
G++ for beginners
Version 0.11.2, DRAFT

D. Vermeir
Dept. of Computer Science

Free University of Brussels, VUB
dvermeir@vub.ac.be

29 September, 2008

Abstract

This document is a very short tutorial on using the GNU C++ compiler
(which is called g++).

A postscript version of this text is available in the file gpp.pdf.

1

Contents

1 Compiling and linking 3

2 Using libraries 5
2.1 Static libraries . 5

2.2 Dynamic libraries . 6

3 Using g++ 7
3.1 Compiling with g++ . 7

3.1.1 Finding #include files . 8

3.1.2 Warnings, debugging . 8

3.1.3 Optimization . 8

3.2 Linking with g++ . 9

3.2.1 Dynamic linking with g++ 9

3.2.2 Static linking with g++ 10

3.3 Creating libraries with g++ . 10

3.3.1 Creating static libraries 10

3.3.2 Creating dynamic libraries 10

3.4 Miscellaneous . 11

3.4.1 Preprocessing . 11

3.4.2 Profiling . 11

3.4.3 Generating make-dependencies 11

4 Summary of most popular options 13

Index 14

2

1 Compiling and linking

Figure 1 illustrates the relationship between the various files (indicated by oval
boxes) that are needed to construct an executable program.

Figure 1: Compiling and linking

• The source files, in the example the files hello.C and message.C, con-
tain C++ source code instructions written in the source language, in this
case C++. Such instructions can be divided into two kinds:

– definitions, which, roughly, cause the compiler to “output” something,
e.g. assembler instructions or memory reservation for variables. E.g.
the following C++ statements are definitions.

int v;
int f() { ... }

– declarations, which only inform the compiler of the existence or prop-
erties of functions, variables, types etc., without causing any (immedi-
ate) output.

3

extern int v;
int f();

Definitions should only appear in .C files. Header files such as message.h
should only contain declarations, never definitions. In the example, message.h
contains a declaration of a symbol (“message”) that is used but not de-
fined in hello.C. On the other hand, message.C contains the definition
of “message”.

• The object files, in the example the file hello.o and message.o con-
tain machine language instructions, possibly (very likely) with unresolved
references. E.g. in the example, the file hello.o refers to an external vari-
able symbol “message” that was declared but not defined in the source file
hello.C1. Any reference to the “message” symbol in hello.o is un-
resolved.

• The executable file, also called program, contains fully linked machine lan-
guage instructions where all references to function and variable symbols
have been resolved by the linker. The linker combines several object files
into one executable file and fills in all unresolved references in all these
files, using information on what is available in the other files (or in libraries,
see Section 2 below).

The various C++ source files are shown below.
1 // $Id: hello.C,v 1.2 1999/08/02 10:47:11 dvermeir Exp $
2 #include <iostream>
3 #include "message.h"
4
5 int
6 main(int argc,char *argv[]) {
7 std::cout << message << std::endl;
8 }

In hello.C, the “#include” directive on message.h ensures that “message”
is declared so that the compiler knows its type etc.

1 // $Id: message.C,v 1.2 1999/08/02 10:47:11 dvermeir Exp $
2 #include "message.h"
3
4 const std::string message("hello world");

Also message.C uses the “#include” directive on message.h. This is use-
ful because, when compiling message.C, the compiler first sees a declaration

1The declaration of “message” was actually read from the include file message.h.

4

(from message.h) and then a definition of “message” which allows it to check
the consistency of one with the other. Chaos would ensue if message.C would
not include message.h and e.g. “message” was declared as an integer in
message.h and defined as a string in message.C).

1 #ifndef MESSAGE_H
2 #define MESSAGE_H
3 // $Id: message.h,v 1.3 1999/08/07 08:54:50 dvermeir Exp $
4 #include <string>
5
6 extern const std::string message;
7 #endif

Note that the entire file message.h is conditionally included, using a preproces-
sor #ifndef...#endif directive. Together with the #define MESSAGE H
on the second line, this ensures that message.h will be included at most once
in any compilation.

2 Using libraries

Looking at hello.C, we notice that it also includes (and uses) iostream.
This file contains declarations of various standard library classes dealing with
input/output. Thus, hello.o will also contain unresolved references to e.g. out-
put functions. The linker resolves these references by consulting the standard C++
library, as shown in Figure 2.

2.1 Static libraries

In the example, the linker looked at the standard library in
/usr/lib/libstdc++.a. (by convention, files with a “.a” suffix are static
libraries). This means that the linker will copy the code (or data) corresponding
to the unresolved references from the library file, and add them to the executable
file. Simply put, the linker will extract those object files from the library (a library
can be thought of as a collection of object files) that are (recursively) needed by
the other files and add them to the resulting executable file. This process is called
static linking (with libraries).

If, after linking, we were to remove the library file /usr/lib/libstdc++.a,
the executable file hello would still work.

It is possible to create your own libraries, see Section 3.3.

5

Figure 2: Compiling and linking with a library

2.2 Dynamic libraries

Static linking has the disadvantage that it increases the size of the executable file.
E.g. almost every statically linked executable file contains its own copy of the
C++ iostream code, which may use a considerable amount of disk space. Also,
if a new version of the library is available, statically linked executable files will
need to be linked again in order to use the new version of the library.

An alternative way to link with libraries is to use so-called dynamic (also called
shared) libraries. Conventionally, dynamic library files have names ending with
“.so”, like /usr/lib/libstdc++.so. When linking with a dynamic li-
brary, the linker does not copy any objects; it just remembers which parts of
which library are needed by the executable file. Thus, dynamically linked exe-
cutable files tend to be smaller. At run time, i.e. when the program2 is actually
executed, the dynamic loader will step in and add the missing parts of the dynamic
library to the program.

To find, at run time, the appropriate library, the dynamic loader (called ld.so under
Linux) proceeds as follows:

1. First, it is possible to store a runpath in the executable file. This runpath
is a list (much like the PATH shell variable) of directories, separated by

2In this text, we use “program” as a synonym for “executable file”.

6

colons (“:”). If such a runpath exists, the dynamic loader will try to find
any needed shared libraries in each of the runpath directories.

2. If the previous step fails, the dynamic loader will try to find the libraries
in the directories mentioned in the LD LIBRARY PATH shell variable, if it
exists. Also the LD LIBRARY PATH variable contains a list of directories,
separated by colons (“:”). Note that the value of LD LIBRARY PATH is
ignored for setuid/setgid programs.

3. Under Linux, try to find the libraries in /etc/ld.so.cache which contains a
compiled list of candidate libraries. See also the ldconfig command.

4. If any libraries remain to be found, the dynamic loader will look for them
in the directories /lib and /usr/lib.

The procedure above is very flexible: e.g. if the runpath is not used, it is possi-
ble, by simply redefining LD LIBRARY PATH, to run the same program with a
different version of a shared library.
You can used the ldd command to find out which shared libraries are needed by
an executable file and where they would be found (using the current definition of
LD LIBRARY PATH).

tinf2% ldd hello
libstdc++.so.2.9.0 => /usr/lib/libstdc++.so.2.9.0
libm.so.1 => /usr/lib/libm.so.1
libc.so.1 => /usr/lib/libc.so.1
libdl.so.1 => /usr/lib/libdl.so.1

tinf2% echo $LD_LIBRARY_PATH
/usr/lib:/usr/openwin/lib:
tinf2%

3 Using g++

G++ is used both for compiling and linking3 In this section, we explain the most
common options that are useful for compiling, linking (dynamic and static) and
for producing libraries.

3.1 Compiling with g++

To produce an object file from a source file, use the -c option. E.g.
3Actually, when appropriate, g++ arranges to call the operating system’s native linker.

7

g++ -c hello.C message.C

will produce both hello.o and message.o.

3.1.1 Finding #include files

The -I option can be used to tell g++ where it may look for include files. E.g. if
the source file contains

#include <tbcc/err.h>

where the full pathname of the file to be included is /usr/local/include/tbcc/err.h,
one would use

g++ -c -I/usr/local/include hello.C

3.1.2 Warnings, debugging

It is good practice to use the -Wall option to tell g++ to warn about all suspicious
or non-standard constructs. Strangely, to warn about suspicious conversions, you
need to use, in addition, the -Wconversion option.

g++ -c -Wall -Wconversion hello.C

The -g option tells g++ to include in the object file extra debug information that is
needed by run-time debuggers such as gdb or ddd.

g++ -c -g hello.C

3.1.3 Optimization

If necessary (and only then), the -O, -O2 or -O3 options can be used to trigger
code optimization (-O3 will optimize more than -O2 which is itself “stronger”
than -O). Of course, using these options will slow down compilations.

g++ -c -O2 hello.C

8

3.2 Linking with g++

To produce an executable file from some object files, use the -o option to tell g++
the name of the resulting program. E.g.

g++ -o hello hello.o message.o

will produce the executable file “hello”.

If you need to link with libraries4, use the -L and -l options. The -L option is
followed by the directory of the library file while the -l option is followed by the
identification of the library: use “-labc” to link with the library “libabc.a”
(for static linking) or “libabc.so” (for dynamic linking).

3.2.1 Dynamic linking with g++

By default, g++ will use dynamic linking. E.g.

g++ -o hello hello.o -L/usr/local/lib -ltbcc -L/usr/local/lib/mysql

-lmysql

will produce the executable file hello, which will be dynamically linked with
libtbcc.so and libmysql.so.

Note that, since we did not specify any runpath, at run time, the dynamic loader
will attempt to find libtbcc.so and libmysql.so in a directory from the
LD LIBRARY PATH variable.

To set the runpath:

• Under Linux, use the -Wl,–rpath -Wl,dirs option5:

g++ -o hello hello.o -Wl,--rpath

-Wl,$HOME/mylib:/usr/local/lib -L/usr/local/lib -ltbcc

will ensure that, at run time, the dynamic loader will try to find libtbcc.so
in $HOME/mylib or /usr/local/lib (note that $HOME is expanded
before it is stored in the runpath).

• Under Solaris, use the -R option:
4g++ will automatically link with the C++ standard library.
5-Wl,argument passes argument to the linker, several arguments can be passed if they are

separated by comma’s as in

-Wl,rpath,/usr/local/lib

9

g++ -o hello hello.o -R$HOME/mylib:/usr/local/lib

-L/usr/local/lib -ltbcc

will ensure that, at run time, the dynamic loader will try to find libtbcc.so
in $HOME/mylib or /usr/local/lib.

3.2.2 Static linking with g++

G++ can be forced to link all libraries statically by using the -static flag in front
of the library specifications.

E.g.

g++ -o hello hello.o message.o -static -L/usr/local/lib

-ltbcc

will result in a “stand-alone” executable file.

To statically link some static libraries, just list them as you would any object file:

g++ -o hello hello.o message.o mylibs/mylib.a

mylibs/junk.a L/usr/local/lib -ltbcc

will include the needed objects from the static libraries mylibs/mylib.a and
mylibs/junk.a into the resulting executable.

3.3 Creating libraries with g++

3.3.1 Creating static libraries

To create a static library, use the ar (archive) command to collect several object
files into a library file. Don’t forget to follow the naming convention: the name of
the library should be of the form libXYZ.a where you can fill in XYZ. E.g.

ar cru libmine.a f1.o f2.o f3.o

will create a static library libmine.a.

3.3.2 Creating dynamic libraries

Dynamic libraries can only be created from object files that have been compiled
using the -fpic6 option. E.g.

6The fpic option causes g++ to create “position independent” code.

10

g++ -c -fpic f1.C f2.C f3.C

To actually create the library, it suffices to use the -o and -shared options.

g++ -shared -o libmine.so f1.o f2.o f3.o

3.4 Miscellaneous

3.4.1 Preprocessing

Use the -E option to limit g++ to the preprocessor. This will cause g++ to process
#include and #define directives and put the resulting source file on standard
output.

g++ -E message.C >message.e

3.4.2 Profiling

Use the -pg option to build an executable file that, when executed, will generate
profiling information in a file gmon.out.

g++ -pg -g -o hello hello.C message.C

Use the gprof command to display this information in a textual format.

hello
gprof -C hello >hello.profile

3.4.3 Generating make-dependencies

Using the -MM option causes g++ to (only) generate a list of dependencies for
all argument source files on standard output. This option is extremely useful in
Makefiles such as the one below. The -M option has a similar effect but generates
also dependencies on system-level include files (e.g. from /usr/include).

1 # $Id: Makefile,v 1.1 1999/12/21 13:02:17 dvermeir Exp $
2 CCFILES= hello.C message.C
3 hello: $(CCFILES:%.C=%.o)
4 g++ -o hello $ˆ
5 # Dependencies are supposed to be in a file ‘‘make.depend’’
6 # which is inclduded by make.
7 include make.depend

11

8 # Because of the following rule, ‘‘make’’ will attempt to
9 # create ‘‘make.depend’’ if it does not exist or if one

10 # of the files in $(CCFILES) is more recent than ‘‘make.depend’’
11 make.depend: $(CCFILES)
12 g++ -M $ˆ >$@

See the Section on make in “Unix for beginners” for more information on the
make program.

76 dv2$ make
Makefile:5: make.depend: No such file or directory
g++ -M hello.C message.C >make.depend
g++ -c hello.C -o hello.o
g++ -c message.C -o message.o
g++ -o hello hello.o message.o
77 dv2$

A fragment of the make.depend file generated for the example is shown below.

hello.o: hello.C /usr/local/include/g++/iostream \
/usr/local/include/g++/iostream.h /usr/local/include/g++/streambuf.h \
/usr/local/include/g++/libio.h \
/usr/local/i386-pc-solaris2.7/include/_G_config.h \
/usr/local/lib/gcc-lib/i386-pc-solaris2.7/egcs-2.91.66/include/stddef.h \
message.h /usr/local/include/g++/string \
/usr/local/include/g++/std/bastring.h /usr/local/include/g++/cstddef \

12

4 Summary of most popular options

-c compile, don’t link
-o out result of linking is out instead of a.out
-Ldir try to find libraries (now, not at run time) also

in dir
-lxyz link with library libxyz.so or libxyz.a
-static link statically
-Rdir1:dir2 (solaris) add dir1 and dir2 to runpath
-Wl,--rpath,dir1:dir2 (linux) add dir1 and dir2 to runpath
-Idir try to find #include files also in dir
-Wall generate warnings for suspicious constructs
-Wconversion generate warnings about suspicious type con-

versions
-O2 optimize generated code
-g generate debug info for use by gdb and ddd
-pg generate profiling code for use by gprof
-fpic generate position-independent code, neces-

sary when making shared libraries
-shared create shared library instead of program
-E just run c++ preprocessor, send output to std-

out
-MM generate Makefile-format list of dependen-

cies, send output to stdout

13

List of Figures

1 Compiling and linking . 3

2 Compiling and linking with a library 6

14

