Network Working Group                        Internet Architecture Board
Request for Comments: 1920                             J. Postel, Editor
Obsoletes: 1880, 1800, 1780, 1720,                            March 1996
1610, 1600, 1540, 1500, 1410, 1360,
1280, 1250, 1200, 1140, 1130, 1100, 1083
STD: 1
Category: Standards Track
Page 1

INTERNET OFFICIAL PROTOCOL STANDARDS

Status of this Memo

This memo describes the state of standardization of protocols used in the Internet as determined by the Internet Architecture Board (IAB). This memo is an Internet Standard. Distribution of this memo is unlimited.

Table of Contents

Introduction
1. The Standardization Process
2. The Request for Comments Documents
3. Other Reference Documents
3.1. Assigned Numbers
3.2. Gateway Requirements
3.3. Host Requirements
3.4. The MIL-STD Documents
4. Explanation of Terms
4.1. Definitions of Protocol State (Maturity Level)
4.1.1. Standard Protocol
4.1.2. Draft Standard Protocol
4.1.3. Proposed Standard Protocol
4.1.4. Experimental Protocol
4.1.5. Informational Protocol
4.1.6. Historic Protocol
4.2. Definitions of Protocol Status (Requirement Level)
4.2.1. Required Protocol
4.2.2. Recommended Protocol
4.2.3. Elective Protocol
4.2.4. Limited Use Protocol
4.2.5. Not Recommended Protocol
5. The Standards Track
5.1. The RFC Processing Decision Table
5.2. The Standards Track Diagram
6. The Protocols
6.1. Recent Changes


Page 2

6.1.1. New RFCs
6.1.2. Other Changes
6.2. Standard Protocols
6.3. Network-Specific Standard Protocols
6.4. Draft Standard Protocols
6.5. Proposed Standard Protocols
6.6. Telnet Options
6.7. Experimental Protocols
6.8. Informational Protocols
6.9. Historic Protocols
6.10 Obsolete Protocols
7. Contacts
7.1. IAB, IETF, and IRTF Contacts
7.1.1. Internet Architecture Board (IAB) Contact
7.1.2. Internet Engineering Task Force (IETF) Contact
7.1.3. Internet Research Task Force (IRTF) Contact
7.2. Internet Assigned Numbers Authority (IANA) Contact
7.3. Request for Comments Editor Contact
7.4. Network Information Center Contact
7.5. Sources for Requests for Comments
8. Security Considerations
9. Author's Address

Introduction

A discussion of the standardization process and the RFC document series is presented first, followed by an explanation of the terms. Sections 6.2 - 6.10 contain the lists of protocols in each stage of standardization. Finally are pointers to references and contacts for further information.

This memo is intended to be issued approximately quarterly; please be sure the copy you are reading is current. Current copies may be obtained from the Network Information Center (INTERNIC) or from the Internet Assigned Numbers Authority (IANA) (see the contact information at the end of this memo). Do not use this edition after 15-July-96.

See Section 6.1 for a description of recent changes. In the official lists in sections 6.2 - 6.10, an asterisk (*) next to a protocol denotes that it is new to this document or has been moved from one protocol level to another, or differs from the previous edition of this document.


Page 3

1. The Standardization Process

The Internet Architecture Board maintains this list of documents that define standards for the Internet protocol suite. See RFC-1601 for the charter of the IAB and RFC-1160 for an explanation of the role and organization of the IAB and its subsidiary groups, the Internet Engineering Task Force (IETF) and the Internet Research Task Force (IRTF). Each of these groups has a steering group called the IESG and IRSG, respectively. The IETF develops these standards with the goal of co-ordinating the evolution of the Internet protocols; this co-ordination has become quite important as the Internet protocols are increasingly in general commercial use. The definitive description of the Internet standards process is found in RFC-1602.

The majority of Internet protocol development and standardization activity takes place in the working groups of the IETF.

Protocols which are to become standards in the Internet go through a series of states or maturity levels (proposed standard, draft standard, and standard) involving increasing amounts of scrutiny and testing. When a protocol completes this process it is assigned a STD number (see RFC-1311). At each step, the Internet Engineering Steering Group (IESG) of the IETF must make a recommendation for advancement of the protocol.

To allow time for the Internet community to consider and react to standardization proposals, a minimum delay of 6 months before a proposed standard can be advanced to a draft standard and 4 months before a draft standard can be promoted to standard.

It is general practice that no proposed standard can be promoted to draft standard without at least two independent implementations (and the recommendation of the IESG). Promotion from draft standard to standard generally requires operational experience and demonstrated interoperability of two or more implementations (and the
recommendation of the IESG).

In cases where there is uncertainty as to the proper decision concerning a protocol a special review committee may be appointed consisting of experts from the IETF, IRTF and the IAB with the purpose of recommending an explicit action.

Advancement of a protocol to proposed standard is an important step since it marks a protocol as a candidate for eventual standardization (it puts the protocol "on the standards track"). Advancement to draft standard is a major step which warns the community that, unless major objections are raised or flaws are discovered, the protocol is likely to be advanced to standard in six months.


Page 4

Some protocols have been superseded by better ones or are otherwise unused. Such protocols are still documented in this memorandum with the designation "historic".

Because it is useful to document the results of early protocol research and development work, some of the RFCs document protocols which are still in an experimental condition. The protocols are designated "experimental" in this memorandum. They appear in this report as a convenience to the community and not as evidence of their standardization.

Other protocols, such as those developed by other standards organizations, or by particular vendors, may be of interest or may be recommended for use in the Internet. The specifications of such protocols may be published as RFCs for the convenience of the Internet community. These protocols are labeled "informational" in this memorandum.

In addition to the working groups of the IETF, protocol development and experimentation may take place as a result of the work of the research groups of the Internet Research Task Force, or the work of other individuals interested in Internet protocol development. The the documentation of such experimental work in the RFC series is encouraged, but none of this work is considered to be on the track for standardization until the IESG has made a recommendation to advance the protocol to the proposed standard state.

A few protocols have achieved widespread implementation without the approval of the IESG. For example, some vendor protocols have become very important to the Internet community even though they have not been recommended by the IESG. However, the IAB strongly recommends that the standards process be used in the evolution of the protocol suite to maximize interoperability (and to prevent incompatible protocol requirements from arising). The use of the terms "standard", "draft standard", and "proposed standard" are reserved in any RFC or other publication of Internet protocols to only those protocols which the IESG has approved.

In addition to a state (like "Proposed Standard"), a protocol is also assigned a status, or requirement level, in this document. The possible requirement levels ("Required", "Recommended", "Elective", "Limited Use", and "Not Recommended") are defined in Section 4.2. When a protocol is on the standards track, that is in the proposed standard, draft standard, or standard state (see Section 5), the status shown in Section 6 is the current status.

Few protocols are required to be implemented in all systems; this is because there is such a variety of possible systems, for example,


Page 5

gateways, routers, terminal servers, workstations, and multi-user hosts. The requirement level shown in this document is only a one word label, which may not be sufficient to characterize the implementation requirements for a protocol in all situations. For some protocols, this document contains an additional status paragraph (an applicability statement). In addition, more detailed status information may be contained in separate requirements documents (see Section 3).

2. The Request for Comments Documents

The documents called Request for Comments (or RFCs) are the working notes of the "Network Working Group", that is the Internet research and development community. A document in this series may be on essentially any topic related to computer communication, and may be anything from a meeting report to the specification of a standard.

Notice:

All standards are published as RFCs, but not all RFCs specify standards.

Anyone can submit a document for publication as an RFC. Submissions must be made via electronic mail to the RFC Editor (see the contact information at the end of this memo, and see RFC 1543).

While RFCs are not refereed publications, they do receive technical review from the task forces, individual technical experts, or the RFC Editor, as appropriate.

The RFC series comprises a wide range of documents, ranging from informational documents of general interests to specifications of standard Internet protocols. In cases where submission is intended to document a proposed standard, draft standard, or standard protocol, the RFC Editor will publish the document only with the approval of the IESG. For documents describing experimental work, the RFC Editor will notify the IESG before publication, allowing for the possibility of review by the relevant IETF working group or IRTF research group and provide those comments to the author. See Section 5.1 for more detail.

Once a document is assigned an RFC number and published, that RFC is never revised or re-issued with the same number. There is never a question of having the most recent version of a particular RFC. However, a protocol (such as File Transfer Protocol (FTP)) may be improved and re-documented many times in several different RFCs. It is important to verify that you have the most recent RFC on a particular protocol. This "Internet Official Protocol Standards"


Page 6

memo is the reference for determining the correct RFC for the current specification of each protocol.

The RFCs are available from the INTERNIC, and a number of other sites. For more information about obtaining RFCs, see Sections 7.4 and 7.5.

3. Other Reference Documents

There are three other reference documents of interest in checking the current status of protocol specifications and standardization. These are the Assigned Numbers, the Gateway Requirements, and the Host Requirements. Note that these documents are revised and updated at different times; in case of differences between these documents, the most recent must prevail.

Also, one should be aware of the MIL-STD publications on IP, TCP, Telnet, FTP, and SMTP. These are described in Section 3.4.

3.1. Assigned Numbers

The "Assigned Numbers" document lists the assigned values of the parameters used in the various protocols. For example, IP protocol codes, TCP port numbers, Telnet Option Codes, ARP hardware types, and Terminal Type names. Assigned Numbers was most recently issued as RFC-1700.

3.2. Requirements for IP Version 4 Routers

This document reviews the specifications that apply to gateways and supplies guidance and clarification for any ambiguities.
Requirements for IP Version 4 Routers is RFC-1812.

3.3. Host Requirements

This pair of documents reviews and updates the specifications that apply to hosts, and it supplies guidance and clarification for any ambiguities. Host Requirements was issued as RFC-1122 and RFC-1123.

3.4. The MIL-STD Documents

The Internet community specifications for IP (RFC-791) and TCP (RFC- 793) and the DoD MIL-STD specifications are intended to describe exactly the same protocols. Any difference in the protocols specified by these sets of documents should be reported to DISA and to the IESG. It is strongly advised that the two sets of documents be used together, along with RFC-1122 and RFC-1123.


Page 7

Note that these MIL-STD are now somewhat out of date. The Requirements for IP Version 4 Routers (RFC-1812) and Host Requirements (RFC-1122, RFC-1123) take precedence over both earlier RFCs and the MIL-STDs.

2045-13501 Internet Routing between Autonomous Systems

2045-14502-01 Internet Transport Profile for DoD
Communications, Part 1: Transport and Internet Services

2045-14502-04 Internet Transport Profile for DoD
Communications, Part 4: LAN Media-Independent Requirements

2045-14503 Internet Transport Service Supporting OSI Applications

2045-44500 Tactical Communications

2045-17503-01 Internet Message Transfer Profile for DoD Communications Part 1: Simple Mail Transfer Protocol

2045-17503-02 Internet Message Transfer Profile for DoD Communications Part 2: Format of Text Messages

2045-17504 Internet File Transfer Profile for DoD
Communications

2045-17505 Internet Domain Name Service (DNS) Profile for DoD Communications

2045-17506 Internet Remote Login (RLOGIN) Profile for DoD Communications

2045-17507 Internet Network Management Profile for DoD Communications

2045-38000 DoD Network Management for DoD Communications

These documents are available from the Naval Publications and Forms Center. Requests can be initiated by telephone, telegraph, or mail; however, it is preferred that private industry use form DD1425, if possible.

Naval Publications and Forms Center, Code 3015
5801 Tabor Ave
Philadelphia, PA 19120
Phone: 1-215-697-3321 (order tape)
1-215-697-4834 (conversation)


Page 8

4. Explanation of Terms

There are two independent categorization of protocols. The first is the "maturity level" or STATE of standardization, one of "standard", "draft standard", "proposed standard", "experimental",
"informational" or "historic". The second is the "requirement level" or STATUS of this protocol, one of "required", "recommended", "elective", "limited use", or "not recommended".

The status or requirement level is difficult to portray in a one word label. These status labels should be considered only as an indication, and a further description, or applicability statement, should be consulted.

When a protocol is advanced to proposed standard or draft standard, it is labeled with a current status.

At any given time a protocol occupies a cell of the following matrix. Protocols are likely to be in cells in about the following proportions (indicated by the relative number of Xs). A new protocol is most likely to start in the (proposed standard, elective) cell, or the (experimental, limited use) cell.

S T A T U S

                     Req   Rec   Ele   Lim   Not
                   +-----+-----+-----+-----+-----+
           Std     |  X  | XXX | XXX |     |     |
       S           +-----+-----+-----+-----+-----+
           Draft   |  X  |  X  | XXX |     |     |
       T           +-----+-----+-----+-----+-----+
           Prop    |     |  X  | XXX |     |     |
       A           +-----+-----+-----+-----+-----+
           Info    |     |     |     |     |     |
       T           +-----+-----+-----+-----+-----+
           Expr    |     |     |     | XXX |     |
       E           +-----+-----+-----+-----+-----+
           Hist    |     |     |     |     | XXX |
                   +-----+-----+-----+-----+-----+

What is a "system"?

Some protocols are particular to hosts and some to gateways; a few protocols are used in both. The definitions of the terms below will refer to a "system" which is either a host or a gateway (or both). It should be clear from the context of the particular protocol which types of systems are intended.


Page 9

4.1. Definitions of Protocol State

Every protocol listed in this document is assigned to a "maturity level" or STATE of standardization: "standard", "draft standard", "proposed standard", "experimental", or "historic".

4.1.1. Standard Protocol

The IESG has established this as an official standard protocol for the Internet. These protocols are assigned STD numbers (see RFC- 1311). These are separated into two groups: (1) IP protocol and above, protocols that apply to the whole Internet; and (2) network-specific protocols, generally specifications of how to do IP on particular types of networks.

4.1.2. Draft Standard Protocol

The IESG is actively considering this protocol as a possible Standard Protocol. Substantial and widespread testing and comment are desired. Comments and test results should be submitted to the IESG. There is a possibility that changes will be made in a Draft Standard Protocol before it becomes a Standard Protocol.

4.1.3. Proposed Standard Protocol

These are protocol proposals that may be considered by the IESG for standardization in the future. Implementation and testing by several groups is desirable. Revision of the protocol specification is likely.

4.1.4. Experimental Protocol

A system should not implement an experimental protocol unless it is participating in the experiment and has coordinated its use of the protocol with the developer of the protocol.

Typically, experimental protocols are those that are developed as part of an ongoing research project not related to an operational service offering. While they may be proposed as a service protocol at a later stage, and thus become proposed standard, draft standard, and then standard protocols, the designation of a protocol as experimental may sometimes be meant to suggest that the protocol, although perhaps mature, is not intended for operational use.


Page 10

4.1.5. Informational Protocol

Protocols developed by other standard organizations, or vendors, or that are for other reasons outside the purview of the IESG, may be published as RFCs for the convenience of the Internet community as informational protocols.

4.1.6. Historic Protocol

These are protocols that are unlikely to ever become standards in the Internet either because they have been superseded by later developments or due to lack of interest.

4.2. Definitions of Protocol Status

This document lists a "requirement level" or STATUS for each protocol. The status is one of "required", "recommended", "elective", "limited use", or "not recommended".

4.2.1. Required Protocol

A system must implement the required protocols.

4.2.2. Recommended Protocol

A system should implement the recommended protocols.

4.2.3. Elective Protocol

A system may or may not implement an elective protocol. The general notion is that if you are going to do something like this, you must do exactly this. There may be several elective protocols in a general area, for example, there are several electronic mail protocols, and several routing protocols.

4.2.4. Limited Use Protocol

These protocols are for use in limited circumstances. This may be because of their experimental state, specialized nature, limited functionality, or historic state.

4.2.5. Not Recommended Protocol

These protocols are not recommended for general use. This may be because of their limited functionality, specialized nature, or experimental or historic state.


Page 11

5. The Standards Track

This section discusses in more detail the procedures used by the RFC Editor and the IESG in making decisions about the labeling and publishing of protocols as standards.

5.1. The RFC Processing Decision Table

Here is the current decision table for processing submissions by the RFC Editor. The processing depends on who submitted it, and the status they want it to have.

      +==========================================================+
      |**************|               S O U R C E                 |
      +==========================================================+
      | Desired      |    IAB   |   IESG   |   IRSG   |  Other   |
      | Status       |          |          |          |          |
      +==========================================================+
      |              |          |          |          |          |
      | Standard     |  Bogus   |  Publish |  Bogus   |  Bogus   |
      | or           |   (2)    |   (1)    |   (2)    |   (2)    |
      | Draft        |          |          |          |          |
      | Standard     |          |          |          |          |
      +--------------+----------+----------+----------+----------+
      |              |          |          |          |          |
      |              |  Refer   |  Publish |  Refer   |  Refer   |
      | Proposed     |   (3)    |   (1)    |   (3)    |   (3)    |
      | Standard     |          |          |          |          |
      |              |          |          |          |          |
      +--------------+----------+----------+----------+----------+
      |              |          |          |          |          |
      |              |  Notify  |  Publish |  Notify  |  Notify  |
      | Experimental |   (4)    |   (1)    |   (4)    |   (4)    |
      | Protocol     |          |          |          |          |
      |              |          |          |          |          |
      +--------------+----------+----------+----------+----------+
      |              |          |          |          |          |
      | Information  |  Publish |  Publish |Discretion|Discretion|
      | or Opinion   |   (1)    |   (1)    |   (5)    |   (5)    |
      | Paper        |          |          |          |          |
      |              |          |          |          |          |
      +==========================================================+

(1) Publish.

(2) Bogus. Inform the source of the rules. RFCs specifying Standard, or Draft Standard must come from the IESG, only.


Page 12

(3) Refer to an Area Director for review by a WG. Expect to see the document again only after approval by the IESG.

(4) Notify both the IESG and IRSG. If no concerns are raised in two weeks then do Discretion (5), else RFC Editor to resolve the concerns or do Refer (3).

(5) RFC Editor's discretion. The RFC Editor decides if a review is needed and if so by whom. RFC Editor decides to publish or not.

Of course, in all cases the RFC Editor can request or make minor changes for style, format, and presentation purposes.

The IESG has designated the IESG Secretary as its agent for forwarding documents with IESG approval and for registering concerns in response to notifications (4) to the RFC Editor. Documents from Area Directors or Working Group Chairs may be considered in the same way as documents from "other".

5.2. The Standards Track Diagram

There is a part of the STATUS and STATE categorization that is called the standards track. Actually, only the changes of state are significant to the progression along the standards track, though the status assignments may change as well.

The states illustrated by single line boxes are temporary states, those illustrated by double line boxes are long term states. A protocol will normally be expected to remain in a temporary state for several months (minimum six months for proposed standard, minimum four months for draft standard). A protocol may be in a long term state for many years.

A protocol may enter the standards track only on the recommendation of the IESG; and may move from one state to another along the track only on the recommendation of the IESG. That is, it takes action by the IESG to either start a protocol on the track or to move it along.

Generally, as the protocol enters the standards track a decision is made as to the eventual STATUS, requirement level or applicability (elective, recommended, or required) the protocol will have, although a somewhat less stringent current status may be assigned, and it then is placed in the the proposed standard STATE with that status. So the initial placement of a protocol is into state 1. At any time the STATUS decision may be revisited.


Page 13

         |
         +<----------------------------------------------+
         |                                               ^
         V    0                                          |    4
   +-----------+                                   +===========+
   |   enter   |-->----------------+-------------->|experiment |
   +-----------+                   |               +=====+=====+
                                   |                     |
                                   V    1                |
                             +-----------+               V
                             | proposed  |-------------->+
                        +--->+-----+-----+               |
                        |          |                     |
                        |          V    2                |
                        +<---+-----+-----+               V
                             | draft std |-------------->+
                        +--->+-----+-----+               |
                        |          |                     |
                        |          V    3                |
                        +<---+=====+=====+               V
                             | standard  |-------------->+
                             +=====+=====+               |
                                                         |
                                                         V    5
                                                   +=====+=====+
                                                   | historic  |
                                                   +===========+

The transition from proposed standard (1) to draft standard (2) can only be by action of the IESG and only after the protocol has been proposed standard (1) for at least six months.

The transition from draft standard (2) to standard (3) can only be by action of the IESG and only after the protocol has been draft standard (2) for at least four months.

Occasionally, the decision may be that the protocol is not ready for standardization and will be assigned to the experimental state (4). This is off the standards track, and the protocol may be resubmitted to enter the standards track after further work. There are other paths into the experimental and historic states that do not involve IESG action.

Sometimes one protocol is replaced by another and thus becomes historic, or it may happen that a protocol on the standards track is in a sense overtaken by another protocol (or other events) and becomes historic (state 5).


Page 14

6. The Protocols

Subsection 6.1 lists recent RFCs and other changes. Subsections 6.2

   - 6.10 list the standards in groups by protocol state.

6.1. Recent Changes

6.1.1. New RFCs:

1920 - Internet Official Protocol Standards

This memo.

1918 - Address Allocation for Private Internets

This is a Best Current Practices document and does not specify any level of standard.

1917 - An Appeal to the Internet Community to Return Unused IP Networks (Prefixes) to the IANA

This is a Best Current Practices document and does not specify any level of standard.

1916 - Enterprise Renumbering: Experience and Information Solicitation

This is an information document and does not specify any level of standard.

1915 - Variance for The PPP Connection Control Protocol and The PPP Encryption Control Protocol

This is a Best Current Practices document and does not specify any level of standard.

1914 - How to Interact with a Whois++ Mesh

A Proposed Standard protocol.

1913 - Architecture of the Whois++ Index Service

A Proposed Standard protocol.

1912 - Common DNS Operational and Configuration Errors

This is an information document and does not specify any level of standard.


Page 15

1911 - Voice Profile for Internet Mail

An Experimental protocol.

1910 - User-based Security Model for SNMPv2

An Experimental protocol.

1909 - An Administrative Infrastructure for SNMPv2

An Experimental protocol.

1908 - Coexistence between Version 1 and Version 2 of the Internet-standard Network Management Framework

A Draft Standard protocol.

1907 - Management Information Base for Version 2 of the Simple Network Management Protocol (SNMPv2)

A Draft Standard protocol.

1906 - Transport Mappings for Version 2 of the Simple Network Management Protocol (SNMPv2)

A Draft Standard protocol.

1905 - Protocol Operations for Version 2 of the Simple Network Management Protocol (SNMPv2)

A Draft Standard protocol.

1904 - Conformance Statements for Version 2 of the Simple Network Management Protocol (SNMPv2)

A Draft Standard protocol.

1903 - Textual Conventions for Version 2 of the Simple Network Management Protocol (SNMPv2)

A Draft Standard protocol.

1902 - Structure of Management Information for Version 2 of the Simple Network Management Protocol (SNMPv2)

A Draft Standard protocol.


Page 16

1901 - Introduction to Community-based SNMPv2

An Experimental protocol.

1900 - Renumbering Needs Work

This is an information document and does not specify any level of standard.

1899 - not yet issued.

1898 - CyberCash Credit Card Protocol Version 0.8

This is an information document and does not specify any level of standard.

1897 - IPv6 Testing Address Allocation

An Experimental protocol.

1896 - The text/enriched MIME Content-type

This is an information document and does not specify any level of standard.

1895 - The Application/CALS-1840 Content-type

This is an information document and does not specify any level of standard.

1894 - An Extensible Message Format for Delivery Status Notifications

A Proposed Standard protocol.

1893 - Enhanced Mail System Status Codes

A Proposed Standard protocol.

1892 - The Multipart/Report Content Type for the Reporting of Mail System Administrative Messages

A Proposed Standard protocol.

1891 - SMTP Service Extension for Delivery Status Notifications

A Proposed Standard protocol.


Page 17

1890 - RTP Profile for Audio and Video Conferences with Minimal Control

A Proposed Standard protocol.

1889 - RTP: A Transport Protocol for Real-Time Applications

A Proposed Standard protocol.

1888 - not yet issued.

1887 - An Architecture for IPv6 Unicast Address Allocation

This is an information document and does not specify any level of standard.

1886 - DNS Extensions to support IP version 6

A Proposed Standard protocol.

1885 - Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)

A Proposed Standard protocol.

1884 - IP Version 6 Addressing Architecture

A Proposed Standard protocol.

1883 - Internet Protocol, Version 6 (IPv6) Specification

A Proposed Standard protocol.

1882 - The 12-Days of Technology Before Christmas

This is an information document and does not specify any level of standard.

1881 - IPv6 Address Allocation Management

This is an information document and does not specify any level of standard.

1879 - Class A Subnet Experiment Results and Recommendations

This is an information document and does not specify any level of standard.


Page 18

1878 - Variable Length Subnet Table For IPv4

This is an information document and does not specify any level of standard.

1877 - PPP Internet Protocol Control Protocol Extensions for Name Server Addresses

This is an information document and does not specify any level of standard.

1876 - A Means for Expressing Location Information in the Domain Name System

An Experimental protocol.

1875 - UNINETT PCA Policy Statements

This is an information document and does not specify any level of standard.

1874 - SGML Media Types

An Experimental protocol.

1873 - Message/External-Body Content-ID Access Type

An Experimental protocol.

1872 - The MIME Multipart/Related Content-type

An Experimental protocol.

1865 - EDI Meets the Internet Frequently Asked Questions about Electronic Data Interchange (EDI) on the Internet

This is an information document and does not specify any level of standard.

6.1.2. Other Changes:

The following are changes to protocols listed in the previous edition.

1451 - Manager to Manager Management Information Base

Moved to Historic.


Page 19

1447 - Party MIB for version 2 of the Simple Network Management Protocol (SNMPv2)

Moved to Historic.

1446 - Security Protocols for version 2 of the Simple Network Management Protocol (SNMPv2)

Moved to Historic.

1445 - Administrative Model for version 2 of the Simple Network Management Protocol (SNMPv2)

Moved to Historic.

1058 - Routing Information Protocol

Moved to Historic.


Page 20

6.2. Standard Protocols

Protocol Name Status RFC STD *
======== ===================================== ======== ==== === =
-------- Internet Official Protocol Standards Req 1920 1
-------- Assigned Numbers Req 1700 2
-------- Host Requirements - Communications Req 1122 3
-------- Host Requirements - Applications Req 1123 3
IP Internet Protocol Req 791 5
as amended by:--------
-------- IP Subnet Extension Req 950 5
-------- IP Broadcast Datagrams Req 919 5
-------- IP Broadcast Datagrams with Subnets Req 922 5
ICMP Internet Control Message Protocol Req 792 5
IGMP Internet Group Multicast Protocol Rec 1112 5
UDP User Datagram Protocol Rec 768 6
TCP Transmission Control Protocol Rec 793 7
TELNET Telnet Protocol Rec 854,855 8
FTP File Transfer Protocol Rec 959 9
SMTP Simple Mail Transfer Protocol Rec 821 10
SMTP-SIZE SMTP Service Ext for Message Size Rec 1870 10
SMTP-EXT SMTP Service Extensions Rec 1869 10
MAIL Format of Electronic Mail Messages Rec 822 11
CONTENT Content Type Header Field Rec 1049 11
NTPV2 Network Time Protocol (Version 2) Rec 1119 12
DOMAIN Domain Name System Rec 1034,1035 13
DNS-MX Mail Routing and the Domain System Rec 974 14
SNMP Simple Network Management Protocol Rec 1157 15
SMI Structure of Management Information Rec 1155 16
Concise-MIB Concise MIB Definitions Rec 1212 16
MIB-II Management Information Base-II Rec 1213 17
NETBIOS NetBIOS Service Protocols Ele 1001,1002 19
ECHO Echo Protocol Rec 862 20
DISCARD Discard Protocol Ele 863 21
CHARGEN Character Generator Protocol Ele 864 22
QUOTE Quote of the Day Protocol Ele 865 23
USERS Active Users Protocol Ele 866 24
DAYTIME Daytime Protocol Ele 867 25
TIME Time Server Protocol Ele 868 26
TFTP Trivial File Transfer Protocol Ele 1350 33
TP-TCP ISO Transport Service on top of the TCP Ele 1006 35
ETHER-MIB Ethernet MIB Ele 1643 50
PPP Point-to-Point Protocol (PPP) Ele 1661 51
PPP-HDLC PPP in HDLC Framing Ele 1662 51
IP-SMDS IP Datagrams over the SMDS Service Ele 1209 52

[Note: an asterisk at the end of a line indicates a change from the
previous edition of this document.]


Page 21

Applicability Statements:

IGMP -- The Internet Architecture Board intends to move towards general adoption of IP multicasting, as a more efficient solution than broadcasting for many applications. The host interface has been standardized in RFC-1112; however, multicast-routing gateways are in the experimental stage and are not widely available. An Internet host should support all of RFC-1112, except for the IGMP protocol itself which is optional; see RFC-1122 for more details. Even without IGMP, implementation of RFC-1112 will provide an important advance: IP-layer access to local network multicast addressing. It is expected that IGMP will become recommended for all hosts and gateways at some future date.

SMI, MIB-II SNMP -- The Internet Architecture Board recommends that all IP and TCP implementations be network manageable. At the current time, this implies implementation of the Internet MIB-II (RFC-1213), and at least the recommended management protocol SNMP (RFC-1157).

RIP -- The Routing Information Protocol (RIP) is widely implemented and used in the Internet. However, both implementors and users should be aware that RIP has some serious technical limitations as a routing protocol. The IETF is currently devpeloping several candidates for a new standard "open" routing protocol with better properties than RIP. The IAB urges the Internet community to track these developments, and to implement the new protocol when it is standardized; improved Internet service will result for many users.

TP-TCP -- As OSI protocols become more widely implemented and used, there will be an increasing need to support interoperation with the TCP/IP protocols. The Internet Engineering Task Force is formulating strategies for interoperation. RFC-1006 provides one interoperation mode, in which TCP/IP is used to emulate TP0 in order to support OSI applications. Hosts that wish to run OSI connection-oriented applications in this mode should use the procedure described in RFC- 1006. In the future, the IAB expects that a major portion of the Internet will support both TCP/IP and OSI (inter-)network protocols in parallel, and it will then be possible to run OSI applications across the Internet using full OSI protocol "stacks".


Page 22

6.3. Network-Specific Standard Protocols

All Network-Specific Standards have Elective status.

Protocol Name State RFC STD *
======== ===================================== ===== ===== === =
IP-ATM Classical IP and ARP over ATM Prop 1577
IP-FR Multiprotocol over Frame Relay Draft 1490
ATM-ENCAP Multiprotocol Encapsulation over ATM Prop 1483
IP-TR-MC IP Multicast over Token-Ring LANs Prop 1469
IP-FDDI Transmission of IP and ARP over FDDI Net Std 1390 36
IP-HIPPI IP and ARP on HIPPI Prop 1374
IP-X.25 X.25 and ISDN in the Packet Mode Draft 1356
IP-FDDI Internet Protocol on FDDI Networks Draft 1188
ARP Address Resolution Protocol Std 826 37
RARP A Reverse Address Resolution Protocol Std 903 38
IP-ARPA Internet Protocol on ARPANET Std BBN1822 39
IP-WB Internet Protocol on Wideband Network Std 907 40
IP-E Internet Protocol on Ethernet Networks Std 894 41
IP-EE Internet Protocol on Exp. Ethernet Nets Std 895 42
IP-IEEE Internet Protocol on IEEE 802 Std 1042 43
IP-DC Internet Protocol on DC Networks Std 891 44
IP-HC Internet Protocol on Hyperchannel Std 1044 45
IP-ARC Transmitting IP Traffic over ARCNET Nets Std 1201 46
IP-SLIP Transmission of IP over Serial Lines Std 1055 47
IP-NETBIOS Transmission of IP over NETBIOS Std 1088 48
IP-IPX Transmission of 802.2 over IPX Networks Std 1132 49

[Note: an asterisk at the end of a line indicates a change from the
previous edition of this document.]

Applicability Statements:

It is expected that a system will support one or more physical networks and for each physical network supported the appropriate protocols from the above list must be supported. That is, it is elective to support any particular type of physical network, and for the physical networks actually supported it is required that they be supported exactly according to the protocols in the above list. See also the Host and Gateway Requirements RFCs for more specific information on network-specific ("link layer") protocols.


Page 23

6.4. Draft Standard Protocols

Protocol Name Status RFC
======== ===================================== ============== =====
COEX-MIB Coexistence between SNMPV1 & SNMPV2 Elective 1908*
SNMPv2-MIB MIB for SNMPv2 Elective 1907*
TRANS-MIB Transport Mappings for SNMPv2 Elective 1906*
OPS-MIB Protocol Operations for SNMPv2 Elective 1905*
CONF-MIB Conformance Statements for SNMPv2 Elective 1904*
CONV-MIB Textual Conventions for SNMPv2 Elective 1903*
SMIV2 SMI for SNMPv2 Elective 1902*
CON-MD5 Content-MD5 Header Field Elective 1864
OSPF-MIB OSPF Version 2 MIB Elective 1850
STR-REP String Representation ... Elective 1779
X.500syn X.500 String Representation ... Elective 1778
X.500lite X.500 Lightweight ... Elective 1777
BGP-4-APP Application of BGP-4 Elective 1772
BGP-4 Border Gateway Protocol 4 Elective 1771
PPP-DNCP PPP DECnet Phase IV Control Protocol Elective 1762
RMON-MIB Remote Network Monitoring MIB Elective 1757
802.5-MIB IEEE 802.5 Token Ring MIB Elective 1748
BGP-4-MIB BGP-4 MIB Elective 1657
POP3 Post Office Protocol, Version 3 Elective 1725
RIP2-MIB RIP Version 2 MIB Extension Elective 1724
RIP2 RIP Version 2-Carrying Additional Info. Elective 1723
RIP2-APP RIP Version 2 Protocol App. Statement Elective 1722
SIP-MIB SIP Interface Type MIB Elective 1694
------- Def Man Objs Parallel-printer-like Elective 1660
------- Def Man Objs RS-232-like Elective 1659
------- Def Man Objs Character Stream Elective 1658
SMTP-8BIT SMTP Service Ext or 8bit-MIMEtransport Elective 1652
OSI-NSAP Guidelines for OSI NSAP Allocation Elective 1629
OSPF2 Open Shortest Path First Routing V2 Elective 1583
ISO-TS-ECHO Echo for ISO-8473 Elective 1575
DECNET-MIB DECNET MIB Elective 1559
------- Message Header Ext. of Non-ASCII Text Elective 1522
MIME Multipurpose Internet Mail Extensions Elective 1521
802.3-MIB IEEE 802.3 Repeater MIB Elective 1516
BRIDGE-MIB BRIDGE-MIB Elective 1493
NTPV3 Network Time Protocol (Version 3) Elective 1305
IP-MTU Path MTU Discovery Elective 1191
FINGER Finger Protocol Elective 1288
BOOTP Bootstrap Protocol Recommended 951,1497
NICNAME WhoIs Protocol Elective 954

[Note: an asterisk at the end of a line indicates a change from the
previous edition of this document.]


Page 24

Applicability Statements:

PPP -- Point to Point Protocol is a method of sending IP over serial lines, which are a type of physical network. It is anticipated that PPP will be advanced to the network-specifics standard protocol state in the future.

6.5. Proposed Standard Protocols

Protocol Name Status RFC
======== ===================================== ============== =====
WHOIS++M How to Interact with a Whois++ Mesh Elective 1914*
WHOIS++A Architecture of Whois++ Index Service Elective 1913*
DSN Delivery Status Notifications Elective 1894*
EMS-CODE Enhanced Mail System Status Codes Elective 1893*
MIME-RPT Multipart/Report Elective 1892*
SMTP-DSN SMTP Delivery Status Notifications Elective 1891*
RTP-AV RTP Audio/Video Profile Elective 1890*
RTP Transport Protocol for Real-Time Apps Elective 1889*
DNS-IPV6 DNS Extensions to support IPv6 Elective 1886*
ICMPv6 ICMPv6 for IPv6 Elective 1885*
IPV6-Addr IPv6 Addressing Architecture Elective 1884*
IPV6 IPv6 Specification Elective 1883*
HTML Hypertext Markup Language - 2.0 Elective 1866
SMTP-Pipe SMTP Serv. Ext. for Command Pipelining Elective 1854
MIME-Sec MIME Object Security Services Elective 1848
MIME-Encyp MIME: Signed and Encrypted Elective 1847
WHOIS++ Architecture of the WHOIS++ service Elective 1835
-------- Binding Protocols for ONC RPC Version 2 Elective 1833
XDR External Data Representation Standard Elective 1832
RPC Remote Procedure Call Protocol V. 2 Elective 1831
-------- ESP DES-CBC Transform Ele/Req 1829
-------- IP Authentication using Keyed MD5 Ele/Req 1828
ESP IP Encapsulating Security Payload Ele/Req 1827
IPV6-AH IP Authentication Header Ele/Req 1826
-------- Security Architecture for IP Ele/Req 1825
RREQ Requirements for IP Version 4 Routers Elective 1812
URL Relative Uniform Resource Locators Elective 1808
CLDAP Connection-less LDAP Elective 1798
OSPF-DC Ext. OSPF to Support Demand Circuits Elective 1793
TMUX Transport Multiplexing Protocol Elective 1692
TFTP-Opt TFTP Options Elective 1784
TFTP-Blk TFTP Blocksize Option Elective 1783
TFTP-Ext TFTP Option Extension Elective 1782
OSI-Dir OSI User Friendly Naming ... Elective 1781
MIME-EDI MIME Encapsulation of EDI Objects Elective 1767
Lang-Tag Tags for Identification of Languages Elective 1766
XNSCP PPP XNS IDP Control Protocol Elective 1764


Page 25

BVCP PPP Banyan Vines Control Protocol Elective 1763
Print-MIB Printer MIB Elective 1759
ATM-SIG ATM Signaling Support for IP over ATM Elective 1755
IPNG Recommendation for IP Next Generation Elective 1752
802.5-SSR 802.5 SSR MIB using SMIv2 Elective 1749
SDLCSMIv2 SNADLC SDLC MIB using SMIv2 Elective 1747
BGP4/IDRP BGP4/IDRP for IP/OSPF Interaction Elective 1745
AT-MIB Appletalk MIB Elective 1742
MacMIME MIME Encapsulation of Macintosh files Elective 1740
URL Uniform Resource Locators Elective 1738
POP3-AUTH POP3 AUTHentication command Elective 1734
IMAP4-AUTH IMAP4 Authentication Mechanisms Elective 1731
IMAP4 Internet Message Access Protocol V4 Elective 1730
PPP-MP PPP Multilink Protocol Elective 1717
RDBMS-MIB RDMS MIB - using SMIv2 Elective 1697
MODEM-MIB Modem MIB - using SMIv2 Elective 1696
ATM-MIB ATM Management Version 8.0 using SMIv2 Elective 1695
SNANAU-MIB SNA NAUs MIB using SMIv2 Elective 1665
PPP-TRANS PPP Reliable Transmission Elective 1663
BGP-4-IMP BGP-4 Roadmap and Implementation Elective 1656
-------- Postmaster Convention X.400 Operations Elective 1648
TN3270-En TN3270 Enhancements Elective 1647
PPP-BCP PPP Bridging Control Protocol Elective 1638
UPS-MIB UPS Management Information Base Elective 1628
AAL5-MTU Default IP MTU for use over ATM AAL5 Elective 1626
PPP-SONET PPP over SONET/SDH Elective 1619
PPP-ISDN PPP over ISDN Elective 1618
DNS-R-MIB DNS Resolver MIB Extensions Elective 1612
DNS-S-MIB DNS Server MIB Extensions Elective 1611
FR-MIB Frame Relay Service MIB Elective 1604
PPP-X25 PPP in X.25 Elective 1598
OSPF-NSSA The OSPF NSSA Option Elective 1587
OSPF-Multi Multicast Extensions to OSPF Elective 1584
SONET-MIB MIB SONET/SDH Interface Type Elective 1595
RIP-DC Extensions to RIP to Support Demand Cir. Elective 1582
-------- Evolution of the Interfaces Group of MIB-II Elective 1573
PPP-LCP PPP LCP Extensions Elective 1570
X500-MIB X.500 Directory Monitoring MIB Elective 1567
MAIL-MIB Mail Monitoring MIB Elective 1566
NSM-MIB Network Services Monitoring MIB Elective 1565
CIPX Compressing IPX Headers Over WAM Media Elective 1553
IPXCP PPP Internetworking Packet Exchange Control Elective 1552
DHCP-BOOTP Interoperation Between DHCP and BOOTP Elective 1534
DHCP-BOOTP DHCP Options and BOOTP Vendor Extensions Elective 1533
BOOTP Clarifications and Extensions BOOTP Elective 1532
DHCP Dynamic Host Configuration Protocol Elective 1541
SRB-MIB Source Routing Bridge MIB Elective 1525
CIDR-STRA CIDR Address Assignment... Elective 1519


Page 26

CIDR-ARCH CIDR Architecture... Elective 1518
CIDR-APP CIDR Applicability Statement Elective 1517
-------- 802.3 MAU MIB Elective 1515
HOST-MIB Host Resources MIB Elective 1514
-------- Token Ring Extensions to RMON MIB Elective 1513
FDDI-MIB FDDI Management Information Base Elective 1512
KERBEROS Kerberos Network Authentication Ser (V5) Elective 1510
GSSAPI Generic Security Service API: C-bindings Elective 1509
GSSAPI Generic Security Service Application... Elective 1508
DASS Distributed Authentication Security... Elective 1507
-------- X.400 Use of Extended Character Sets Elective 1502
HARPOON Rules for Downgrading Messages... Elective 1496
Mapping MHS/RFC-822 Message Body Mapping Elective 1495
Equiv X.400/MIME Body Equivalences Elective 1494
IDPR Inter-Domain Policy Routing Protocol Elective 1479
IDPR-ARCH Architecture for IDPR Elective 1478
PPP/Bridge MIB Bridge PPP MIB Elective 1474
PPP/IP MIB IP Network Control Protocol of PPP MIB Elective 1473
PPP/SEC MIB Security Protocols of PPP MIB Elective 1472
PPP/LCP MIB Link Control Protocol of PPP MIB Elective 1471
X25-MIB Multiprotocol Interconnect on X.25 MIB Elective 1461
SNMPv2 Coexistence between SNMPv1 and SNMPv2 Elective 1452
SNMPv2 Management Information Base for SNMPv2 Elective 1450
SNMPv2 Transport Mappings for SNMPv2 Elective 1449
SNMPv2 Protocol Operations for SNMPv2 Elective 1448
SNMPv2 Conformance Statements for SNMPv2 Elective 1444
SNMPv2 Textual Conventions for SNMPv2 Elective 1443
SNMPv2 SMI for SNMPv2 Elective 1442
SNMPv2 Introduction to SNMPv2 Elective 1441
PEM-KEY PEM - Key Certification Elective 1424
PEM-ALG PEM - Algorithms, Modes, and Identifiers Elective 1423
PEM-CKM PEM - Certificate-Based Key Management Elective 1422
PEM-ENC PEM - Message Encryption and Auth Elective 1421
SNMP-IPX SNMP over IPX Elective 1420
SNMP-AT SNMP over AppleTalk Elective 1419
SNMP-OSI SNMP over OSI Elective 1418
FTP-FTAM FTP-FTAM Gateway Specification Elective 1415
IDENT-MIB Identification MIB Elective 1414
IDENT Identification Protocol Elective 1413
DS3/E3-MIB DS3/E3 Interface Type Elective 1407
DS1/E1-MIB DS1/E1 Interface Type Elective 1406
BGP-OSPF BGP OSPF Interaction Elective 1403
-------- Route Advertisement In BGP2 And BGP3 Elective 1397
SNMP-X.25 SNMP MIB Extension for X.25 Packet Layer Elective 1382
SNMP-LAPB SNMP MIB Extension for X.25 LAPB Elective 1381
PPP-ATCP PPP AppleTalk Control Protocol Elective 1378
PPP-OSINLCP PPP OSI Network Layer Control Protocol Elective 1377
TABLE-MIB IP Forwarding Table MIB Elective 1354


Page 27

SNMP-PARTY-MIB Administration of SNMP Elective 1353
SNMP-SEC SNMP Security Protocols Elective 1352
SNMP-ADMIN SNMP Administrative Model Elective 1351
TOS Type of Service in the Internet Elective 1349
PPP-AUTH PPP Authentication Elective 1334
PPP-LINK PPP Link Quality Monitoring Elective 1333
PPP-IPCP PPP Control Protocol Elective 1332
------- X.400 1988 to 1984 downgrading Elective 1328
------- Mapping between X.400(1988) Elective 1327
TCP-EXT TCP Extensions for High Performance Elective 1323
FRAME-MIB Management Information Base for Frame Elective 1315
NETFAX File Format for the Exchange of Images Elective 1314
IARP Inverse Address Resolution Protocol Elective 1293
FDDI-MIB FDDI-MIB Elective 1285
------- Encoding Network Addresses Elective 1277
------- Replication and Distributed Operations Elective 1276
------- COSINE and Internet X.500 Schema Elective 1274
BGP-MIB Border Gateway Protocol MIB (Version 3) Elective 1269
ICMP-ROUT ICMP Router Discovery Messages Elective 1256
IPSO DoD Security Options for IP Elective 1108
OSI-UDP OSI TS on UDP Elective 1240
STD-MIBs Reassignment of Exp MIBs to Std MIBs Elective 1239
IPX-IP Tunneling IPX Traffic through IP Nets Elective 1234
GINT-MIB Extensions to the Generic-Interface MIB Elective 1229
IS-IS OSI IS-IS for TCP/IP Dual Environments Elective 1195
IP-CMPRS Compressing TCP/IP Headers Elective 1144
NNTP Network News Transfer Protocol Elective 977

[Note: an asterisk at the end of a line indicates a change from the
previous edition of this document.]

[Note: Ele/Req indicates elective for use with IPv4 and required for use
with IPv6.]

Applicability Statements:

OSPF - RFC 1370 is an applicability statement for OSPF.


Page 28

6.6. Telnet Options

For convenience, all the Telnet Options are collected here with both
their state and status.

Protocol Name Number State Status RFC STD
======== ===================================== ===== ====== ==== ===
TOPT-BIN Binary Transmission 0 Std Rec 856 27
TOPT-ECHO Echo 1 Std Rec 857 28
TOPT-RECN Reconnection 2 Prop Ele ...
TOPT-SUPP Suppress Go Ahead 3 Std Rec 858 29
TOPT-APRX Approx Message Size Negotiation 4 Prop Ele ...
TOPT-STAT Status 5 Std Rec 859 30
TOPT-TIM Timing Mark 6 Std Rec 860 31
TOPT-REM Remote Controlled Trans and Echo 7 Prop Ele 726
TOPT-OLW Output Line Width 8 Prop Ele ...
TOPT-OPS Output Page Size 9 Prop Ele ...
TOPT-OCRD Output Carriage-Return Disposition 10 Prop Ele 652
TOPT-OHT Output Horizontal Tabstops 11 Prop Ele 653
TOPT-OHTD Output Horizontal Tab Disposition 12 Prop Ele 654
TOPT-OFD Output Formfeed Disposition 13 Prop Ele 655
TOPT-OVT Output Vertical Tabstops 14 Prop Ele 656
TOPT-OVTD Output Vertical Tab Disposition 15 Prop Ele 657
TOPT-OLD Output Linefeed Disposition 16 Prop Ele 658
TOPT-EXT Extended ASCII 17 Prop Ele 698
TOPT-LOGO Logout 18 Prop Ele 727
TOPT-BYTE Byte Macro 19 Prop Ele 735
TOPT-DATA Data Entry Terminal 20 Prop Ele 1043
TOPT-SUP SUPDUP 21 Prop Ele 736
TOPT-SUPO SUPDUP Output 22 Prop Ele 749
TOPT-SNDL Send Location 23 Prop Ele 779
TOPT-TERM Terminal Type 24 Prop Ele 1091
TOPT-EOR End of Record 25 Prop Ele 885
TOPT-TACACS TACACS User Identification 26 Prop Ele 927
TOPT-OM Output Marking 27 Prop Ele 933
TOPT-TLN Terminal Location Number 28 Prop Ele 946
TOPT-3270 Telnet 3270 Regime 29 Prop Ele 1041
TOPT-X.3 X.3 PAD 30 Prop Ele 1053
TOPT-NAWS Negotiate About Window Size 31 Prop Ele 1073
TOPT-TS Terminal Speed 32 Prop Ele 1079
TOPT-RFC Remote Flow Control 33 Prop Ele 1372
TOPT-LINE Linemode 34 Draft Ele 1184
TOPT-XDL X Display Location 35 Prop Ele 1096
TOPT-ENVIR Telnet Environment Option 36 Hist Not 1408
TOPT-AUTH Telnet Authentication Option 37 Exp Ele 1416
TOPT-ENVIR Telnet Environment Option 39 Prop Ele 1572
TOPT-EXTOP Extended-Options-List 255 Std Rec 861 32


Page 29

[Note: an asterisk at the end of a line indicates a change from the
previous edition of this document.]

6.7. Experimental Protocols

All Experimental protocols have the Limited Use status.

Protocol Name RFC
======== ===================================== =====
MIME-VP Voice Profile for Internet Mail 1911*
SNMPV2SM User-based Security Model for SNMPv2 1910*
SNMPV2AI SNMPv2 Administrative Infrastructure 1909*
SNMPV2CB Introduction to Community-based SNMPv2 1901*
------- IPv6 Testing Address Allocation 1897*
DNS-LOC Location Information in the DNS 1876*
SGML-MT SGML Media Types 1874*
CONT-MT Access Type Content-ID 1873*
RELAT-MT Multipart/Related 1872*
UNARP ARP Extension - UNARP 1868
------- Form-based File Upload in HTML 1867
------- BGP/IDRP Route Server Alternative 1863
------- IP Authentication using Keyed SHA 1852
ESP3DES ESP Triple DES Transform 1851
------- SMTP 521 Reply Code 1846
------- SMTP Serv. Ext. for Checkpoint/Restart 1845
------- X.500 Mapping X.400 and RFC 822 Addresses 1838
------- Tables and Subtrees in the X.500 Directory 1837
------- O/R Address hierarchy in X.500 1836
------- SMTP Serv. Ext. Large and Binary MIME Msgs. 1830
ST2 Stream Protocol Version 2 1819
------- Content-Disposition Header 1806
------- Schema Publishing in X.500 Directory 1804
------- X.400-MHS use X.500 to support X.400-MHS Routing 1801
------- Class A Subnet Experiment 1797
TCP/IPXMIB TCP/IPX Connection Mib Specification 1792
------- TCP And UDP Over IPX Networks With Fixed Path MTU 1791
ICMP-DM ICMP Domain Name Messages 1788
CLNP-MULT Host Group Extensions for CLNP Multicasting 1768
OSPF-OVFL OSPF Database Overflow 1765
RWP Remote Write ProtocolL - Version 1.0 1756
NARP NBMA Address Resolution Protocol 1735
DNS-DEBUG Tools for DNS debugging 1713
DNS-ENCODE DNS Encoding of Geographical Location 1712
TCP-POS An Extension to TCP: Partial Order Service 1693
------- DNS to Distribute RFC1327 Mail Address Mapping Tables 1664
T/TCP TCP Extensions for Transactions 1644
UTF-7 A Mail-Safe Transformation Format of Unicode 1642
MIME-UNI Using Unicode with MIME 1641


Page 30

FOOBAR FTP Operation Over Big Address Records 1639
X500-CHART Charting Networks in the X.500 Directory 1609
X500-DIR Representing IP Information in the X.500 Directory 1608
SNMP-DPI SNMP Distributed Protocol Interface 1592
CLNP-TUBA Use of ISO CLNP in TUBA Environments 1561
REM-PRINT TPC.INT Subdomain Remote Printing - Technical 1528
EHF-MAIL Encoding Header Field for Internet Messages 1505
REM-PRT An Experiment in Remote Printing 1486
RAP Internet Route Access Protocol 1476
TP/IX TP/IX: The Next Internet 1475
X400 Routing Coordination for X.400 Services 1465
DNS Storing Arbitrary Attributes in DNS 1464
IRCP Internet Relay Chat Protocol 1459
TOS-LS Link Security TOS 1455
SIFT/UFT Sender-Initiated/Unsolicited File Transfer 1440
DIR-ARP Directed ARP 1433
TEL-SPX Telnet Authentication: SPX 1412
TEL-KER Telnet Authentication: Kerberos V4 1411
MAP-MAIL X.400 Mapping and Mail-11 1405
TRACE-IP Traceroute Using an IP Option 1393
DNS-IP Experiment in DNS Based IP Routing 1383
RMCP Remote Mail Checking Protocol 1339
TCP-HIPER TCP Extensions for High Performance 1323
MSP2 Message Send Protocol 2 1312
DSLCP Dynamically Switched Link Control 1307
-------- X.500 and Domains 1279
IN-ENCAP Internet Encapsulation Protocol 1241
CLNS-MIB CLNS-MIB 1238
CFDP Coherent File Distribution Protocol 1235
SNMP-DPI SNMP Distributed Program Interface 1228
IP-AX.25 IP Encapsulation of AX.25 Frames 1226
ALERTS Managing Asynchronously Generated Alerts 1224
MPP Message Posting Protocol 1204
SNMP-BULK Bulk Table Retrieval with the SNMP 1187
DNS-RR New DNS RR Definitions 1183
IMAP2 Interactive Mail Access Protocol 1176
NTP-OSI NTP over OSI Remote Operations 1165
DMF-MAIL Digest Message Format for Mail 1153
RDP Reliable Data Protocol 908,1151
TCP-ACO TCP Alternate Checksum Option 1146
IP-DVMRP IP Distance Vector Multicast Routing 1075
VMTP Versatile Message Transaction Protocol 1045
COOKIE-JAR Authentication Scheme 1004
NETBLT Bulk Data Transfer Protocol 998
IRTP Internet Reliable Transaction Protocol 938
LDP Loader Debugger Protocol 909
RLP Resource Location Protocol 887
NVP-II Network Voice Protocol ISI-memo


Page 31

PVP Packet Video Protocol ISI-memo

[Note: an asterisk at the end of a line indicates a change from the
previous edition of this document.]


Page 32

6.8. Informational Protocols

Information protocols have no status.

Protocol Name RFC
======= ==================================== =====
CYBERCASH CyberCash Credit Card Protocol Version 0.8 1898*
-------- text/enriched MIME Content-type 1896*
-------- Application/CALS-1840 Content-type 1895*
-------- PPP IPCP Extensions for Name Server Addresses 1877*
SNPP Simple Network Paging Protocol - Version 2 1861
-------- ISO Transport Class 2 Non-use Explicit Flow Control 1859
over TCP RFC1006 extension
-------- IP in IP Tunneling 1853
-------- PPP Network Control Protocol for LAN Extension 1841
TESS The Exponential Security System 1824
NFSV3 NFS Version 3 Protocol Specification 1813
-------- A Format for Bibliographic Records 1807
SDMD IPv4 Option for Sender Directed MD Delivery 1770
SNTP Simple Network Time Protocol 1769
SNOOP Snoop Version 2 Packet Capture File Format 1761
BINHEX MIME Content Type for BinHex Encoded Files 1741
RWHOIS Referral Whois Protocol 1714
DNS-NSAP DNS NSAP Resource Records 1706
RADIO-PAGE TPC.INT Subdomain: Radio Paging -- Technical Procedures 1703
GRE-IPv4 Generic Routing Encapsulation over IPv4 1702
GRE Generic Routing Encapsulatio 1701
IPXWAN Novell IPX Over Various WAN Media 1634
ADSNA-IP Advanced SNA/IP: A Simple SNA Transport Protocol 1538
AUBR Appletalk Update-Based Routing Protocol... 1504
TACACS Terminal Access Control Protocol 1492
SUN-NFS Network File System Protocol 1094
SUN-RPC Remote Procedure Call Protocol Version 2 1057
GOPHER The Internet Gopher Protocol 1436
------- Data Link Switching: Switch-to-Switch Protocol 1434
LISTSERV Listserv Distribute Protocol 1429
------- Replication Requirements 1275
PCMAIL Pcmail Transport Protocol 1056
MTP Multicast Transport Protocol 1301
BSD Login BSD Login 1282
DIXIE DIXIE Protocol Specification 1249
IP-X.121 IP to X.121 Address Mapping for DDN 1236
OSI-HYPER OSI and LLC1 on HYPERchannel 1223
HAP2 Host Access Protocol 1221
SUBNETASGN On the Assignment of Subnet Numbers 1219
SNMP-TRAPS Defining Traps for use with SNMP 1215
DAS Directory Assistance Service 1202
MD4 MD4 Message Digest Algorithm 1186


Page 33

LPDP Line Printer Daemon Protocol 1179

[Note: an asterisk at the end of a line indicates a change from the
previous edition of this document.]

6.9. Historic Protocols

All Historic protocols have Not Recommended status.

Protocol Name RFC STD
======== ===================================== ===== ===

SNMPv2 Manager-to-Manager MIB Elective 1451 *
SNMPv2 Party MIB for SNMPv2 Elective 1447 *
SNMPv2 Security Protocols for SNMPv2 Elective 1446 *
SNMPv2 Administrative Model for SNMPv2 Elective 1445 *
RIP Routing Information Protocol Ele 1058 34 *
-------- Mapping full 822 to Restricted 822 1137
BGP3 Border Gateway Protocol 3 (BGP-3) 1267,1268
-------- Gateway Requirements Req 1009 4
EGP Exterior Gateway Protocol Rec 904 18
SNMP-MUX SNMP MUX Protocol and MIB 1227
OIM-MIB-II OSI Internet Management: MIB-II 1214
IMAP3 Interactive Mail Access Protocol Version 3 1203
SUN-RPC Remote Procedure Call Protocol Version 1 1050
802.4-MIP IEEE 802.4 Token Bus MIB 1230
CMOT Common Management Information Services 1189
-------- Mail Privacy: Procedures 1113
-------- Mail Privacy: Key Management 1114
-------- Mail Privacy: Algorithms 1115
NFILE A File Access Protocol 1037
HOSTNAME HOSTNAME Protocol 953
SFTP Simple File Transfer Protocol 913
SUPDUP SUPDUP Protocol 734
BGP Border Gateway Protocol 1163,1164
MIB-I MIB-I 1156
SGMP Simple Gateway Monitoring Protocol 1028
HEMS High Level Entity Management Protocol 1021
STATSRV Statistics Server 996
POP2 Post Office Protocol, Version 2 937
RATP Reliable Asynchronous Transfer Protocol 916
HFEP Host - Front End Protocol 929
THINWIRE Thinwire Protocol 914
HMP Host Monitoring Protocol 869
GGP Gateway Gateway Protocol 823
RTELNET Remote Telnet Service 818
CLOCK DCNET Time Server Protocol 778
MPM Internet Message Protocol 759


Page 34

NETRJS Remote Job Service 740
NETED Network Standard Text Editor 569
RJE Remote Job Entry 407
XNET Cross Net Debugger IEN-158
NAMESERVER Host Name Server Protocol IEN-116
MUX Multiplexing Protocol IEN-90
GRAPHICS Graphics Protocol NIC-24308

[Note: an asterisk at the end of a line indicates a change from the
previous edition of this document.]


Page 35

6.10. Obsolete Protocols

Some of the protocols listed in this memo are described in RFCs that are
obsoleted by newer RFCs. "Obsolete" or "obsoleted" is not an official
state or status of protocols. This subsection is for information only.

While it may seem to be obviously wrong to have an obsoleted RFC in the
list of standards, there may be cases when an older standard is in the
process of being replaced. This process may take a year or two.

Many obsoleted protocols are of little interest and are dropped from
this memo altogether. Some obsoleted protocols have received enough
recognition that it seems appropriate to list them under their current
status and with the following reference to their current replacement.

RFC RFC Status Title *
==== ==== ========= =================================== =
1305 obsoletes 1119 Stan/Rec Network Time Protocol version 2
1390 obsoletes 1188 Draf/Elec Transmission of IP and ARP over FDDI*
1533 obsoletes 1497 Draf/Rec BOOTP Vendor Information Extensions
1542 obsoletes 1532 Prop/Elec Extensions for Bootstrap Protocol *
1573 obsoletes 1229 Prop/Elec Ext. to the Generic-Interface MIB
1773 obsoletes 1656 Prop/Elec BGP-4 Protocol Document *
1902 obsoletes 1442 Prop/Elec SMI for SNMPv2 *
1903 obsoletes 1443 Prop/Elec Textual Conventions for SNMPv2 *
1904 obsoletes 1444 Prop/Elec Conformance Statements for SNMPv2 *
1905 obsoletes 1448 Prop/Elec Protocol Operations for SNMPv2 *
1906 obsoletes 1449 Prop/Elec Transport Mappings for SNMPv2 *
1907 obsoletes 1450 Prop/Elec MIB for SNMPv2 *
1908 obsoletes 1452 Prop/Elec Coexistence between SNMPv1 & SNMPv2 *
1320 obsoletes 1186 Info/ The MD4 Message Digest Algorithm
1529 obsoletes 1486 Expe/Limi An Experiment in Remote Printing *
1592 obsoletes 1228 Expe/Limi SNMP Distributed Protocol Interface *
1057 obsoletes 1050 Hist/Not RPC: Remote Procedure Call Protocol
1158 obsoletes 1156 Hist/Not Management Information Base - I *
1267 obsoletes 1163 Hist/Not A Border Gateway Protocol (BGP)
1268 obsoletes 1164 Hist/Not Border Gateway Protocol 3 (BGP-3)
1421 obsoletes 1113 Hist/Not PEM - Part I
1422 obsoletes 1114 Hist/Not PEM - Part II
1423 obsoletes 1115 Hist/Not PEM - Part III
1655 obsoletes 1268 Hist/Not Application of the BGP *
1716 obsoletes 1009 Hist/Not Towards Requirements for IP Routers *

Thanks to Lynn Wheeler for compiling the information in this subsection.

[Note: an asterisk at the end of a line indicates a change from the
previous edition of this document.]


Page 36

7. Contacts

7.1. IAB, IETF, and IRTF Contacts

7.1.1. Internet Architecture Board (IAB) Contact

Please send your comments about this list of protocols and especially about the Draft Standard Protocols to the Internet Architecture Board care of Abel Winerib, IAB Executive Director.

Contacts:

Abel Winerib
Executive Director of the IAB
Intel, JF2-64
2111 NE 25th Avenue
Hillsboro, OR 97124

1-503-696-8972

AWeinrib@ibeam.jf.intel.com

Brian E. Carpenter
Chair of the IAB
CERN
European Laboratory for Particle Physics
1211 Geneva 23
Switzerland

         +41 22 767-4967

brian@dxcoms.cern.ch

7.1.2. Internet Engineering Task Force (IETF) Contact

Contacts:

Fred Baker
Chair of the IETF
cisco Systems, Inc.
519 Lado Drive
Santa Barbara, CA 93111

1-805-681-0115

fred@cisco.com


Page 37

Steve Coya
IESG Secretary
Corporation for National Research Initiatives
1895 Preston White Drive, Suite 100
Reston, VA 22091

1-703-620-8990

scoya@CNRI.RESTON.VA.US

Steve Coya
Executive Director of the IETF
Corporation for National Research Initiatives
1895 Preston White Drive, Suite 100
Reston, VA 22091

1-703-620-8990

scoya@CNRI.RESTON.VA.US

7.1.3. Internet Research Task Force (IRTF) Contact

Contact:

Abel Winerib
Chair of the IRTF
Intel, JF2-64
2111 NE 25th Avenue
Hillsboro, OR 97124

1-503-696-8972

AWeinrib@ibeam.jf.intel.com


Page 38

7.2. Internet Assigned Numbers Authority Contact

Contact:

Joyce K. Reynolds
Internet Assigned Numbers Authority
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292-6695

1-310-822-1511

IANA@ISI.EDU

The protocol standards are managed by the Internet Assigned Numbers Authority.

Please refer to the document "Assigned Numbers" (RFC-1700) for further information about the status of protocol documents. There are two documents that summarize the requirements for host and gateways in the Internet, "Host Requirements" (RFC-1122 and RFC-1123) and "Requirements for IP Version 4 Routers" (RFC-1812).

How to obtain the most recent edition of this "Internet Official Protocol Standards" memo:

The file "in-notes/std/std1.txt" may be copied via FTP from the FTP.ISI.EDU computer using the FTP username "anonymous" and FTP password "guest".


Page 39

7.3. Request for Comments Editor Contact

Contact:

Jon Postel
RFC Editor
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292-6695

1-310-822-1511

RFC-Editor@ISI.EDU

Documents may be submitted via electronic mail to the RFC Editor for consideration for publication as RFC. If you are not familiar with the format or style requirements please request the "Instructions for RFC Authors". In general, the style of any recent RFC may be used as a guide.

7.4. The Network Information Center and
Requests for Comments Distribution Contact

RFC's may be obtained from DS.INTERNIC.NET via FTP, WAIS, and electronic mail. Through FTP, RFC's are stored as rfc/rfcnnnn.txt or rfc/rfcnnnn.ps where 'nnnn' is the RFC number. Login as "anonymous" and provide your e-mail address as the password. Through WAIS, you may use either your local WAIS client or telnet to DS.INTERNIC.NET and login as "wais" (no password required) to access a WAIS client. Help information and a tutorial for using WAIS are available online. The WAIS database to search is "rfcs".

Directory and Database Services also provides a mail server interface. Send a mail message to mailserv@ds.internic.net and include any of the following commands in the message body:

         document-by-name rfcnnnn      where 'nnnn' is the RFC number
                                       The text version is sent.

         file /ftp/rfc/rfcnnnn.yyy     where 'nnnn' is the RFC number.
                                       and 'yyy' is 'txt' or 'ps'.

         help                          to get information on how to use
                                       the mailserver.

The InterNIC directory and database services collection of resource listings, internet documents such as RFCs, FYIs, STDs, and Internet Drafts, and publicly accessible databases are also


Page 40

now available via Gopher. All our collections are WAIS indexed and can be searched from the Gopher menu.

To access the InterNIC Gopher Servers, please connect to "internic.net" port 70.

Contact: admin@ds.internic.net

7.5. Sources for Requests for Comments

Details on many sources of RFCs via FTP or EMAIL may be obtained by sending an EMAIL message to "rfc-info@ISI.EDU" with the message body "help: ways_to_get_rfcs". For example:

To: rfc-info@ISI.EDU
Subject: getting rfcs

help: ways_to_get_rfcs

8. Security Considerations

Security issues are not addressed in this memo.

9. Author's Address

Jon Postel
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292

Phone: 310-822-1511

   Fax:   310-823-6714

Email: Postel@ISI.EDU