---+

95


             Field    Length    FID      ASCII
           +--------+--------+--------+--------+
           |01001100|  0   A |  0   1 |00000010|
           +--------+--------+--------+--------+

Length

                    +--------+--- ---+
                    |  0   7 |Stevens|
                    +--------+--- ---+

             Field    Length    FID     ASCII    Length
           +--------+--------+--------+--------+--------+
           |01001100|  1   3 |  0   7 |00000010|  1   0 |
           +--------+--------+--------+--------+--------+

                    +----        ----+
                    |Project Deadline|
                    +----        ----+

             Field    Length    FID      Date    Length
           +--------+--------+--------+--------+--------+
           |01001100|  1   7 |  0   2 |00101000|  1   4 |
           +--------+--------+--------+--------+--------+

                      ASCII    Length
                    +--------+--------+----          ----+
                    |00000010|  1   2 |19800814-1000-0400|
                    +--------+--------+----          ----+

             Field    Length    FID      ASCII   Length
           +--------+--------+--------+--------+--------+
           |01001100|  6   D |  0   4 |00000010|  6   A |
           +--------+--------+--------+--------+--------+

                    +----
                    |Don't forget the project report is
                    +----

due tomorrow. Please have<CrLf>

your section to me by three this

                           ----+
                     afternoon.|
                           ----+

End-of-Con Length

                    +--------+--------+
                    |00000000|00000000|
                    +--------+--------+

96


H.7 Message Encoding Using Vendor-Defined Fields

This example is provided to illustrate the encoding of non- FIPS format messages in the FIPS format. It is the intent of the standard to deal with computer based message systems which are primarily intended for person-to-person use. This example deals with the definition and use of vendor-defined fields to extend the use of the standard to station-to-station messaging. The context is a military message using the military standard JANAP- 128 format.

H.7.1 Example of a JANAP-128 Message

JANAP-128
RTTUZYUW RUABCDE0010 0330930-UUUU--RUXABYE.
ZNR UUUUU
R 020830Z FEB 82
FM Commander,Atlantic Fleet
TO USS SHIPA
BT
UNCLAS

           MESSAGE        BODY

BT
#0010
NNNN

H.7.2 Encoding of Example using the FIPS Message Format

            Message   Length             Type
           +--------+--------+--------+--------+
           |01001101|  8   1 |  D   0 |  0   1 |
           +--------+--------+--------+--------+

                      Field    Length    FID
                    +--------+--------+--------+
                    |01001100|  0   4 |  1   8 |
                    +--------+--------+--------+

97


                               ASCII    Length
                             +--------+--------+--------+
                             |00000010|  0   1 |    R   |
                             +--------+--------+--------+

                      Field    Length    FID
                    +--------+--------+--------+--------+--------+
                    |01001100|  0   7 |  8   2 |  0   0 |  0   1 |
                    +--------+--------+--------+--------+--------+

                               ASCII    Length
                             +--------+--------+--------+--------+
                             |00000010|  0   2 |    T   |    T   |
                             +--------+--------+--------+--------+

                      Field    Length    FID
                    +--------+--------+--------+--------+--------+
                    |01001100|  0   6 |  8   2 |  0   0 |  0   2 |
                    +--------+--------+--------+--------+--------+

                               ASCII    Length
                             +--------+--------+--------+
                             |00000010|  0   1 |    U   |
                             +--------+--------+--------+

                      Field    Length    FID
                    +--------+--------+--------+--------+--------+
                    |01001100|  0   9 |  8   2 |  0   0 |  0   3 |
                    +--------+--------+--------+--------+--------+

                               ASCII    Length
                             +--------+--------+----  ----+
                             |00000010|  0   4 |   ZYUW   |
                             +--------+--------+----  ----+

                      Field    Length    FID
                    +--------+--------+--------+
                    |01001100|  0   A |  2   2 |
                    +--------+--------+--------+

                               ASCII    Length
                             +--------+--------+----   ----+
                             |00000010|  0   7 |  RUABCDE  |
                             +--------+--------+----   ----+

                      Field    Length    FID
                    +--------+--------+--------+
                    |01001100|  0   7 |  1   7 |
                    +--------+--------+--------+

98


                               ASCII    Length
                             +--------+--------+----  ----+
                             |00000010|  0   4 |   0010   |
                             +--------+--------+----  ----+

                      Field    Length    FID      Date    Length
                    +--------+--------+--------+--------+--------+
                    |01001100|  1   8 |  0   2 |00101000|  1   5 |
                    +--------+--------+--------+--------+--------+

                               ASCII    Length
                             +--------+--------+----           ----+
                             |00000010|  1   3 |19820202093000-0000|
                             +--------+--------+----           ----+

                      Field    Length    FID
                    +--------+--------+--------+--------+--------+
                    |01001100|  0   9 |  8   2 |  0   0 |  0   2 |
                    +--------+--------+--------+--------+--------+

                               ASCII    Length
                             +--------+--------+----  ----+
                             |00000010|  0   4 |   UUUU   |
                             +--------+--------+----  ----+

                      Field    Length    FID
                    +--------+--------+--------+--------+--------+
                    |01001100|  0   C |  8   2 |  0   0 |  0   4 |
                    +--------+--------+--------+--------+--------+

                               ASCII    Length
                             +--------+--------+----  ----+
                             |00000010|  0   7 |  RUXABYE |
                             +--------+--------+----  ----+

                      Field    Length    FID
                    +--------+--------+--------+--------+--------+
                    |01001100|  0   A |  8   2 |  0   0 |  0   2 |
                    +--------+--------+--------+--------+--------+

                               ASCII    Length
                             +--------+--------+----   ----+
                             |00000010|  0   5 |   UUUUU   |
                             +--------+--------+----   ----+

                      Field    Length    FID
                    +--------+--------+--------+
                    |01001100|  0   4 |  1   8 |
                    +--------+--------+--------+

99


                               ASCII    Length
                             +--------+--------+--------+
                             |00000010|  0   1 |    R   |
                             +--------+--------+--------+

                      Field    Length    FID      Date    Length
                    +--------+--------+--------+--------+--------+
                    |01001100|  1   4 |  1   1 |00101000|  1   1 |
                    +--------+--------+--------+--------+--------+

                               ASCII    Length
                             +--------+--------+----       ----+
                             |00000010|  0   F |8202020830-0000|
                             +--------+--------+----       ----+

                      Field    Length    FID
                    +--------+--------+--------+
                    |01001100|  1   B |  0   1 |
                    +--------+--------+--------+

                               ASCII    Length
                             +--------+--------+
                             |00000010|  1   8 |
                             +--------+--------+

                                      +----                ----+
                                      |Commander,Atlantic Fleet|
                                      +----                ----+

                      Field    Length    FID
                    +--------+--------+--------+
                    |01001100|  0   C |  0   5 |
                    +--------+--------+--------+

                               ASCII    Length
                             +--------+--------+----   ----+
                             |00000010|  0   9 | USS SHIPA |
                             +--------+--------+----   ----+

                      Field    Length    FID
                    +--------+--------+--------+
                    |01001100|  0   7 |  0   4 |
                    +--------+--------+--------+

                               ASCII    Length
                             +--------+--------+----  ----+
                             |00000010|  0   4 |   BODY   |
                             +--------+--------+----  ----+

100


                      Field    Length    FID
                    +--------+--------+--------+
                    |01001100|  0   7 |  1   7 |
                    +--------+--------+--------+

                               ASCII    Length
                             +--------+--------+----  ----+
                             |00000010|  0   4 |   0010   |
                             +--------+--------+----  ----+

H.7.3 Field Mappings of JANAP-128 to FIPS Format

          JANAP-128 Field              FIPS Format Field

          Precedence                   Precedence (Appendix A)
          Language Media Format        Vendor-Defined
          Security                     Vendor-Defined
          Content Indicator Code       Vendor-Defined
          Origination Station          Sender (Appendix A)
            Routing Indication
          Station Serial Number        Originator-Serial-Number
                                         (Appendix A)
          Time of File                 Posted-Date (Appendix A)
          Security                     Vendor-Defined
          Destination Station          Vendor-Defined
            Routing Indicator
          Security                     Vendor-Defined
          Precedence                   Precedence (Appendix A)
          Date/Time Group              Date (Appendix A)
          FM                           From (Appendix A)
          TO                           To (Appendix A)
          Body of Message              Text (Appendix A)
          Station Serial Number        Originator-Serial-Number
                                         (Appendix A)

H.7.4 Vendor-Defined Fields

101


           Field Name                                Identifier Value  
                                                                     8

Description

      -----------------------------------------------------------------

           Language Media Format                                    01 
                                                                      8
           This   field   contains  two  ASCII  characters;  the  first
      indicates the input media and the second the output media.

           Security                                                 02 
                                                                      8
           This  field  contains  a  variable  length  ASCII  character
      indicator of the security classification of the messages.

           Content Indicator Code                                   03 
                                                                      8
           This  field  contains  four  ASCII  characters  and provides
      information describing the message content and  message  handling
      actions to be performed.

           Destination Station Routing Indicator                    04 
                                                                      8
           This field contains four ASCII characters indicating the CPU
      and terminal device to which the message should be sent.

102


[BlaR-80]
R. P. Blanc and J. F. Heafner. The NBS Program in Computer
Network Protocol Standards. In Proceedings, ICCC 80. 1980.

[CCIT-82]
CCITT Study Group VII/5. Draft recommendation X.MHS1: Message Handling Systems: System Model - Service Elements (Version 2). Technical Report, International Telegraph and Telephone Consultative Committee (CCITT), December, 1982.

[CroD-77]
David H. Crocker, John J. Vittal, Kenneth T. Pogran, D. Austin Henderson, Jr. Standard for the Format of ARPA Network Text Messages. RFC 733, The Rand Corporation, Bolt Beranek and Newman Inc, Massachussets Institute of Technology, Bolt Beranek and Newman Inc., November, 1977.

[FeiE-79]

E. Feinler, J. Pickens, and A. Sjoberg. Computer Message
Services Bibliography. Technical Report NIC-BIBLIO-791201, SRI International, December, 1979.

[ISOD-79]
ISO/TC97/SC6 Data Communications. Second Draft Proposed Communication Heading Format Standard. ISO/TC97/SC6 N 1948, ISO International Organization for Standardization Organization Internationale de Normalisation, September, 1979. Secretariat: USA (ANSI).

[ISOD-82]
ISO/TC97/SC16. Information Processing Systems - Open Systems Interconnection - Basic Reference Model. ISO/DIS 7498, ISO International Organization for Standardization Organization Internationale de Normalisation, December, 1982.

[NatB-68]
National Bureau of Standards. Calendar Date. Federal Information Processing Standards Publication 4, U.S. Department of Commerce / National Bureau of Standards, November, 1968.

[NatB-75]
National Bureau of Standards. Code Extension Techniques in 7 or 8 Bits. Federal Information Processing Standards Publication 35, U.S. Department of Commerce / National Bureau of Standards, June, 1975.

103


National Bureau of Standards. Data Encryption Standard. Federal Information Processing Standards Publication 46, U.S. Department of Commerce / National Bureau of Standards, January, 1977.

[NatB-79a]
National Bureau of Standards. Representations of Local Time of the Day for Information Interchange. Federal Information Processing Standards Publication 58, U.S. Department of Commerce / National Bureau of Standards, February, 1979.

[NatB-79b]
National Bureau of Standards. Representations of Universal Time, Local Time Differentials, and United States Time Zone References for Information Interchange. Federal Information Processing Standards Publication 59, U.S. Department of Commerce / National Bureau of Standards, February, 1979.

[NatB-80]
National Bureau of Standards. Code for Information Interchange. Federal Information Processing Standards Publication 1-1, U.S. Department of Commerce / National Bureau of Standards, December, 1980.

[PosJ-79]
Jonathan B. Postel. INTERNET MESSAGE PROTOCOL. RFC 753, Information Sciences Institute, March, 1979.

[TasG-80]
Task Group X3S33 on Data Communications Formats, ANSI Subcommittee X3S3 on Data Communications. Third Draft Proposed American National Standard for Heading Format Structure for Code Independent Communication Headings. ANSI document X3S37/80-01, Computer and Business Equipment Manufacturers Association, 1980.

104


                ASCII-String   35, 36, 47, 50, 52, 54, 58, 59, 60, 61,
                        63, 65, 69
                Assignment   22, 28, 61
                Attachments   23, 57
                Author   19, 57

                BASIC   18
                BASIC Data Elements
                   ASCII-String   47, 63
                   Date   50, 65
                   End-of-Constructor   48, 66
                   Field   50, 66
                   Message   51, 67
                BASIC fields
                   Cc   20
                   Reply-To   19
                   Subject   23
                   Text   23
                BASIC syntactic elements   35
                Bcc   19, 25, 57
                Bit numbering in octets   37
                Bit-String   36, 42, 47, 49, 50, 52, 64, 65, 69
                Boolean   36, 48, 64

                Cc   20, 58
                Chains of correspondence   29
                Circulate-Next   20, 31, 58
                Circulate-To   20, 31, 58
                Circulation   31
                Comment   36, 37, 44, 54
                Comments   23, 58
                Compliance requirements   41
                Compressed   37, 43, 49, 54, 65
                Compression identifier   49, 65
                Compression Identifiers
                   Unspecified   54
                Constructor data element   35, 36
                Contents   38, 76
                Cross Referencing   29

                Data Element Contents   43, 44, 87, 42, 44, 52, 69, 42,
                        44, 46, 47, 51, 64, 69, 87
                Data Elements
                   ASCII-String (BASIC)   47, 63
                   Bit-String (OPTIONAL)   47, 64

105


                   Compressed (OPTIONAL)   49, 65
                   Date (BASIC)   50, 65
                   Encrypted (OPTIONAL)   50, 65
                   End-of-Constructor (BASIC)   48, 66
                   Extension (OPTIONAL)   52, 66
                   Field (BASIC)   50, 66
                   Integer (OPTIONAL)   48, 67
                   Message (BASIC)   51, 67
                   No-Op (OPTIONAL)   49, 67
                   Padding (OPTIONAL)   49, 68
                   Property (OPTIONAL)   51, 68
                   Property-List (OPTIONAL)   51, 68
                   Sequence (OPTIONAL)   51, 69
                   Set (OPTIONAL)   52, 69
                   Unique-ID (OPTIONAL)   52, 69
                   Vendor-Defined (OPTIONAL)   53, 70
                Date   20, 50, 58, 60, 61, 62, 65
                Dating   30
                Delivery   13, 20, 60
                Delivery Protocol   13
                Delivery Slot   13

                Encapsulating   26
                Encrypted   37, 43, 50, 54, 65
                Encryption identifier   50, 65
                Encryption Identifiers
                   FIPS-Standard   54
                   Unspecified   54
                End-Date   20, 21, 30, 58, 62
                End-Of-Constructor   36, 42, 44, 48, 66
                Extension   35, 46, 52, 66

                Field   14, 31, 35, 36, 37, 43, 50, 51, 66, 67, 72
                Field Identifier   50, 66
                Field label presentation   35
                Fields
                   Attachments (OPTIONAL)   57, 23
                   Author (OPTIONAL)   57, 19
                   Bcc (OPTIONAL)   57, 19
                   Cc (BASIC)   58, 20
                   Circulate-Next (OPTIONAL)   58, 20
                   Circulate-To (OPTIONAL)   58, 20
                   Comments (OPTIONAL)   58, 23
                   Date (OPTIONAL)   58, 20
                   End-Date (OPTIONAL)   58, 20
                   From (REQUIRED)   59, 19
                   In-Reply-To (OPTIONAL)   59, 21
                   Keywords (OPTIONAL)   59, 23
                   Message-Class (OPTIONAL)   59, 22
                   Message-ID (OPTIONAL)   59, 21

106


                   Originator-Serial-Number (OPTIONAL)   59, 21
                   Posted-Date (REQUIRED)   60, 20
                   Precedence (OPTIONAL)   60, 22
                   Received-Date (OPTIONAL)   60, 20
                   Received-From (OPTIONAL)   60, 22
                   References (OPTIONAL)   60, 22
                   Reissue-Type (OPTIONAL)   61, 22
                   Reply-To (BASIC)   61, 19
                   Sender (OPTIONAL)   61, 19
                   Start-Date (OPTIONAL)   61, 21
                   Subject (BASIC)   61, 23
                   Text (BASIC)   61, 23
                   To (REQUIRED)   61, 19
                   Warning-Date (OPTIONAL)   62, 21
                FIPS-Standard   54, 55
                From   17, 19, 29, 57, 59, 61

                Globally unique identifiers   29

                Identifier octet   38, 41, 37, 38, 42, 44, 76
                Identifiers
                   globally unique   29
                In-Reply-To   21, 29, 59
                Indefinite length code   41
                Integer   36, 48, 52, 67, 69

                Keywords   23, 59, 88

                Length Code   40, 41, 42, 38, 39, 40, 41, 42, 44, 46,
                        76, 77, 87
                Long length code   41

                Message Transfer System   13, 22, 60
                Message   14, 17, 35, 36, 37, 43, 51, 67
                Message content   13
                Message envelope   13
                Message stores   30
                Message Transfer System   13, 22, 60, 12, 13, 14, 17,
                        20, 22, 60
                Message Types
                   FIPS-Standard   55
                Message-Class   22, 59
                Message-ID   21, 22, 29, 31, 59, 60

                No-Op   49, 67
                Numbering bits in octets   37

                Obsoletes   21, 29, 59
                Octets
                   bit numbering in   37

107


OPTIONAL Data Elements
                   Bit-String   47, 64
                   Boolean   48, 64
                   Compressed   49, 65
                   Encrypted   50, 65
                   Extension   52, 66
                   Integer   48, 67
                   No-Op   49, 67
                   Padding   49, 68
                   Property   51, 68
                   Property-List   51, 68
                   Sequence   51, 69
                   Set   52, 69
                   Unique-ID   52, 69
                   Vendor-Defined   53, 70
                OPTIONAL fields
                   Attachments   23
                   Author   19
                   Bcc   19
                   Circulate-Next   20
                   Circulate-To   20
                   Comments   23
                   Date   20
                   End-Date   20
                   In-Reply-To   21
                   Keywords   23
                   Message-Class   22
                   Message-ID   21
                   Obsoletes   21
                   Originator-Serial-Number   21
                   Precedence   22
                   Received-Date   20
                   Received-From   22
                   References   22
                   Reissue-Type   22
                   Sender   19
                   Start-Date   21
                   Warning-Date   21
                OPTIONAL syntactic elements   35
                Originator   15, 18, 20, 30, 57, 58, 59, 61
                Originator-Serial-Number   21, 30, 59

                Padding   49, 68
                Person   18
                Posted-Date   17, 20, 31, 58, 60
                Posting   13
                Posting Protocol   13
                Posting Slot   13
                Precedence   22, 60
                Precedence categories   22

108


                Presentation
                   field label   35
                Primitive data element   36, 35, 36
                Printing-Name   36, 37, 44, 54, 82
                Process   18
                Properties
                   Comment   54
                   Printing-Name   54
                Property   38, 43, 51, 68
                Property-Identifier   51, 68
                Property-List   36, 38, 44, 46, 51, 68, 76

                Qualifier   38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50,
                        51, 52, 53, 64, 65, 66, 68, 70, 76
                Qualifiers   43

                Received-Date   20, 60
                Received-From   22, 60
                Recipient   15, 19, 20, 22, 57, 58, 60, 61
                Redistribution   22, 26, 61
                References   22, 29, 60
                Reissue-Type   22, 61
                Reply   18, 28
                Reply-to   19, 28, 59, 61
                REQUIRED   18
                REQUIRED fields
                   From   19
                   Posted-Date   20
                   To   19
                Requirements
                   compliance   41
                Role   18

                Sender   19, 31, 61
                Sequence   35, 36, 51, 69
                Sequences   36
                Serial Numbers   21, 30, 59
                Set   36, 51, 52, 69
                Short length code   41
                Slot   13
                Start-Date   21, 30, 61
                Subject   23, 61
                Syntactic reissuing   26

                Text   23, 32, 61
                To   17, 19, 31, 37, 61

                Unique identifiers   29
                Unique-ID   52, 59, 60, 69
                Unspecified   54

109


                User interface   35

                Vendor-Defined   35, 46, 53, 70

                Warning-Date   21, 30, 62

110