Network Working Group                                  J. Case
          Request for Comments: 1443                 SNMP Research, Inc.
                                                           K. McCloghrie
                                                      Hughes LAN Systems
                                                                 M. Rose
                                            Dover Beach Consulting, Inc.
                                                           S. Waldbusser
                                              Carnegie Mellon University
                                                              April 1993

Textual Conventions

for version 2 of the

Simple Network Management Protocol (SNMPv2)

Status of this Memo

This RFC specifes an IAB standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "IAB Official Protocol Standards" for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Table of Contents

1 Introduction
1.1 A Note on Terminology
2 Definitions
3 Mapping of the TEXTUAL-CONVENTION macro
3.1 Mapping of the DISPLAY-HINT clause
3.2 Mapping of the STATUS clause
3.3 Mapping of the DESCRIPTION clause
3.4 Mapping of the REFERENCE clause
3.5 Mapping of the SYNTAX clause
4 Acknowledgements
5 References
6 Security Considerations
7 Authors' Addresses

          Case, McCloghrie, Rose & Waldbusser                   [Page 1]

1. Introduction

A network management system contains: several (potentially many) nodes, each with a processing entity, termed an agent, which has access to management instrumentation; at least one management station; and, a management protocol, used to convey management information between the agents and management stations. Operations of the protocol are carried out under an administrative framework which defines both authentication and authorization policies.

Network management stations execute management applications which monitor and control network elements. Network elements are devices such as hosts, routers, terminal servers, etc., which are monitored and controlled through access to their management information.

Management information is viewed as a collection of managed objects, residing in a virtual information store, termed the Management Information Base (MIB). Collections of related objects are defined in MIB modules. These modules are written using a subset of OSI's Abstract Syntax Notation One (ASN.1) [1], termed the Structure of Management Information (SMI) [2].

When designing a MIB module, it is often useful to new define types similar to those defined in the SMI. In comparison to a type defined in the SMI, each of these new types has a different name, a similar syntax, but a more precise semantics. These newly defined types are termed textual conventions, and are used for the convenience of humans reading the MIB module. It is the purpose of this document to define the initial set of textual conventions available to all MIB modules.

Objects defined using a textual convention are always encoded by means of the rules that define their primitive type. However, textual conventions often have special semantics associated with them. As such, an ASN.1 macro, TEXTUAL- CONVENTION, is used to concisely convey the syntax and semantics of a textual convention.

For all textual conventions defined in an information module, the name shall be unique and mnemonic, and shall not exceed 64 characters in length. All names used for the textual conventions defined in all "standard" information modules

          Case, McCloghrie, Rose & Waldbusser                   [Page 2]

shall be unique.

1.1. A Note on Terminology

For the purpose of exposition, the original Internet-standard Network Management Framework, as described in RFCs 1155, 1157, and 1212, is termed the SNMP version 1 framework (SNMPv1). The current framework is termed the SNMP version 2 framework (SNMPv2).

          Case, McCloghrie, Rose & Waldbusser                   [Page 3]

2. Definitions

          SNMPv2-TC DEFINITIONS ::= BEGIN

IMPORTS
ObjectSyntax, Integer32, TimeTicks
FROM SNMPv2-SMI;

          -- definition of textual conventions

          TEXTUAL-CONVENTION MACRO ::=
          BEGIN
              TYPE NOTATION ::=
                            DisplayPart
                            "STATUS" Status
                            "DESCRIPTION" Text
                            ReferPart
                            "SYNTAX" type(Syntax)

              VALUE NOTATION ::=
                            value(VALUE Syntax)

              DisplayPart ::=
                            "DISPLAY-HINT" Text
                          | empty

              Status ::=
                            "current"
                          | "deprecated"
                          | "obsolete"

              ReferPart ::=
                            "REFERENCE" Text
                          | empty

              -- uses the NVT ASCII character set
              Text ::= """" string """"
          END

          Case, McCloghrie, Rose & Waldbusser                   [Page 4]

          DisplayString ::= TEXTUAL-CONVENTION
              DISPLAY-HINT "255a"
              STATUS       current
              DESCRIPTION
                      "Represents textual information taken from the NVT
                      ASCII character set, as defined in pages 4, 10-11
                      of RFC 854.  Any object defined using this syntax
                      may not exceed 255 characters in length."
              SYNTAX       OCTET STRING (SIZE (0..255))

          PhysAddress ::= TEXTUAL-CONVENTION
              DISPLAY-HINT "1x:"
              STATUS       current
              DESCRIPTION
                      "Represents media- or physical-level addresses."
              SYNTAX       OCTET STRING

          MacAddress ::= TEXTUAL-CONVENTION
              DISPLAY-HINT "1x:"
              STATUS       current
              DESCRIPTION
                      "Represents an 802 MAC address represented in the
                      'canonical' order defined by IEEE 802.1a, i.e., as
                      if it were transmitted least significant bit
                      first, even though 802.5 (in contrast to other
                      802.x protocols) requires MAC addresses to be
                      transmitted most significant bit first."
              SYNTAX       OCTET STRING (SIZE (6))

          TruthValue ::= TEXTUAL-CONVENTION
              STATUS       current
              DESCRIPTION
                      "Represents a boolean value."
              SYNTAX       INTEGER { true(1), false(2) }

          Case, McCloghrie, Rose & Waldbusser                   [Page 5]

          TestAndIncr ::= TEXTUAL-CONVENTION
              STATUS       current
              DESCRIPTION
                      "Represents integer-valued information used for
                      atomic operations.  When the management protocol
                      is used to specify that an object instance having
                      this syntax is to be modified, the new value
                      supplied via the management protocol must
                      precisely match the value presently held by the
                      instance.  If not, the management protocol set
                      operation fails with an error of
                      'inconsistentValue'.  Otherwise, if the current
                      value is the maximum value of 2^31-1 (2147483647
                      decimal), then the value held by the instance is
                      wrapped to zero; otherwise, the value held by the
                      instance is incremented by one.  (Note that
                      regardless of whether the management protocol set
                      operation succeeds, the variable-binding in the
                      request and response PDUs are identical.)

The value of the ACCESS clause for objects having this syntax is either 'read-write' or 'read- create'. When an instance of a columnar object having this syntax is created, any value may be supplied via the management protocol."

              SYNTAX       INTEGER (0..2147483647)

          Case, McCloghrie, Rose & Waldbusser                   [Page 6]

          AutonomousType ::= TEXTUAL-CONVENTION
              STATUS       current
              DESCRIPTION
                      "Represents an independently extensible type
                      identification value.  It may, for example,
                      indicate a particular sub-tree with further MIB
                      definitions, or define a particular type of
                      protocol or hardware."
              SYNTAX       OBJECT IDENTIFIER

          InstancePointer ::= TEXTUAL-CONVENTION
              STATUS       current
              DESCRIPTION
                      "A pointer to a specific instance of a conceptual
                      row of a MIB table in the managed device.  By
                      convention, it is the name of the particular
                      instance of the first columnar object in the
                      conceptual row."
              SYNTAX       OBJECT IDENTIFIER

          Case, McCloghrie, Rose & Waldbusser                   [Page 7]

          RowStatus ::= TEXTUAL-CONVENTION
              STATUS       current
              DESCRIPTION
                      "The RowStatus textual convention is used to
                      manage the creation and deletion of conceptual
                      rows, and is used as the value of the SYNTAX
                      clause for the status column of a conceptual row
                      (as described in Section 7.7.1 of [2].)

The status column has six defined values:

                           - 'active', which indicates that the
                           conceptual row is available for use by the
                           managed device;

                           - 'notInService', which indicates that the
                           conceptual row exists in the agent, but is
                           unavailable for use by the managed device
                           (see NOTE below);

                           - 'notReady', which indicates that the
                           conceptual row exists in the agent, but is
                           missing information necessary in order to be
                           available for use by the managed device;

                           - 'createAndGo', which is supplied by a
                           management station wishing to create a new
                           instance of a conceptual row and to have it
                           available for use by the managed device;

                           - 'createAndWait', which is supplied by a
                           management station wishing to create a new
                           instance of a conceptual row but not to have
                           it available for use by the managed device;
                           and,

                           - 'destroy', which is supplied by a
                           management station wishing to delete all of
                           the instances associated with an existing
                           conceptual row.

Whereas five of the six values (all except 'notReady') may be specified in a management protocol set operation, only three values will be returned in response to a management protocol

          Case, McCloghrie, Rose & Waldbusser                   [Page 8]

retrieval operation: 'notReady', 'notInService' or 'active'. That is, when queried, an existing conceptual row has only three states: it is either available for use by the managed device (the status column has value 'active'); it is not available for use by the managed device, though the agent has sufficient information to make it so (the status column has value 'notInService'); or, it is not available for use by the managed device, because the agent lacks sufficient information (the status column has value 'notReady').

NOTE WELL

This textual convention may be used for a MIB table, irrespective of whether the values of that table's conceptual rows are able to be modified while it is active, or whether its conceptual rows must be taken out of service in order to be modified. That is, it is the responsibility of the DESCRIPTION clause of the status column to specify whether the status column must be 'notInService' in order for the value of some other column of the same conceptual row to be modified.

          Case, McCloghrie, Rose & Waldbusser                   [Page 9]

To summarize the effect of having a conceptual row with a status column having a SYNTAX clause value of RowStatus, consider the following state diagram:

STATE

                 +--------------+-----------+-------------+-------------
                 |      A       |     B     |      C      |      D
                 |              |status col.|status column|
                 |status column |    is     |      is     |status column
       ACTION    |does not exist|  notReady | notInService|  is active
   --------------+--------------+-----------+-------------+-------------
   set status    |noError    ->D|inconsist- |inconsistent-|inconsistent-
   column to     |       or     |   entValue|        Value|        Value
   createAndGo   |inconsistent- |           |             |
                 |         Value|           |             |
   --------------+--------------+-----------+-------------+-------------
   set status    |noError  see 1|inconsist- |inconsistent-|inconsistent-
   column to     |       or     |   entValue|        Value|        Value
   createAndWait |wrongValue    |           |             |
   --------------+--------------+-----------+-------------+-------------
   set status    |inconsistent- |inconsist- |noError      |noError
   column to     |         Value|   entValue|             |
   active        |              |           |             |
                 |              |     or    |             |
                 |              |           |             |
                 |              |see 2   ->D|          ->D|          ->D
   --------------+--------------+-----------+-------------+-------------
   set status    |inconsistent- |inconsist- |noError      |noError   ->C
   column to     |         Value|   entValue|             |
   notInService  |              |           |             |
                 |              |     or    |             |      or
                 |              |           |             |
                 |              |see 3   ->C|          ->C|wrongValue
   --------------+--------------+-----------+-------------+-------------
   set status    |noError       |noError    |noError      |noError
   column to     |              |           |             |
   destroy       |           ->A|        ->A|          ->A|          ->A
   --------------+--------------+-----------+-------------+-------------
   set any other |see 4         |noError    |noError      |noError
   column to some|              |           |             |
   value         |           ->A|      see 1|          ->C|          ->D
   --------------+--------------+-----------+-------------+-------------

          Case, McCloghrie, Rose & Waldbusser                  [Page 10]

(1) goto B or C, depending on information available to the agent.

(2) if other variable bindings included in the same PDU, provide values for all columns which are missing but required, then return noError and goto D.

(3) if other variable bindings included in the same PDU, provide values for all columns which are missing but required, then return noError and goto C.

(4) at the discretion of the agent, either noError or inconsistentValue may be returned.

NOTE: Other processing of the set request may result in a response other than noError being returned, e.g., wrongValue, noCreation, etc.

Conceptual Row Creation

There are four potential interactions when creating a conceptual row: selecting an instance- identifier which is not in use; creating the conceptual row; initializing any objects for which the agent does not supply a default; and, making the conceptual row available for use by the managed device.

Interaction 1: Selecting an Instance-Identifier

The algorithm used to select an instance- identifier varies for each conceptual row. In some cases, the instance-identifier is semantically significant, e.g., the destination address of a route, and a management station selects the instance-identifier according to the semantics.

In other cases, the instance-identifier is used solely to distinguish conceptual rows, and a management station without specific knowledge of the conceptual row might examine the instances

          Case, McCloghrie, Rose & Waldbusser                  [Page 11]

present in order to determine an unused instance- identifier. (This approach may be used, but it is often highly sub-optimal; however, it is also a questionable practice for a naive management station to attempt conceptual row creation.)

Alternately, the MIB module which defines the conceptual row might provide one or more objects which provide assistance in determining an unused instance-identifier. For example, if the conceptual row is indexed by an integer-value, then an object having an integer-valued SYNTAX clause might be defined for such a purpose, allowing a management station to issue a management protocol retrieval operation. In order to avoid unnecessary collisions between competing management stations, 'adjacent' retrievals of this object should be different.

Finally, the management station could select a pseudo-random number to use as the index. In the event that this index was already in use and an inconsistentValue was returned in response to the management protocol set operation, the management station should simply select a new pseudo-random number and retry the operation.

A MIB designer should choose between the two latter algorithms based on the size of the table (and therefore the efficiency of each algorithm). For tables in which a large number of entries are expected, it is recommended that a MIB object be defined that returns an acceptable index for creation. For tables with small numbers of entries, it is recommended that the latter pseudo-random index mechanism be used.

Interaction 2: Creating the Conceptual Row

Once an unused instance-identifier has been selected, the management station determines if it wishes to create and activate the conceptual row in one transaction or in a negotiated set of interactions.

          Case, McCloghrie, Rose & Waldbusser                  [Page 12]

Interaction 2a: Creating and Activating the Conceptual Row

The management station must first determine the column requirements, i.e., it must determine those columns for which it must or must not provide values. Depending on the complexity of the table and the management station's knowledge of the agent's capabilities, this determination can be made locally by the management station. Alternately, the management station issues a management protocol get operation to examine all columns in the conceptual row that it wishes to create. In response, for each column, there are three possible outcomes:

                           - a value is returned, indicating that some
                           other management station has already created
                           this conceptual row.  We return to
                           interaction 1.

                           - the exception 'noSuchInstance' is returned,
                           indicating that the agent implements the
                           object-type associated with this column, and
                           that this column in at least one conceptual
                           row would be accessible in the MIB view used
                           by the retrieval were it to exist. For those
                           columns to which the agent provides read-
                           create access, the 'noSuchInstance' exception
                           tells the management station that it should
                           supply a value for this column when the
                           conceptual row is to be created.

                           - the exception 'noSuchObject' is returned,
                           indicating that the agent does not implement
                           the object-type associated with this column
                           or that there is no conceptual row for which
                           this column would be accessible in the MIB
                           view used by the retrieval.  As such, the
                           management station can not issue any
                           management protocol set operations to create
                           an instance of this column.

Once the column requirements have been determined, a management protocol set operation is accordingly

          Case, McCloghrie, Rose & Waldbusser                  [Page 13]

issued. This operation also sets the new instance of the status column to 'createAndGo'.

When the agent processes the set operation, it verifies that it has sufficient information to make the conceptual row available for use by the managed device. The information available to the agent is provided by two sources: the management protocol set operation which creates the conceptual row, and, implementation-specific defaults supplied by the agent (note that an agent must provide implementation-specific defaults for at least those objects which it implements as read-only). If there is sufficient information available, then the conceptual row is created, a 'noError' response is returned, the status column is set to 'active', and no further interactions are necessary (i.e., interactions 3 and 4 are skipped). If there is insufficient information, then the conceptual row is not created, and the set operation fails with an error of
'inconsistentValue'. On this error, the management station can issue a management protocol retrieval operation to determine if this was because it failed to specify a value for a required column, or, because the selected instance of the status column already existed. In the latter case, we return to interaction 1. In the former case, the management station can re-issue the set operation with the additional information, or begin interaction 2 again using 'createAndWait' in order to negotiate creation of the conceptual row.

          Case, McCloghrie, Rose & Waldbusser                  [Page 14]

NOTE WELL

Regardless of the method used to determine the column requirements, it is possible that the management station might deem a column necessary when, in fact, the agent will not allow that particular columnar instance to be created or written. In this case, the management protocol set operation will fail with an error such as 'noCreation' or 'notWritable'. In this case, the management station decides whether it needs to be able to set a value for that particular columnar instance. If not, the management station re-issues the management protocol set operation, but without setting a value for that particular columnar instance; otherwise, the management station aborts the row creation algorithm.

Interaction 2b: Negotiating the Creation of the Conceptual Row

The management station issues a management protocol set operation which sets the desired instance of the status column to 'createAndWait'. If the agent is unwilling to process a request of this sort, the set operation fails with an error of 'wrongValue'. (As a consequence, such an agent must be prepared to accept a single management protocol set operation, i.e., interaction 2a above, containing all of the columns indicated by its column requirements.) Otherwise, the conceptual row is created, a 'noError' response is returned, and the status column is immediately set to either 'notInService' or 'notReady', depending on whether it has sufficient information to make the conceptual row available for use by the managed device. If there is sufficient information available, then the status column is set to 'notInService'; otherwise, if there is insufficient information, then the status column is set to 'notReady'. Regardless, we proceed to interaction 3.

          Case, McCloghrie, Rose & Waldbusser                  [Page 15]

Interaction 3: Initializing non-defaulted Objects

The management station must now determine the column requirements. It issues a management protocol get operation to examine all columns in the created conceptual row. In the response, for each column, there are three possible outcomes:

                           - a value is returned, indicating that the
                           agent implements the object-type associated
                           with this column and had sufficient
                           information to provide a value.  For those
                           columns to which the agent provides read-
                           create access, a value return tells the
                           management station that it may issue
                           additional management protocol set
                           operations, if it desires, in order to change
                           the value associated with this column.

                           - the exception 'noSuchInstance' is returned,
                           indicating that the agent implements the
                           object-type associated with this column, and
                           that this column in at least one conceptual
                           row would be accessible in the MIB view used
                           by the retrieval were it to exist. However,
                           the agent does not have sufficient
                           information to provide a value, and until a
                           value is provided, the conceptual row may not
                           be made available for use by the managed
                           device.  For those columns to which the agent
                           provides read-create access, the
                           'noSuchInstance' exception tells the
                           management station that it must issue
                           additional management protocol set
                           operations, in order to provide a value
                           associated with this column.

                           - the exception 'noSuchObject' is returned,
                           indicating that the agent does not implement
                           the object-type associated with this column
                           or that there is no conceptual row for which
                           this column would be accessible in the MIB
                           view used by the retrieval.  As such, the
                           management station can not issue any
                           management protocol set operations to create

          Case, McCloghrie, Rose & Waldbusser                  [Page 16]

an instance of this column.

If the value associated with the status column is 'notReady', then the management station must first deal with all 'noSuchInstance' columns, if any. Having done so, the value of the status column becomes 'notInService', and we proceed to interaction 4.

Interaction 4: Making the Conceptual Row Available

Once the management station is satisfied with the values associated with the columns of the conceptual row, it issues a management protocol set operation to set the status column to 'active'. If the agent has sufficient information to make the conceptual row available for use by the managed device, the management protocol set operation succeeds (a 'noError' response is returned). Otherwise, the management protocol set operation fails with an error of
'inconsistentValue'.

NOTE WELL

A conceptual row having a status column with value 'notInService' or 'notReady' is unavailable to the managed device. As such, it is possible for the managed device to create its own instances during the time between the management protocol set operation which sets the status column to
'createAndWait' and the management protocol set operation which sets the status column to 'active'. In this case, when the management protocol set operation is issued to set the status column to 'active', the values held in the agent supersede those used by the managed device.

If the management station is prevented from setting the status column to 'active' (e.g., due to management station or network failure) the conceptual row will be left in the 'notInService' or 'notReady' state, consuming resources

          Case, McCloghrie, Rose & Waldbusser                  [Page 17]

indefinitely. The agent must detect conceptual rows that have been in either state for an abnormally long period of time and remove them. This period of time should be long enough to allow for human response time (including 'think time') between the creation of the conceptual row and the setting of the status to 'active'. It is suggested that this period be approximately 5 minutes in length.

Conceptual Row Suspension

When a conceptual row is 'active', the management station may issue a management protocol set operation which sets the instance of the status column to 'notInService'. If the agent is unwilling to do so, the set operation fails with an error of 'wrongValue'. Otherwise, the conceptual row is taken out of service, and a 'noError' response is returned. It is the responsibility of the the DESCRIPTION clause of the status column to indicate under what circumstances the status column should be taken out of service (e.g., in order for the value of some other column of the same conceptual row to be modified).

Conceptual Row Deletion

For deletion of conceptual rows, a management protocol set operation is issued which sets the instance of the status column to 'destroy'. This request may be made regardless of the current value of the status column (e.g., it is possible to delete conceptual rows which are either 'notReady', 'notInService' or 'active'.) If the operation succeeds, then all instances associated with the conceptual row are immediately removed."

          Case, McCloghrie, Rose & Waldbusser                  [Page 18]

              SYNTAX       INTEGER {
                               -- the following two values are states:
                               -- these values may be read or written
                               active(1),
                               notInService(2),

                               -- the following value is a state:
                               -- this value may be read, but not written
                               notReady(3),

                               -- the following three values are
                               -- actions: these values may be written,
                               --   but are never read
                               createAndGo(4),
                               createAndWait(5),
                               destroy(6)
                           }

          Case, McCloghrie, Rose & Waldbusser                  [Page 19]

          TimeStamp ::= TEXTUAL-CONVENTION
              STATUS       current
              DESCRIPTION
                      "The value of MIB-II's sysUpTime object at which a
                      specific occurrence happened.  The specific
                      occurrence must be defined in the description of
                      any object defined using this type."
              SYNTAX       TimeTicks

          TimeInterval ::= TEXTUAL-CONVENTION
              STATUS       current
              DESCRIPTION
                      "A period of time, measured in units of 0.01
                      seconds."
              SYNTAX       INTEGER (0..2147483647)

          Case, McCloghrie, Rose & Waldbusser                  [Page 20]

          DateAndTime ::= TEXTUAL-CONVENTION
              DISPLAY-HINT "2d-1d-1d,1d:1d:1d.1d,1a1d:1d"
              STATUS       current
              DESCRIPTION
                      "A date-time specification.

                      field  octets  contents                  range
                      -----  ------  --------                  -----
                        1      1-2   year                      0..65536
                        2       3    month                     1..12
                        3       4    day                       1..31
                        4       5    hour                      0..23
                        5       6    minutes                   0..59
                        6       7    seconds                   0..60
                                     (use 60 for leap-second)
                        7       8    deci-seconds              0..9
                        8       9    direction from UTC        '+' / '-'
                        9      10    hours from UTC            0..11
                       10      11    minutes from UTC          0..59

For example, Tuesday May 26, 1992 at 1:30:15 PM EDT would be displayed as:

1992-5-26,13:30:15.0,-4:0

Note that if only local time is known, then timezone information (fields 8-10) is not present."

              SYNTAX       OCTET STRING (SIZE (8 | 11))

END

          Case, McCloghrie, Rose & Waldbusser                  [Page 21]

3. Mapping of the TEXTUAL-CONVENTION macro

The TEXTUAL-CONVENTION macro is used to convey the syntax and semantics associated with a textual convention. It should be noted that the expansion of the TEXTUAL-CONVENTION macro is something which conceptually happens during implementation and not during run-time.

For all descriptors appearing in an information module, the descriptor shall be unique and mnemonic, and shall not exceed 64 characters in length. Further, the hyphen is not allowed as a character in the name of any textual convention.

3.1. Mapping of the DISPLAY-HINT clause

The DISPLAY-HINT clause, which need not be present, gives a hint as to how the value of an instance of an object with the syntax defined using this textual convention might be displayed. The DISPLAY-HINT clause may only be present when the syntax has an underlying primitive type of INTEGER or OCTET STRING.

When the syntax has an underlying primitive type of INTEGER, the hint consists of a single character suggesting a display format, either: 'x' for hexadecimal, 'd' for decimal, or 'o' for octal, or 'b' for binary.

When the syntax has an underlying primitive type of OCTET STRING, the hint consists of one or more octet-format specifications. Each specification consists of five parts, with each part using and removing zero or more of the next octets from the value and producing the next zero or more characters to be displayed. The octets within the value are processed in order of significance, most significant first.

The five parts of a octet-format specification are:

(1) the (optional) repeat indicator; if present, this part is a '*', and indicates that the current octet of the value is to be used as the repeat count. The repeat count is an unsigned integer (which may be zero) which specifies how many times the remainder of this octet-format specification should be successively applied. If the repeat indicator is not present, the repeat count is one.

          Case, McCloghrie, Rose & Waldbusser                  [Page 22]

(2) the octet length: one or more decimal digits specifying the number of octets of the value to be used and formatted by this octet-specification. Note that the octet length can be zero. If less than this number of octets remain in the value, then the lesser number of octets are used.

(3) the display format, either: 'x' for hexadecimal, 'd' for decimal, 'o' for octal, or 'a' for ascii. If the octet length part is greater than one, and the display format part refers to a numeric format, then network-byte ordering (big-endian encoding) is used interpreting the octets in the value.

(4) the (optional) display separator character; if present, this part is a single character which is produced for display after each application of this octet- specification; however, this character is not produced for display if it would be immediately followed by the display of the repeat terminator character for this octet-specification. This character can be any character other than a decimal digit and a '*'.

(5) the (optional) repeat terminator character, which can be present only if the display separator character is present and this octet-specification begins with a repeat indicator; if present, this part is a single character which is produced after all the zero or more repeated applications (as given by the repeat count) of this octet-specification. This character can be any character other than a decimal digit and a '*'.

Output of a display separator character or a repeat terminator character is suppressed if it would occur as the last character of the display.

If the octets of the value are exhausted before all the octet-format specification have been used, then the excess specifications are ignored. If additional octets remain in the value after interpreting all the octet-format
specifications, then the last octet-format specification is re-interpreted to process the additional octets, until no octets remain in the value.

          Case, McCloghrie, Rose & Waldbusser                  [Page 23]

3.2. Mapping of the STATUS clause

The STATUS clause, which must be present, indicates whether this definition is current or historic.

The values "current", and "obsolete" are self-explanatory. The "deprecated" value indicates that the textual convention is obsolete, but that an implementor may wish to support that object to foster interoperability with older implementations.

3.3. Mapping of the DESCRIPTION clause

The DESCRIPTION clause, which must be present, contains a textual definition of the textual convention, which provides all semantic definitions necessary for implementation, and should embody any information which would otherwise be communicated in any ASN.1 commentary annotations associated with the object.

Note that, in order to conform to the ASN.1 syntax, the entire value of this clause must be enclosed in double quotation marks, and therefore cannot itself contain double quotation marks, although the value may be multi-line.

3.4. Mapping of the REFERENCE clause

The REFERENCE clause, which need not be present, contains a textual cross-reference to a related item defined in some other published work.

3.5. Mapping of the SYNTAX clause

The SYNTAX clause, which must be present, defines abstract data structure corresponding to the textual convention. The data structure must be one of the alternatives defined in the ObjectSyntax CHOICE [2].

Full ASN.1 sub-typing is allowed, as appropriate to the underingly ASN.1 type, primarily as an aid to implementors in understanding the meaning of the textual convention. Of course, sub-typing is not allowed for textual conventions derived from either the Counter32 or Counter64 types, but is

          Case, McCloghrie, Rose & Waldbusser                  [Page 24]

allowed for textual conventions derived from the Gauge32 type.

          Case, McCloghrie, Rose & Waldbusser                  [Page 25]

4. Acknowledgements

PhysAddress (and textual conventions) originated in RFC 1213.

MacAddress originated in RFCs 1230 and 1231.

TruthValue originated in RFC 1253.

AutonomousType and InstancePointer originated in RFC 1316.

RowStatus originated in RFC 1271.

A special thanks to Bancroft Scott of Open Systems Solutions, Inc., for helping in the definition of the TEXTUAL-CONVENTIONS macro.

Finally, the comments of the SNMP version 2 working group are gratefully acknowledged:

Beth Adams, Network Management Forum
Steve Alexander, INTERACTIVE Systems Corporation David Arneson, Cabletron Systems
Toshiya Asaba
Fred Baker, ACC
Jim Barnes, Xylogics, Inc.
Brian Bataille
Andy Bierman, SynOptics Communications, Inc.
Uri Blumenthal, IBM Corporation
Fred Bohle, Interlink
Jack Brown
Theodore Brunner, Bellcore
Stephen F. Bush, GE Information Services
Jeffrey D. Case, University of Tennessee, Knoxville John Chang, IBM Corporation
Szusin Chen, Sun Microsystems
Robert Ching
Chris Chiotasso, Ungermann-Bass
Bobby A. Clay, NASA/Boeing
John Cooke, Chipcom
Tracy Cox, Bellcore
Juan Cruz, Datability, Inc.
David Cullerot, Cabletron Systems
Cathy Cunningham, Microcom
James R. (Chuck) Davin, Bellcore
Michael Davis, Clearpoint

          Case, McCloghrie, Rose & Waldbusser                  [Page 26]

Mike Davison, FiberCom
Cynthia DellaTorre, MITRE
Taso N. Devetzis, Bellcore
Manual Diaz, DAVID Systems, Inc.
Jon Dreyer, Sun Microsystems
David Engel, Optical Data Systems
Mike Erlinger, Lexcel
Roger Fajman, NIH
Daniel Fauvarque, Sun Microsystems
Karen Frisa, CMU
Shari Galitzer, MITRE
Shawn Gallagher, Digital Equipment Corporation Richard Graveman, Bellcore
Maria Greene, Xyplex, Inc.
Michel Guittet, Apple
Robert Gutierrez, NASA
Bill Hagerty, Cabletron Systems
Gary W. Haney, Martin Marietta Energy Systems Patrick Hanil, Nokia Telecommunications
Matt Hecht, SNMP Research, Inc.
Edward A. Heiner, Jr., Synernetics Inc.
Susan E. Hicks, Martin Marietta Energy Systems Geral Holzhauer, Apple
John Hopprich, DAVID Systems, Inc.
Jeff Hughes, Hewlett-Packard
Robin Iddon, Axon Networks, Inc.
David Itusak
Kevin M. Jackson, Concord Communications, Inc. Ole J. Jacobsen, Interop Company
Ronald Jacoby, Silicon Graphics, Inc.
Satish Joshi, SynOptics Communications, Inc.
Frank Kastenholz, FTP Software
Mark Kepke, Hewlett-Packard
Ken Key, SNMP Research, Inc.
Zbiginew Kielczewski, Eicon
Jongyeoi Kim
Andrew Knutsen, The Santa Cruz Operation
Michael L. Kornegay, VisiSoft
Deirdre C. Kostik, Bellcore
Cheryl Krupczak, Georgia Tech
Mark S. Lewis, Telebit
David Lin
David Lindemulder, AT&T/NCR
Ben Lisowski, Sprint
David Liu, Bell-Northern Research

          Case, McCloghrie, Rose & Waldbusser                  [Page 27]

John Lunny, The Wollongong Group
Robert C. Lushbaugh Martin, Marietta Energy Systems Michael Luufer, BBN
Carl Madison, Star-Tek, Inc.
Keith McCloghrie, Hughes LAN Systems
Evan McGinnis, 3Com Corporation
Bill McKenzie, IBM Corporation
Donna McMaster, SynOptics Communications, Inc. John Medicke, IBM Corporation
Doug Miller, Telebit
Dave Minnich, FiberCom
Mohammad Mirhakkak, MITRE
Rohit Mital, Protools
George Mouradian, AT&T Bell Labs
Patrick Mullaney, Cabletron Systems
Dan Myers, 3Com Corporation
Rina Nathaniel, Rad Network Devices Ltd.
Hien V. Nguyen, Sprint
Mo Nikain
Tom Nisbet
William B. Norton, MERIT
Steve Onishi, Wellfleet Communications, Inc.
David T. Perkins, SynOptics Communications, Inc. Carl Powell, BBN
Ilan Raab, SynOptics Communications, Inc.
Richard Ramons, AT&T
Venkat D. Rangan, Metric Network Systems, Inc. Louise Reingold, Sprint
Sam Roberts, Farallon Computing, Inc.
Kary Robertson, Concord Communications, Inc.
Dan Romascanu, Lannet Data Communications Ltd. Marshall T. Rose, Dover Beach Consulting, Inc. Shawn A. Routhier, Epilogue Technology Corporation Chris Rozman
Asaf Rubissa, Fibronics
Jon Saperia, Digital Equipment Corporation
Michael Sapich
Mike Scanlon, Interlan
Sam Schaen, MITRE
John Seligson, Ultra Network Technologies
Paul A. Serice, Corporation for Open Systems
Chris Shaw, Banyan Systems
Timon Sloane
Robert Snyder, Cisco Systems
Joo Young Song

          Case, McCloghrie, Rose & Waldbusser                  [Page 28]

Roy Spitier, Sprint
Einar Stefferud, Network Management Associates John Stephens, Cayman Systems, Inc.
Robert L. Stewart, Xyplex, Inc. (chair)
Kaj Tesink, Bellcore
Dean Throop, Data General
Ahmet Tuncay, France Telecom-CNET
Maurice Turcotte, Racal Datacom
Warren Vik, INTERACTIVE Systems Corporation
Yannis Viniotis
Steven L. Waldbusser, Carnegie Mellon Universitty Timothy M. Walden, ACC
Alice Wang, Sun Microsystems
James Watt, Newbridge
Luanne Waul, Timeplex
Donald E. Westlake III, Digital Equipment Corporation Gerry White
Bert Wijnen, IBM Corporation
Peter Wilson, 3Com Corporation
Steven Wong, Digital Equipment Corporation
Randy Worzella, IBM Corporation
Daniel Woycke, MITRE
Honda Wu
Jeff Yarnell, Protools
Chris Young, Cabletron
Kiho Yum, 3Com Corporation

          Case, McCloghrie, Rose & Waldbusser                  [Page 29]

5. References

[1] Information processing systems - Open Systems Interconnection - Specification of Abstract Syntax Notation One (ASN.1), International Organization for Standardization. International Standard 8824, (December, 1987).

[2] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S., "Structure of Management Information for version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1442, SNMP Research, Inc., Hughes LAN Systems, Dover Beach Consulting, Inc., Carnegie Mellon University, April 1993.

          Case, McCloghrie, Rose & Waldbusser                  [Page 30]

6. Security Considerations

Security issues are not discussed in this memo.

7. Authors' Addresses

Jeffrey D. Case
SNMP Research, Inc.
3001 Kimberlin Heights Rd.
Knoxville, TN 37920-9716
US

Phone: +1 615 573 1434
Email: case@snmp.com

Keith McCloghrie
Hughes LAN Systems
1225 Charleston Road
Mountain View, CA 94043
US

Phone: +1 415 966 7934
Email: kzm@hls.com

Marshall T. Rose
Dover Beach Consulting, Inc.
420 Whisman Court
Mountain View, CA 94043-2186
US

Phone: +1 415 968 1052
Email: mrose@dbc.mtview.ca.us

Steven Waldbusser
Carnegie Mellon University
4910 Forbes Ave
Pittsburgh, PA 15213
US

Phone: +1 412 268 6628
Email: waldbusser@cmu.edu

          Case, McCloghrie, Rose & Waldbusser                  [Page 31]