NWG/RFC# 734				        MRC 07-OCT-77 08:46  41953
SUPDUP Display Protocol						    Page 1
Network Working Group					      Mark Crispin
Request for Comments 734					     SU-AI
NIC 41953						    7 October 1977

SUPDUP Protocol


This document describes the SUPDUP protocol, a highly efficient display
telnet protocol. It originally started as a private protocol between the
ITS systems at MIT to allow a user at any one of these systems to use one
of the others as a display. At the current writing, SUPDUP user programs
also exist for Data Disc and Datamedia displays at SU-AI and for
Datamedias at SRI-KL. The author is not aware of any SUPDUP servers other
than at the four MIT ITS sites.

The advantage of the SUPDUP protocol over an individual terminal's
protocol is that SUPDUP defines a "virtual" or "software" display terminal
that implements relevant cursor motion operations. The protocol is not
built on any particular display terminal but rather on the set of
functions common to all display terminals; hence it is completely device-
independent. In addition, the protocol also provides for terminals which
cannot handle certain operations, such as line or character insert/delete.
In fact, it is more than this. It provides for terminals which are
missing any set of features, all the way down to model 33 Teletypes.

The advantage over the TELNET protocol is that SUPDUP takes advantage of
the full capabilities of display terminals, although it also has the
ability to run printing terminals.

It is to be noted that SUPDUP operates independently from TELNET; it is
not an option to the TELNET protocol. In addition, certain assumptions
are made about the server and the user programs and their capabilities.
Specifically, it is assumed that the operating system on a server host
provides all the display-oriented features of ITS. However, a server may
elect not to do certain display operations available in SUPDUP; the SUPDUP
protocol is far-reaching enough so that the protocol allows terminals to
be handled as well as that host can handle terminals in general. Of
course, if a host does not support display terminals in any special way,
there is no point in bothering to implement a SUPDUP server since TELNET
will work just as well.

A more complete description of the display facilities of SUPDUP and ITS
can be found by FTP'ing the online file .INFO.;ITS TTY from ARPAnet host
MIT-AI (host 206 octal, 134. decimal). For more information, the mailing
address for SUPDUP is "(BUG SUPDUP) at MIT-AI". If your mail system won't
allow you to use parentheses, use Bug-SUPDUP@MIT-AI.

SUPDUP Display Protocol Page 2


The SUPDUP protocol originated as the internal protocol used between parts
of ITS, and between ITS and "intelligent" terminals. Over the network, a
user host acts like an intelligent terminal programmed for ITS.

The way terminal output works in ITS is as follows: The user program
tells the system to do various operations, such as printing characters,
clearing the screen, moving the cursor, etc. These operations are formed
into 8-bit characters (using the %TD codes described below) and stored
into a buffer. At interrupt level, as the terminal demands output,
characters are removed from the buffer and translated into terminal
dependent codes. At this time padding and cursor motion optimization are
also done.

In some cases, the interrupt side does not run on the same machine as the
user program. SUPDUP terminals have their "interrupt side" running in the
user host. When SUPDUP is run between two ITS's, the SUPDUP user and
server programs and the network simply move characters from the buffer in
the server machine to the buffer in the user machine. The interrupt side
then runs on the user machine just as if the characters had been generated

Due to the highly interactive characteristics of both the SUPDUP protocol
and the ITS system, all transactions are strictly character at a time and
all echoing is remote. In addition, all padding and cursor control
optimization must be done by the user.

Because this is also the internals of ITS, the right to change it any time
if necessary to provide new features is reserved by MIT. In particular,
the initial negotiation is probably going to be changed to transmit
additional variables, and additional %TD codes may be added at any time.
User programs should ignore those they don't know about.

The following conventions are used in this document: function keys (ie,
keys which represent a "function" rather than a "graphic character") are
in upper case in square brackets. Prefix keys (ie, keys which generate no
character but rather are held down while typing another character to
modify that character) are in upper case in angle brackets. Hence
"<CONTROL><META>[LINE FEED]" refers to the character generated when both
the CONTROL and META keys are held down while a LINE FEED is typed. Case
should be noted; <CONTROL>A refers to a different character from
<CONTROL>a. Finally, all numbers which do not explicitly specify a base
(ie, octal or decimal) should be read as octal unless the number is
immediately followed by a period, in which case it is decimal.

SUPDUP Display Protocol Page 3


The SUPDUP server listens on socket 137 octal. ICP proceeds in the normal
way for establishing 8-bit connections. After the ICP is completed, the
user side sends several parameters to the server side in the form of
36.-bit words. Each word is sent through the 8-bit connection as six
6-bit bytes, most-significant first. Each byte is in the low-order 6 bits
of a character. The first word is the negative of the number of variables
to follow in the high order 18. bits (the low-order 18. bits are ignored),
followed by the values of the TCTYP, TTYOPT, TCMXV, TCMXH, and TTYROL
terminal descriptor variables (these are the names they are known by at
ITS sites). These variables are 36.-bit binary numbers and define the
terminal characteristics for the virtual terminal at the REMOTE host.

The count is for future compatability. If more variables need to be sent
in the future, the server should assume "reasonable" default values if the
user does not specify them. PDP-10 fans will recognize the format of the
count (ie, -count,,0) as being an AOBJN pointer. At the present writing
there are five variables hence this word should be -5,,0.

The TCTYP variable defines the terminal type. It MUST be 7 (%TNSFW). Any
other value is a violation of protocol.

The TTYOPT variable specifies what capabilities or options the user's
terminal has. A bit being true implies that the terminal has this option.
This variable also includes user options which the user may wish to alter
at his or her own descretion; these options are included since they may be
specified along with the terminal capabilities in the initial negotiation.
See below for the relevant TTYOPT bits.

The TCMXV variable specifies the screen height in number of lines.

The TCMXH variable specifies the line width in number of characters. This
value is one less than the screen width (ITS indicates line overflow by
outputting an exclamation point at the end of the display line before
moving to the next line). Note: the terminal must not do an automatic
CRLF when a character is printed in the rightmost column. If this is
unavoidable, the user SUPDUP must decrement the width it sends by one.

Note: Setting either the TCMXV or TCMXH dimension greater than 128. will
work, but will have some problems as coordinates are sometimes represented
in only 7 bits. The main problems occur in the SUPDUP protocol when
sending the cursor position after an output reset and in ITS user programs
using the display position codes ^PH and ^PV.

The TTYROL variable specifies the "glitch count" when scrolling. This is
the number of lines to scroll up when scrolling is required. If zero, the
terminal is not capable of scrolling. 1 is the usual value, but some
terminals glitch up by more than one line when they scroll.

Following the transmission of the terminal options by the user, the server
should respond with an ASCII greeting message, terminated with a %TDNOP
code (%TD codes are described below). All transmissions from the server
after the %TDNOP are either printing characters or virtual terminal
display codes.

SUPDUP Display Protocol Page 4

The user and the server now both communicate using the intelligent
terminal protocol (described below) from the user and %TD codes from the
server. The user has two commands in addition to these; they are escaped
by sending 300 (octal). If following the escape is a 301 (octal), the
server should attempt to log off the remote job (generally this is sent
immediately before the user disconnects, so this logout procedure should
be done regardless of the continuing integrity of the connection). If the
character following the escape is a 302 (octal), all ASCII characters
following up to a null (000 octal) are interpreted as "console location"
which the server can handle as it pleases. No carriage return or line
feed should be in the console location text. Normally this is saved away
to be displayed by the "who" command when other users ask where this user
is located.

SUPDUP Display Protocol Page 5


The relevant TTYOPT bits for SUPDUP usage follow. The values are given in
octal, with the left and right 18-bit halves separated by ",," as in the
usual PDP-10 convention.

Bit name Value Meaning

%TOALT 200000,,0 characters 175 and 176 are converted to
altmode (033) on input.

%TOERS 40000,,0 this terminal is capable of selectively
erasing its screen. That is, it supports
the %TDEOL, the %TDDLF, and (optionally)
				the  %TDEOF  operations.   For   terminals
				which   can   only   do   single-character
				erasing, see %TOOVR.

%TOMVB 10000,,0 this terminal is capable of backspacing
(ie, moving the cursor backwards).

%TOSAI 4000,,0 this terminal has the Stanford/ITS
extended ASCII graphics character set.

%TOOVR 1000,,0 this terminal is capable of overprinting;
if two characters are displayed in the
same position, they will both be visible,
rather than one replacing the other.

Lack of this capability but the capability
to backspace (see %TOMVB) implies that the
terminal can do single character erasing
by overstriking with a space. This allows
terminals without the %TOERS capability to
have display-style "rubout processing", as
this capability depends upon either %TOERS
or [%TOMVB and not %TOOVR].

%TOMVU 400,,0 this terminal is capable of moving the
cursor upwards.

%TOLWR 20,,0 this terminal's keyboard is capable of
generating lowercase characters; this bit
is mostly provided for programs which want
to know this information.

%TOFCI 10,,0 this terminal's keyboard is capable of
generating CONTROL and META characters as
described below.

%TOLID 2,,0 this terminal is capable of doing line
insert/delete operations, ie, it supports

%TOCID 1,,0 this terminal is capable of doing
character insert/delete operations, ie, it
supports %TDICP and %TDDCP.

SUPDUP Display Protocol Page 6


Bit name Value Meaning

%TPCBS 0,,40 this terminal is using the "intelligent
terminal protocol".

%TPORS 0,,10 the server should process output resets
instead of ignoring them.

The following bits are user option bits. They may be set or not set at
the user's discretion. The bits that are labelled "normally on" are those
that are normally set on when a terminal is initialized (ie, by typing
[CALL] on a local terminal).

Bit name Value Meaning

%TOCLC 100000,,0 convert lower-case input to upper case.
Many terminals have a "shift lock" key
which makes this option useless.

%TOSA1 2000,,0 characters 001-037 should be displayed
				using  the  Stanford/ITS  extended   ASCII
				graphics character set instead of  uparrow
				followed by 100+character.

%TOMOR 200,,0 the system should provide "**MORE**"
processing when the cursor reaches the
				bottom  line  of  the  screen.    **MORE**
				processing is described in ITS TTY.

%TOROL 100,,0 the terminal should scroll when attempting
output below the bottom line of the screen
instead of wrapping around to the top.

SUPDUP Display Protocol Page 7


Note: only the parts of the intelligent terminal protocol relevant to
SUPDUP are discussed here. For more information, read ITS TTY.


There are two character sets available for use with SUPDUP; the 7-bit
character set of standard ASCII, and the 12-bit character set of extended
ASCII. Extended ASCII has 5 high order or "bucky" bits on input and has
graphics for octal 000-037 and 177 (see the section entitled "Stanford/ITS
character set" for more details). The two character sets are identical on
output since the protocol specifies that the host should never send the
standard ASCII formatting characters (ie, TAB, LF, VT, FF, CR) as
formatting characters; the characters whose octal values are the same as
these formatting characters are never output unless the user job has these
characters enabled (setting %TOSAI and %TOSA1 generally does this).

Input differs dramatically between the 7-bit and 12-bit character sets.
In the 7-bit character set, all characters input whose value is 037 octal
or less are assumed to be (ASCII) control characters. In the 12-bit
character set, there are 5 "bucky" bits which may be attached to the
character. The two most important of these are CONTROL and META, which
form a 9-bit character set. TOP is used to distinguish between printing
graphics in the extended character set and ASCII controls. The other two
are reserved and should be ignored. Since both 7-bit and 12-bit terminals
are commonly in use, 0001, 0301, and 0341 are considered to be <CONTROL>A
on input by most programs, while 4001 is considered to be downwards arrow.


Many programs and hosts do not process 12-bit input. In this case, 12-bit
input is folded down to 7-bit as follows: TOP and META are discarded. If
CONTROL is on, then if the 7-bit part of the character specifies a lower
case alphabetic it is converted to upper case; then if the 7-bit part is
between 077 and 137 the 100 bit is complemented or if the 7-bit part is
040 the 040 bit is subtracted (that's right, <CONTROL>? is converted to
[RUBOUT] and <CONTROL>[SPACE] is converted to [NULL]). In any case the
CONTROL bit is discarded, and the remainder is treated as a 7-bit ASCII
character. It should be noted that in this case downwards arrow is read
by the program as standard ASCII <CONTROL>A.

Servers which expect 12-bit input and are told to use the 7-bit character
set should do appropriate unfolding from the 7-bit character set to
12-bit. It is up to the individual server to decide upon the unfolding
scheme. On ITS, user programs that use the 12-bit character set generally
have an alternative method for 7-bit; this often takes the form of prefix
characters indicating that the next character should be "controllified" or
"metized", etc.

SUPDUP Display Protocol Page 8



Under normal circumstances, characters input from the keyboard are sent to
the foreign host as is. There are two exceptions; the first occurs when
an octal 034 character is to be sent; it must be quoted by being sent
twice, because 034 is used as an escape character for protocol commands.
The second exception occurs when %TOFCI is set and a character with
non-zero bucky bits is to be sent. In this case, the character, which is
in the 12-bit form:

Name Value Description

%TXTOP 4000 This character has the [TOP] key depressed.

%TXSFL 2000 Reserved, must be zero.

%TXSFT 1000 Reserved, must be zero.

%TXMTA 400 This character has the [META] key depressed.

%TXCTL 200 This character has the [CONTROL] key depressed.

%TXASC 177 The ASCII portion of the character

is sent as three bytes. The first byte is always 034 octal (that is why
034 must be quoted). The next byte contains the "bucky bits", ie, the
%TXTOP through %TXCTL bits, shifted over 7 bits (ie, %TXTOP becomes 20)
with the 100 bit on. The third byte contains the %TXASC part of the
character. Hence the character <CONTROL><META>[LINE FEED] is sent as 034
103 012.


The intelligent terminal protocol also is involved when a network
interrupt (INR/INS) is received by the user program. The user program
should increment a count of received network interrupts when this happens.
It should not do any output, and if possible abort any output in progress,
if this count is greater than zero (NOTE: the program MUST allow for the
count to go less than zero).

Since the server no longer knows where the cursor is, it suspends all
output until the user informs it of the cursor position. This also gives
the server an idea of how much was thrown out in case it has to have some
of the aborted output displayed at a later time. The user program does
this when it receives a %TDORS from the server. When this happens it
should decrement the "number of received network interrupts" count
described in the previous paragraph and then send 034 followed by 020, the
vertical position, and the horizontal position of where the cursor
currently is located on the user's screen.

SUPDUP Display Protocol Page 9


Display output is somewhat simpler. Codes less than 200 octal are
printing characters and are displayed on the terminal (see the section
describing the "Stanford/ITS character set"). Codes greater than or equal
to 200 (octal) are known as "%TD codes", so called since their names begin
with %TD. The %TD codes that are relevant to SUPDUP operation are listed
here. Any other code received should be ignored, although a bug report
might be sent to the server's maintainers. Note that the normal ASCII
formatting characters (011 - 015) do NOT have their formatting sense under
SUPDUP and should not occur at all unless the Stanford/ITS extended ASCII
character set is in use (ie, %TOSAI is set in the TTYOPT word).

For cursor positioning operations, the top left corner is (0,0), ie,
vertical position 0, horizontal position 0.

%TD code Value Meaning

%TDMOV 200 General cursor position code. Followed by
four bytes; the first two are the "old"
vertical and horizontal positions and may
				be  ignored.    The  next  two are the new
				vertical  and  horizontal  positions.  The
				cursor  should be moved  to this position.

On printing consoles (non %TOMVU), the old
vertical position may differ from the true
vertical position; this can occur when
scrolling. In this case, the user program
should set its idea of the old vertical
position to what the %TDMOV says and then
proceed. Hence a %TDMOV with an old vpos
of 20. and a new vpos of 22. should always
move the "cursor" down two lines. This is
used to prevent the vertical position from
becoming infinite.

%TDMV1 201 An internal cursor motion code which
should not be seen; but if it is, it has
two argument bytes after it and should be
treated the same as %TDMV0.

%TDEOF 202 Erase to end of screen. This is an
optional function since many terminals do
not support this. If the terminal does
not support this function, it should be
treated the same as %TDEOL.

%TDEOF does an erase to end of line, then
erases all lines lower on the screen than
the cursor. The cursor does not move.

%TDEOL 203 Erase to end of line. This erases the
character position the cursor is at and
all positions to the right on the same
line. The cursor does not move.

SUPDUP Display Protocol Page 10


%TD code Value Meaning

%TDDLF 204 Clear the character position the cursor is
on. The cursor does not move.

%TDCRL 207 If the cursor is not on the bottom line of
the screen, move cursor to the beginning
of the next line and clear that line. If
the cursor is at the bottom line, scroll

%TDNOP 210 No-op; should be ignored.

%TDORS 214 Output reset. This code serves as a data
mark for aborting output much as IAC DM
does in the ordinary TELNET protocol.

%TDQOT 215 Quotes the following character. This is
used when sending 8-bit codes which are
not %TD codes, for instance when loading
programs into an intelligent terminal.
The following character should be passed
through intact to the terminal.

%TDFS 216 Non-destructive forward space. The cursor
moves right one position; this code will
not be sent at the end of a line.

%TDMV0 217 General cursor position code. Followed by
two bytes; the new vertical and horizontal

%TDCLR 220 Erase the screen. Home the cursor to the
top left hand corner of the screen.

%TDBEL 221 Generate an audio tone, bell, whatever.

%TDILP 223 Insert blank lines at the cursor; followed
by a byte containing a count of the number
of blank lines to insert. The cursor is
unmoved. The line the cursor is on and
all lines below it move down; lines moved
off the bottom of the screen are lost.

%TDDLP 224 Delete lines at the cursor; followed by a
count. The cursor is unmoved. The first
line deleted is the one the cursor is on.
Lines below those deleted move up. Newly-
created lines at the bottom of the screen
are blank.

SUPDUP Display Protocol Page 11


%TD code Value Meaning

%TDICP 225 Insert blank character positions at the
cursor; followed by a count. The cursor
is unmoved. The character the cursor is
on and all characters to the right on the
current line move to the right; characters
moved off the end of the line are lost.

%TDDCP 226 Delete characters at the cursor; followed
by a count. The cursor is unmoved. The
first character deleted is the one the
cursor is on. Newly-created characters at
the end of the line are blank.

%TDBOW 227 Display black characters on white screen.

%TDRST 230 Reset %TDBOW and such any future options.

SUPDUP Display Protocol Page 12


This section describes the extended ASCII character set. It originated
with the character set developed at SAIL but was modified for 1968 ASCII.

This character set only applies to terminals with the %TOSAI and %TOFCI
bits set in its TTYOPT word. For non-%TOSAI terminals, the standard ASCII
printing characters are the only available output characters. For
non-%TOFCI terminals, the standard ASCII characters are the only available
input characters.


The first table describes the printing characters. For output, the 7-bit
code is sent (terminal operations are performed by %TD codes). For input,
the characters with values 000-037 and 177 must have the %TXTOP bit on to
indicate the graphic is intended rather than a function or ASCII control.

Value Character

4000 centered dot
4001 downward arrow
4002 alpha
4003 beta
4004 logical AND
4005 logical NOT
4006 epsilon
4007 pi
4010 lambda
4011 gamma
4012 delta
4013 uparrow
4014 plus-minus
4015 circle-plus
4016 infinity
4017 partial delta
4020 proper subset (left horseshoe)
4021 proper superset (right horseshoe)
4022 intersection (up horseshoe)
4023 union (downward horseshoe)
4024 universal quantifer
4025 existential quantifier
4026 circle-X
4027 double arrow
4030 left arrow
4031 right arrow
4032 not-equal
4033 lozenge (diamond)
4034 less-than-or-equal
4035 greater-than-or-equal
4036 equivalence
4037 logical OR
0040 first standard ASCII character (space)
0176 last standard ASCII character (tilde)
4177 integral

SUPDUP Display Protocol Page 13



In addition, the following special characters exist for input only. These
characters are function keys rather than printing characters; however,
some of these characters have some format effect or graphic which they
echo as; the host, not the SUPDUP program, handles any such mappings.

Value Character Usual echo Usual Function

0000 [NULL]
0010 [BACK SPACE] text formatting
0011 [TAB] text formatting
0012 [LINE FEED] text formatting
0013 [VT] text formatting
0014 [FORM] text formatting
0015 [RETURN] text formatting
0032 [CALL] uparrow-Z escape to system
0033 [ALTMODE] lozenge or $ special activation
0037 [BACK NEXT] uparrow-underscore monitor command prefix
0177 [RUBOUT] character delete

4101 [ESCAPE] local terminal command
4102 [BREAK] local subsystem escape
4103 [CLEAR]
4110 [HELP] requests a help message


For all input characters, the following "bucky bits" may be added to the
character. Their interpretation depends entirely upon the host. <TOP> is
not listed here, as it has been considered part of the character in the
previous tables.

<CONTROL> is different from ASCII CTRL, however, many programs may request
the operating system to map such characters to the ASCII forms (with the
<TOP> bit off). In this case <META> is ignored.

Value Key

2000 Reserved
1000 Reserved
0400 <META>
0200 <CONTROL>

SUPDUP Display Protocol Page 14


Richard M. Stallman (RMS@MIT-AI) and David A. Moon (Moon@MIT-MC) of the
MIT-AI and MIT-MC systems staff wrote the source documentation and the
wonderful ITS terminal support that made this protocol possible. It must
be emphasized that this is a functional protocol which has been in
operation for some years now.

In addition, Moon, Stallman, and Michael McMahon (MMcM@SRI-KL) provided
many helpful comments and corrections to this document.

For further reference, the sources for the known currently existing SUPDUP
user programs are available online as:

[MIT-AI] SYSENG;SUPDUP > for the ITS monitor,
[SU-AI] SUPDUP.MID[NET,MRC] for the SAIL monitor,
[SRI-KL] <MMcM>SD.FAI for the TOPS-20 monitor.

The source for the known currently existing SUPDUP server program is:

[MIT-AI] SYSENG;TELSER > for the ITS monitor.

These programs are written in the MIDAS and FAIL dialects of PDP-10
assembly language.