
Software Engineering

D. Vermeir

September 2009

D. Vermeir,September 2009

Contents

1 Introduction
2 The Software Engineering Process
3 Project Management
4 Requirements Analysis
5 Design
6 Implementation
7 Integration and Testing

D. Vermeir,September 2009

Part I

Introduction

D. Vermeir,September 2009

Introduction

1 Software Engineering

2 Software Engineering Activities

3 Software Project Artifacts

4 Software Project Quality

D. Vermeir,September 2009

Software Engineering

Introduction

1 Software Engineering

2 Software Engineering Activities

3 Software Project Artifacts

4 Software Project Quality

D. Vermeir,September 2009

Software Engineering

DOD real time systems

Late, over budget
Not according to expectations
Contains errors
Compare with other engineering disciplines

D. Vermeir,September 2009

Software Engineering

Standish report (all software, 2001)

US spents 275 billion $ per year on software development
23% of projects are cancelled (after considerable expenditure)
without delivering anything
An average “successful” project:

I is 45% over budget
I is 63% over schedule
I delivers 67% of the originally planned features and functions.

D. Vermeir,September 2009

Software Engineering

Software Engineering

Definition of what: requirements & specifications
Preservation of semantics when specifying how: design &
implementation

D. Vermeir,September 2009

Software Engineering

Successful Projects

Name LOC Files Directories
Linux kernel 9,257,383 23,810 1,417
gcc 4.4 10,187,740 38,264 3,563
KDE 4.0 25,325,252 100,688 7,515
Gnome 2.23 4,780,168 8,278 573
X Window System 21,674,310 14,976 1,023
Eclipse 3.4 94,187,895 912,309 297,500

D. Vermeir,September 2009

Software Engineering

Software Engineering: Definitions

“The technological and managerial discipline concerned with
systematic production and maintenance of software products that
are developed and modified on time and within cost estimates.”
(Fairley 1985)
“The practical application of scientific knowledge to the design and
construction of computer programs and the associated
documentation required to develop, operate and maintain them.”
(Boehm 1976)
keywords:

I management, cost
I development and maintenance
I documentation
I according to expectation

D. Vermeir,September 2009

Software Engineering Activities

Introduction

1 Software Engineering

2 Software Engineering Activities

3 Software Project Artifacts

4 Software Project Quality

D. Vermeir,September 2009

Software Engineering Activities

Software Engineering Activities

Defining the software development process to be used.
Managing the project.
Describing the intended product.
Designing the product.
Implementing the product.
Testing the parts of the product.
Integrating and testing the parts of the product.
Maintaining the product.

D. Vermeir,September 2009

Software Engineering Activities

Thus. . . P4

People
Process
Project
Product

D. Vermeir,September 2009

Software Project Artifacts

Introduction

1 Software Engineering

2 Software Engineering Activities

3 Software Project Artifacts

4 Software Project Quality

D. Vermeir,September 2009

Software Project Artifacts

Project Artifacts

Requirements specification.
Software architecture documentation.
Design documentation.
Source code.
Test procedures, cases,

All under configuration management.

D. Vermeir,September 2009

Software Project Quality

Introduction

1 Software Engineering

2 Software Engineering Activities

3 Software Project Artifacts

4 Software Project Quality

D. Vermeir,September 2009

Software Project Quality

Quality: how to achieve

Inspections.
Formal methods.
Testing.
Project control techniques:

I Predict cost.
I Manage risks.
I Control artifacts (configuration management).

D. Vermeir,September 2009

Part II

The Software Engineering Process

D. Vermeir,September 2009

The Software Engineering Process

5 A typical roadmap

6 Perspectives on software engineering

7 Key expectations (Humphrey)

8 Process alternatives

9 Documentation and Configuration Management

10 Quality

11 Capability assessment

D. Vermeir,September 2009

A typical roadmap

The Software Engineering Process

5 A typical roadmap

6 Perspectives on software engineering

7 Key expectations (Humphrey)

8 Process alternatives

9 Documentation and Configuration Management

10 Quality

11 Capability assessment

D. Vermeir,September 2009

A typical roadmap

A typical roadmap

1. Understand nature and scope of the product
2. Select process and create plan(s).
3. Gather requirements
4. Design and build the product.
5. Test the product.
6. Deliver and maintain the product.

D. Vermeir,September 2009

A typical roadmap Understand nature and scope of the product

A typical roadmap

1. Understand nature and scope of the product
2. Select process and create plan(s).
3. Gather requirements
4. Design and build the product.
5. Test the product.
6. Deliver and maintain the product.

D. Vermeir,September 2009

A typical roadmap Select process and create plan(s).

A typical roadmap

1. Understand nature and scope of the product
2. Select process and create plan(s).
3. Gather requirements
4. Design and build the product.
5. Test the product.
6. Deliver and maintain the product.

D. Vermeir,September 2009

A typical roadmap Select process and create plan(s).

Select process and create plan(s).

Determine means to keep track of changes to documents and
code

Configuration Management

Develop overall plan for the project, including a schedule.

Software Project Management Plan

D. Vermeir,September 2009

A typical roadmap Gather requirements

A typical roadmap

1. Understand nature and scope of the product
2. Select process and create plan(s).
3. Gather requirements
4. Design and build the product.
5. Test the product.
6. Deliver and maintain the product.

D. Vermeir,September 2009

A typical roadmap Gather requirements

Gather requirements

By communicating with the stakeholders (sponsor, user, . . .).
Steps (3, gather requirements) and (4, design and build) may be
repeated, depending on the selected process.

D. Vermeir,September 2009

A typical roadmap Design and build the product.

A typical roadmap

1. Understand nature and scope of the product
2. Select process and create plan(s).
3. Gather requirements
4. Design and build the product.
5. Test the product.
6. Deliver and maintain the product.

D. Vermeir,September 2009

A typical roadmap Test the product.

A typical roadmap

1. Understand nature and scope of the product
2. Select process and create plan(s).
3. Gather requirements
4. Design and build the product.
5. Test the product.
6. Deliver and maintain the product.

D. Vermeir,September 2009

A typical roadmap Deliver and maintain the product.

A typical roadmap

1. Understand nature and scope of the product
2. Select process and create plan(s).
3. Gather requirements
4. Design and build the product.
5. Test the product.
6. Deliver and maintain the product.

D. Vermeir,September 2009

A typical roadmap Deliver and maintain the product.

Maintenance.

Consumes up to 80% of the budget.

D. Vermeir,September 2009

Perspectives on software engineering

The Software Engineering Process

5 A typical roadmap

6 Perspectives on software engineering

7 Key expectations (Humphrey)

8 Process alternatives

9 Documentation and Configuration Management

10 Quality

11 Capability assessment

D. Vermeir,September 2009

Perspectives on software engineering

Perspectives on software engineering

1. Structured programming
2. Object-oriented programming
3. Reuse and components
4. Formal methods

D. Vermeir,September 2009

Perspectives on software engineering Structured programming

Perspectives on software engineering

1. Structured programming
2. Object-oriented programming
3. Reuse and components
4. Formal methods

D. Vermeir,September 2009

Perspectives on software engineering Structured programming

Structured programming

Top-down development method.
(Recursively) decompose functions into smaller steps, using a
limited set of composition patterns: while, if . . . else . . . ,
sequence, not goto.
Influenced control statements in programming languages.
Stress functionality, not data.
Sensitive to change in requirements (e.g. change in data
representation . . .)

D. Vermeir,September 2009

Perspectives on software engineering Object-oriented programming

Perspectives on software engineering

1. Structured programming
2. Object-oriented programming
3. Reuse and components
4. Formal methods

D. Vermeir,September 2009

Perspectives on software engineering Object-oriented programming

Object-oriented programming

Encapsulates data in ADT.
Correspondence with “real” application objects.
Easier to understand, evolve.
Design patterns can be used to describe reusable design
solutions.

D. Vermeir,September 2009

Perspectives on software engineering Reuse and components

Perspectives on software engineering

1. Structured programming
2. Object-oriented programming
3. Reuse and components
4. Formal methods

D. Vermeir,September 2009

Perspectives on software engineering Reuse and components

Reuse and components

Compare with other engineering disciplines (e.g. car models).
Reuse should be aimed for from the start:

I design modular systems with future reuse in mind
I knowledge of what is available for reuse

See also: components (javabeans, COM: reuse binaries) and
frameworks.

D. Vermeir,September 2009

Perspectives on software engineering Formal methods

Perspectives on software engineering

1. Structured programming
2. Object-oriented programming
3. Reuse and components
4. Formal methods

D. Vermeir,September 2009

Perspectives on software engineering Formal methods

Formal methods

Compare with other engineering disciplines that have a solid
supporting base in mathematics.
Formal specifications: use (first order) logic⇒ unambiguous, can
be formally studied (e.g. consistency).
Formal transformations: from specifications over design to code
⇒ code is guaranteed to be equivalent with specifications.

D. Vermeir,September 2009

Key expectations (Humphrey)

The Software Engineering Process

5 A typical roadmap

6 Perspectives on software engineering

7 Key expectations (Humphrey)

8 Process alternatives

9 Documentation and Configuration Management

10 Quality

11 Capability assessment

D. Vermeir,September 2009

Key expectations (Humphrey)

Key expectations (Humphrey)

Predetermine quantitative quality goals
I E.g. “500 lines/mm”, “< 3 defects/Klines”.

Accumulate data for use in subsequent projects (and estimations).
Keep all work visible (to everyone involved in the project).
Design only against requirements; program only against design;
test only against design and requirements.
Measure (and achieve) quality goals.

D. Vermeir,September 2009

Process alternatives

The Software Engineering Process

5 A typical roadmap

6 Perspectives on software engineering

7 Key expectations (Humphrey)

8 Process alternatives

9 Documentation and Configuration Management

10 Quality

11 Capability assessment

D. Vermeir,September 2009

Process alternatives

Process alternatives

1. The waterfall process model
2. The spiral model
3. The incremental process model
4. Trade-offs

D. Vermeir,September 2009

Process alternatives The waterfall process model

Process alternatives

1. The waterfall process model
2. The spiral model
3. The incremental process model
4. Trade-offs

D. Vermeir,September 2009

Process alternatives The waterfall process model

The waterfall process model

1 Requirements analysis produces specification (text).
2 Design produces diagrams & text.
3 Implementation produces code & comments.
4 Test produces test reports and defect descriptions.

D. Vermeir,September 2009

Process alternatives The waterfall process model

The extended waterfall model

1 Requirements analysis:
I Concept analysis: overall definition of application philosophy.

2 Design produces diagrams & text.
I Architectural design.
I Object-oriented analysis: determine key classes.
I Detailed design.

3 Implementation produces code & comments.
4 Test produces test reports and defect descriptions.

I Unit testing.
I Integration testing.
I Acceptance test.

D. Vermeir,September 2009

Process alternatives The spiral model

Process alternatives

1. The waterfall process model
2. The spiral model
3. The incremental process model
4. Trade-offs

D. Vermeir,September 2009

Process alternatives The spiral model

The spiral model

Several waterfall cycles.
Motivation:

I Early retirement of risk.
I Partial versions to show to the customer for feedback.
I Avoid “big bang” integration.

D. Vermeir,September 2009

Process alternatives The incremental process model

Process alternatives

1. The waterfall process model
2. The spiral model
3. The incremental process model
4. Trade-offs

D. Vermeir,September 2009

Process alternatives The incremental process model

The incremental process model
(and derivatives such as extreme programming)

One cycle per time unit (e.g. week).
“Sync and stabilize” (e.g. daily build).
Continual process.
Architecture must be stable, configuration management must be
excellent.
See also: extreme programming.

D. Vermeir,September 2009

Process alternatives The incremental process model

Extreme programming

A project management and development methodology created by K.
Beck.

reasonable extreme
customer separated customer on team
up-front design evolving design
built for future too just in time
complexity allowed radical simplicity
tasks assigned tasks self-chosen
developers isolated pair programming
infrequent integration continuous integration
limited communication continual communication

D. Vermeir,September 2009

Process alternatives Trade-offs

Process alternatives

1. The waterfall process model
2. The spiral model
3. The incremental process model
4. Trade-offs

D. Vermeir,September 2009

Process alternatives Trade-offs

Trade-offs

factor waterfall spiral incremental
Ease of documenta-
tion control

easier harder harder
but..

Enable customer in-
teraction

harder easier easier

Promote good design medium
easier

easier harder

Leverage metrics in
project

harder medium
easier

medium
easier

D. Vermeir,September 2009

Documentation and Configuration Management

The Software Engineering Process

5 A typical roadmap

6 Perspectives on software engineering

7 Key expectations (Humphrey)

8 Process alternatives

9 Documentation and Configuration Management

10 Quality

11 Capability assessment

D. Vermeir,September 2009

Documentation and Configuration Management

Documentation and Configuration Management

1. Introduction
2. Documentation Standards
3. An Approach
4. Document management
5. Configuration Management

D. Vermeir,September 2009

Documentation and Configuration Management Introduction

Documentation and Configuration Management

1. Introduction
2. Documentation Standards
3. An Approach
4. Document management
5. Configuration Management

D. Vermeir,September 2009

Documentation and Configuration Management Introduction

Documentation introduction

Usual rules about documenting code.
In addition, context should be documented.

I Relationship of code/class design to requirements. (Implements
requirement 1.2)

A project is the whole set of coordinated, well-engineered artifacts,
including the documentation suite, the test results and the code.

D. Vermeir,September 2009

Documentation and Configuration Management Documentation Standards

Documentation and Configuration Management

1. Introduction
2. Documentation Standards
3. An Approach
4. Document management
5. Configuration Management

D. Vermeir,September 2009

Documentation and Configuration Management Documentation Standards

Documentation standards

Standards improve communication among engineers.
To be effective, standards must be perceived by engineers as
being helpful to them

⇒ Let development team decide on standards to apply.
+ Motivation.
- Groups with different standards in organization: makes process

comparison & improvement (CMM) more difficult.

⇒ Standards should be simple and clear.

D. Vermeir,September 2009

Documentation and Configuration Management Documentation Standards

Organizations that publish standards

IEEE (International Institute of Electronic and Electrical
Engineering), ANSI (American National Standards Institute).
ISO (International Standards Organization, pushed by EU)
SEI (Software Engineering Institute): e.g. CMM (Capability
Maturity Model).
OMG (Object Management Group, approx. 700 company
members): UML (Unified Modeling Language).

D. Vermeir,September 2009

Documentation and Configuration Management Documentation Standards

IEEE project documentation set

SVVP – Software Validation & Verification Plan (often by external
organization).
SQAP – Software Quality Assurance Plan.
SCMP – Software Configuration Management Plan.
SPMP – Software Project Management Plan.
SRS – Software Requirements Specification.
SDD – Software Design Document.
Source code.
STD – Software Test Document.
User manuals.

D. Vermeir,September 2009

Documentation and Configuration Management An Approach

Documentation and Configuration Management

1. Introduction
2. Documentation Standards
3. An Approach
4. Document management
5. Configuration Management

D. Vermeir,September 2009

Documentation and Configuration Management An Approach

One way to define documentation needs

1 Specify how documents and code will be accessed⇒ SCMP
2 Specify who will do what when⇒ SPMP
3 Document what will be implemented⇒ SRS
4 Document design⇒ SDD
5 Write & document code.
6 Document tests performed so that they can be run again (STD):
7 Decide for each document how it will evolve: update or append.

D. Vermeir,September 2009

Documentation and Configuration Management Document management

Documentation and Configuration Management

1. Introduction
2. Documentation Standards
3. An Approach
4. Document management
5. Configuration Management

D. Vermeir,September 2009

Documentation and Configuration Management Document management

Document management

Document management requires
Completeness (e.g. IEEE set).
Consistency.

I single-source documentation: specify each entity in only one place
(as much as possible, e.g. user manual..).

I use hyperlinks, if possible, to refer to entities.

Configuration (coordination of versions).

D. Vermeir,September 2009

Documentation and Configuration Management Configuration Management

Documentation and Configuration Management

1. Introduction
2. Documentation Standards
3. An Approach
4. Document management
5. Configuration Management

D. Vermeir,September 2009

Documentation and Configuration Management Configuration Management

The Configuration Management Plan

The SCMP specifies how to deal with changes to documents: e.g.
To change the API of a module, all clients must be asked for
approval by email.
Use system to keep track of configuration items and valid
combinations thereof.
See CVS: check-in, check-out, tagging procedures.
Example SCMP: page 63 . . . in book.

D. Vermeir,September 2009

Quality

The Software Engineering Process

5 A typical roadmap

6 Perspectives on software engineering

7 Key expectations (Humphrey)

8 Process alternatives

9 Documentation and Configuration Management

10 Quality

11 Capability assessment

D. Vermeir,September 2009

Quality

Quality

1. Quality attributes
2. Quality metrics
3. Quality assurance
4. Inspections
5. Verification and Validation

D. Vermeir,September 2009

Quality Quality attributes

Quality

1. Quality attributes
2. Quality metrics
3. Quality assurance
4. Inspections
5. Verification and Validation

D. Vermeir,September 2009

Quality Quality attributes

Quality attributes

Quality attributes for code (function):
I Satisfies stated requirements.
I Checks inputs, reacts predictably to illegal input.
I Has been inspected by others.
I Has been tested thoroughly.
I Is thoroughly documented.
I Has confidently known defect rate, if any.

Quality attributes for design:
I Extensible (to provide additional functionality).
I Evolvable (to accommodate altered requirements).
I Portable (applicable to several environments).
I General and reusable (applicable to several situations).

D. Vermeir,September 2009

Quality Quality metrics

Quality

1. Quality attributes
2. Quality metrics
3. Quality assurance
4. Inspections
5. Verification and Validation

D. Vermeir,September 2009

Quality Quality metrics

Quality metrics

Quantification is essential part of engineering.
Metrics only make sense in context (to compare): e.g. different
amount of lines of code needed by different programmers to
implement the same function. Lines of code becomes meaningful
again when taken over a large number of samples.
Example metrics

I Amount of work (lines of code).
I Time spent on work (lines of code).
I Defect rate (e.g. number of defects per KLOC, per page of

documentation, . . .)
I Subjective evaluation (quality: 1 . . . 5).

Goals specify desired values of metrics.

D. Vermeir,September 2009

Quality Quality assurance

Quality

1. Quality attributes
2. Quality metrics
3. Quality assurance
4. Inspections
5. Verification and Validation

D. Vermeir,September 2009

Quality Quality assurance

The quality assurance process

Reviews: SCMP, process, SPMP
Inspections: requirements, design, code, . . .
Testing

I Black box.
I White (glass) box.
I Grey box.

Ideally, by external organization.

D. Vermeir,September 2009

Quality Inspections

Quality

1. Quality attributes
2. Quality metrics
3. Quality assurance
4. Inspections
5. Verification and Validation

D. Vermeir,September 2009

Quality Inspections

Inspections

White box technique.
Principle:

Authors can usually repair defects that they recognize.
⇒ Help authors to recognize defects before they deliver.
⇒ Have peers seek defects.

Examine part of project
Much more efficient than testing:

I Time spent per fault is (much) less than with testing.
I Earlier detection: easier to fix.

D. Vermeir,September 2009

Quality Inspections

Rules about inspections

Defect detection only.
Peer (not supervisor-subordinate) process.
Only best effort of author should be examined.
Specified roles:

I Moderator (is also inspector).
I Author (is also inspector, answers questions)
I Reader (is also inspector): leads team through the work.
I Recorder (is also inspector).

Inspectors should prepare the inspection.

D. Vermeir,September 2009

Quality Inspections

The inspection process

1 Plan: which metrics to collect, tools for recording, . . .
2 Optional overview meeting to decide who inspects what.
3 Preparation: inspectors review work, note possible defects

(perhaps in common database).
4 The meeting (1-3 hours).
5 Author repairs defect (rework).
6 Optional causal analysis meeting if (some) defects due to

widespread misconception.
7 Follow-up (meeting?) to confirm that defects have been fixed.

D. Vermeir,September 2009

Quality Inspections

Example

Inspecting requirements.
faulty If the temperature is within 5.02% of the maximum allowable limit,

as defined by standard 67892, then the motor is to be shut down.
correct If the temperature is within 5.02% of the maximum allowable limit,

as defined by standard 67892, then the motor is to be powered
down.

! “shut down” 6= “power down”
! Very expensive to find and fix after implementation.

D. Vermeir,September 2009

Quality Inspections

One way to prepare & conduct inspections

Build inspections into schedule (time for preparation, meeting).
Prepare for collection of inspection data.

I Number of defects/KLOC, time spent.
I Form, e.g. with description, severity.
I Who keeps inspection data, usage of . . .

Assign roles.E.g. author, moderator/recorder, reader or, minimally,
author/inspector.
Ensure that each participant prepares: bring filled defect forms to
meeting.

D. Vermeir,September 2009

Quality Verification and Validation

Quality

1. Quality attributes
2. Quality metrics
3. Quality assurance
4. Inspections
5. Verification and Validation

D. Vermeir,September 2009

Quality Verification and Validation

Verification and Validation

Validation: are we building the right product?
Test product (does it actually work)?

Verification: are we building the product right (process, should it
work “on paper”)?

I Do the requirements express what the customer wants? (inspection
requirements, . . .)

I Does the code implement the requirements? (inspection)
I Do the tests cover the application (inspect STD).

D. Vermeir,September 2009

Quality Verification and Validation

Example SQAP

Page 68 – 72 and 112 – 113 in book.

D. Vermeir,September 2009

Capability assessment

The Software Engineering Process

5 A typical roadmap

6 Perspectives on software engineering

7 Key expectations (Humphrey)

8 Process alternatives

9 Documentation and Configuration Management

10 Quality

11 Capability assessment

D. Vermeir,September 2009

Capability assessment

Capability assessment

1. Personal Software Process (PSP)
2. Team Software Process (TSP)
3. Capability Maturity Model (CMM)

D. Vermeir,September 2009

Capability assessment Personal Software Process (PSP)

Capability assessment

1. Personal Software Process (PSP)
2. Team Software Process (TSP)
3. Capability Maturity Model (CMM)

D. Vermeir,September 2009

Capability assessment Personal Software Process (PSP)

Personal Software Process (PSP)

PSP0 Baseline Process: current process with basic measurements
taken. Track time spent, record defects found, record the types of
defects.

PSP1 Personal Planning Process. PSP0 + ability to estimate size,
framework for reporting test results.

PSP2 Personal Quality Management Process: PSP1 + personal
design and code reviewing.

PSP3 Cyclic Personal Process: scale PSP2 to larger units: regression
testing, apply PSP to each increment.

D. Vermeir,September 2009

Capability assessment Team Software Process (TSP)

Capability assessment

1. Personal Software Process (PSP)
2. Team Software Process (TSP)
3. Capability Maturity Model (CMM)

D. Vermeir,September 2009

Capability assessment Team Software Process (TSP)

Team Software Process (TSP)

Objectives:
Build self-directed teams (3-20 engineers) that establish own
goals, process, plans, track work.
Show managers how to manage teams: coach, motivate, sustain
peak performance.
Accelerate CMM improvement.
. . .

D. Vermeir,September 2009

Capability assessment Capability Maturity Model (CMM)

Capability assessment

1. Personal Software Process (PSP)
2. Team Software Process (TSP)
3. Capability Maturity Model (CMM)

D. Vermeir,September 2009

Capability assessment Capability Maturity Model (CMM)

Capability Maturity Model (CMM)

CMM1 Initial: undefined ad-hoc process, outcome depends on
individuals (heroes).

CMM2 Repeatable: track documents (CM), schedule, functionality. Can
predict performance of same team on similar project.

CMM3 Defined: CMM2 + documented standard process that can be
tailored.

CMM4 Managed: CMM3 + ability to predict quality & cost of new project,
depending on the attributes of its parts, based on historical data.

CMM5 Optimized: CMM4 + continuous process improvement,
introduction of innovative ideas and technologies.

D. Vermeir,September 2009

Part III

Project Management

D. Vermeir,September 2009

Project Management

12 Introduction

13 Teams

14 Risk Management

15 Choosing tools and support

16 Planning

17 Feasability Analysis

18 Cost Estimation

19 The Project Management Plan

20 Quality in process management

D. Vermeir,September 2009

Introduction

Project Management

12 Introduction

13 Teams

14 Risk Management

15 Choosing tools and support

16 Planning

17 Feasability Analysis

18 Cost Estimation

19 The Project Management Plan

20 Quality in process management

D. Vermeir,September 2009

Introduction

Project Management Variables

Total cost of the project (increase expenditure).
Capabilities of the product (remove feature).
Quality of the product (increase MTTF).
Duration of the project (modify schedule).

D. Vermeir,September 2009

Introduction

Project Management Variables

Project management deals with trade-offs among the variables.

capability

cost

defect density

duration

D. Vermeir,September 2009

Introduction

Project Management Road Map

1 Understand project content, scope and time frame.
2 Identify development process (methods, tools, . . .).
3 Identify managerial process (team structure)
4 Develop schedule.
5 Develop staffing plan.
6 Begin risk management.
7 Identify documents to be produced.
8 Begin process itself.

D. Vermeir,September 2009

Introduction

Professionalism in software engineering

Professionals have societal responsibilities that supersede their
requirements to satisfy the needs of their employers and supervisors.

E.g. life-critical systems.
E.g. billing software: public should not have to check every
computation for correctness.

D. Vermeir,September 2009

Introduction

Conducting meetings

1 Distribute start & end time, agenda (important items first).
2 Prepare strawman items.
3 Start on time.
4 Have someone record items.
5 Get agreement on agenda and timing.
6 Watch timing throughout and end on time.

I Allow exceptions for important discussions.
I Stop excessive discussion; take off line.

7 Keep discussion on the subject.
8 E-mail action items and decision summary.

D. Vermeir,September 2009

Introduction

Specifying agendas

1 Get agreement on agenda and time allocation.
2 Get volunteers to record decisions and action items.
3 Report progress on project schedule – 10 mins.
4 Discuss strawman artifacts – n mins.
5 Discuss risk retirement – 10 mins.
6 . . . (e.g. metrics, process improvement).
7 Review action items – 5 mins.

D. Vermeir,September 2009

Teams

Project Management

12 Introduction

13 Teams

14 Risk Management

15 Choosing tools and support

16 Planning

17 Feasability Analysis

18 Cost Estimation

19 The Project Management Plan

20 Quality in process management

D. Vermeir,September 2009

Teams

Team structure

Influences amount of necessary communication.
Hierarchical.

B: marketing

E: softw.eng.

C: development

E: softw.eng. G: tech.specialist

D: QA

A: manager

Community of peers with equal authority.
Horizontal peers with designated leader.
Peer groups communicating via leaders (for larger projects).

D. Vermeir,September 2009

Teams

Example team organization (1/2)

1 Select team leader: ensures all project aspects are active, fills any
gaps.

2 Designate leader roles and responsibilities:
I team leader (SPMP)
I configuration management leader (SCMP)
I quality assurance leader (SQAP, STD)
I requirements management leader (SRS)
I design leader (SDD)
I implementation leader (code base)

D. Vermeir,September 2009

Teams

Example team organization (2/2)

3 leader responsibilities:
I propose strawman artifact (e.g. SRS, design)
I seek team enhancement and acceptance
I ensure designated artifact maintained and observed
I maintain corresponding metrics, if any

4 Designate backup for each leader. E.g. team leader backs up
implementation leader, CM leader backs up team leader etc.

D. Vermeir,September 2009

Risk Management

Project Management

12 Introduction

13 Teams

14 Risk Management

15 Choosing tools and support

16 Planning

17 Feasability Analysis

18 Cost Estimation

19 The Project Management Plan

20 Quality in process management

D. Vermeir,September 2009

Risk Management

Identifying and retiring risks

A risk is something which may occur in the course of a project and
which, under the worst outcome, would affect it negatively and
significantly.
There are 2 types of risks:

Risks that can be avoided or worked around (retired), e.g. “project
leader leaves”; retire by designating backup person.
Risks that cannot be avoided.

D. Vermeir,September 2009

Risk Management

Risk management activities

1 Identification: continually try to identify risks.
Sources:

I Lack of top management commitment.
I Failure to gain user commitment.
I Misunderstanding of requirements.
I Inadequate user involvement.
I Failure to manage end-user expectations.
I Changing scope and/or requirements.
I Personnel lack required knowledge or skills.

2 Retirement planning.
3 Prioritizing.
4 Retirement or mitigation.

D. Vermeir,September 2009

Risk Management

Risk retirement

Risk retirement is the process whereby risks are reduced or
eliminated:

risk avoidance: change project so that risk is no longer present;
e.g. switch to programming language where team has experience.
risk conquest: change project so that risk is no longer present;
e.g.

I buy training for the new programming language
I use rapid prototyping to verify suitability of external library

D. Vermeir,September 2009

Risk Management

Risk retirement planning

Retirement planning involves prioritizing of risks, e.g. based on
(11− p)× (11− i)× c where lower numbers represent higher priority.

likelihood p ∈ [1 . . . 10], 1 is least likely.
impact i ∈ [1 . . . 10], 1 is least impact.
retirement cost c ∈ [1 . . . 10], 1 is lowest cost.

But leave room for exceptional cases, or risks where the retirement
has a long lead time.

D. Vermeir,September 2009

Risk Management

Risk management roadmap (1/2)

1 Each team member spends 10 mins. exploring her greatest fears
for the project’s success (in advance of meeting).

2 Each member specifies these risks in concrete language, weighs
them, writes retirement plans and emails to the team leader.

3 The team leader integrates and prioritizes the results.
4 The team spends 10 mins. seeking additional risks.
5 The team spends 10 mins. finalizing the risk table (e.g. p. 89),

which include responsible retirement engineers.

D. Vermeir,September 2009

Risk Management

Risk management roadmap (2/2)

6 Responsible engineers do retirement work.
7 Team reviews risks for 10 mins. at weekly meetings:

I responsible engineers report progress
I team discusses new risks and adds them

D. Vermeir,September 2009

Choosing tools and support

Project Management

12 Introduction

13 Teams

14 Risk Management

15 Choosing tools and support

16 Planning

17 Feasability Analysis

18 Cost Estimation

19 The Project Management Plan

20 Quality in process management

D. Vermeir,September 2009

Choosing tools and support

Choosing development tools and support

project management: for scheduling, work breakdown. (e.g. trac,
. . .)
configuration management (e.g. cvs, . . .)
managing requirements (docbook, latex)
drawing designs (doxygen, dia, . . .)
tracing tools: requirements→ design→ code (?)
testing (e.g. junit, automake, dejagnu, . . .)
maintenance (e.g. gnats, bugzilla, . . .)
build (e.g. maven, ant, make, . . .)

Make build vs. buy decisions based on total cost comparison.

D. Vermeir,September 2009

Planning

Project Management

12 Introduction

13 Teams

14 Risk Management

15 Choosing tools and support

16 Planning

17 Feasability Analysis

18 Cost Estimation

19 The Project Management Plan

20 Quality in process management

D. Vermeir,September 2009

Planning

High level planning

iteration 1

iteration 2

risk
management

milestones

week
1 5 10 15 20

SCMP
SQAP

SPMP REQUIREMENTS
FROZEN

BEGIN TESTING

DELIVER

Assumes 2 iterations.

D. Vermeir,September 2009

Planning

Making an initial schedule

1 External milestones (e.g. delivery).
2 Internal milestones to back up external ones (start testing).
3 Show first iteration, establish minimal capability (exercising

process itself)
4 Show task for risk identification & retirement.
5 Leave some unassigned time.
6 Assign manpower (book p. 94).

The schedule will become more detailed as the project progresses and
the schedule is revisited.

D. Vermeir,September 2009

Feasability Analysis

Project Management

12 Introduction

13 Teams

14 Risk Management

15 Choosing tools and support

16 Planning

17 Feasability Analysis

18 Cost Estimation

19 The Project Management Plan

20 Quality in process management

D. Vermeir,September 2009

Feasability Analysis

Feasibility Analysis

Analysis based on the means (costs) and benefits of a proposed
project. These are computed over the lifetime (incl. the development)
of the system.
Estimate:

Lifetime (e.g. 5yrs).
Costs: development (see below), maintenance, operation.
Benefits: savings, productivity gains, increased production, etc.

D. Vermeir,September 2009

Feasability Analysis

How to compare costs vs benefits?

Net present value.
Internal rate of return.
Pay-back period.

D. Vermeir,September 2009

Feasability Analysis

Example

New system for stock management. Lifetime: 5 years.
Estimated costs (development) and benefits (= profit - operation costs)

Year Costs Benefits

0 5000 0
1 2500
2 2500
3 2500
4 2500
5 2500

5000 12500

D. Vermeir,September 2009

Feasability Analysis

Net Present Value

Value F after n years of an investment of P at an interest rate i :

F = P × (1 + i)n

Present value of an amount F , available after n years, with an
assumed interest rate i :

P =
F

(1 + i)n

D. Vermeir,September 2009

Feasability Analysis

Example (cont’ed)
Assume an interest rate of 12% (i = 0.12).

Year Benefits Costs

0 0 0 5000 5000
1 2500 2234
2 2500 1993
3 2500 1779
4 2500 1589
5 2500 1419

12500 9014 5000 5000

Present value of profit:

NPV = 9014− 5000 = 4014

D. Vermeir,September 2009

Feasability Analysis

Pay-back Period

Time needed for net present value of accumulated profits to exceed
the value of the investment (initial cost).
In the example, the the pay-back period is 3 years.

Year Benefits Costs

0 0 0 5000 5000
1 2500 2234
2 2500 1993
3 2500 1779
4 2500 1589
5 2500 1419

12500 9014 5000 5000

D. Vermeir,September 2009

Feasability Analysis

Internal Rate of Return

Assume that the initial cost is invested and that each year, the benefits
are taken out, until nothing remains after the lifetime of the system.
What interest rate i is needed to accomplish this?
⇒ The sum of the present value (at an interest rate i) of the benefits
must equal the initial cost:

P = Σj=n
j=1Fj [

1
(1 + i)j]

where Fj is the benefit in year j .
⇒ Compute the solution of

Σj=n
j=0FjX j = 0

where F0 = −P and X = 1
1+i

In the example, the internal rate of return is ±41%

D. Vermeir,September 2009

Cost Estimation

Project Management

12 Introduction

13 Teams

14 Risk Management

15 Choosing tools and support

16 Planning

17 Feasability Analysis

18 Cost Estimation

19 The Project Management Plan

20 Quality in process management

D. Vermeir,September 2009

Cost Estimation

Estimating costs

Even before architecture and design! ((Compare: Ne/m3 in
building industry).
Cost estimates can be refined later in the project.
Based on KLOC estimate.
KLOC estimate based on experience, outline architecture, . . . or
on function points estimation (see book p. 97 – 104).
KLOC→ cost using COCOMO.

D. Vermeir,September 2009

Cost Estimation

The COCOMO cost model (Boehm)

The COCOMO model distinguishes 3 types of projects:
simple: small team, familiar environment, familiar type of
application
moderate: experienced people, unfamiliar environment or new
type of application
embedded: rigid constraints, application embedded in complex
hard/software system, rigid requirements, high validation
requirements, little experience

D. Vermeir,September 2009

Cost Estimation

Effort estimation using COCOMO

type person-months
simple PM = 2.4× KLOC1.05

moderate PM = 3× KLOC1.12

embedded PM = 3.6× KLOC1.2

Note: KLOC excludes comments and support software (e.g. test
drivers); 1PM = 152hrs, excluding vacations, training, illness.

D. Vermeir,September 2009

Cost Estimation

Estimating duration using COCOMO

Duration: TDEV (in months).

type duration
simple TDEV = 2.5× PM0.38

moderate TDEV = 2.5× PM0.35

embedded TDEV = 2.5× PM0.32

D. Vermeir,September 2009

Cost Estimation

COCOMO example 1

Simple project, 32,000 lines:
PM = 2.4× (32)1.05 = 91
TDEV = 2.5(91)0.38 = 14
Number of people needed:

N =
PM

TDEV
=

91
14

= 6.5

D. Vermeir,September 2009

Cost Estimation

COCOMO example 2

Example: embedded system, 128,000 lines:
PM = 3.6× (128)1.2 = 1216
TDEV = 2.5× (1216)0.32 = 24
Number of people:

N =
PM

TDEV
=

1216
24

= 51

D. Vermeir,September 2009

Cost Estimation

Intermediate COCOMO (1/2)

The basic COCOMO model yields a rough estimate, based on
assumptions about productivity:

16 LOC/day for simple projects
4 LOC/day for embedded projects

D. Vermeir,September 2009

Cost Estimation

Intermediate COCOMO (2/2)

Based on PM, TDEV from the basic model, in the intermediate model,
the basic PM estimate is multiplied with factors depending on:

Product attributes: reliability, database size, complexity.
Computer attributes: resource constraints, stability hard/software
environment.
Personnel attributes: experience with application, programming
language, etc.
Project attributes: use of software tools, project schedule.

The model can be calibrated, based on experience and local factors.

D. Vermeir,September 2009

The Project Management Plan

Project Management

12 Introduction

13 Teams

14 Risk Management

15 Choosing tools and support

16 Planning

17 Feasability Analysis

18 Cost Estimation

19 The Project Management Plan

20 Quality in process management

D. Vermeir,September 2009

The Project Management Plan

The SPMP (1/3)

1 Introduction
1 Project overview.
2 Project deliverables.
3 Evolution of the SPMP.
4 Reference materials.
5 Definitions and acronyms.

2 Project organization
1 Process model (e.g. spiral, 2cycles).
2 Organizational structure (roles, no names).
3 Organizational boundaries and interfaces (e.g. with customer,

marketing, . . .).
4 Project responsibilities (of various roles).

D. Vermeir,September 2009

The Project Management Plan

The SPMP (2/3)

3 Managerial process.
1 Objectives and priorities (e.g. safety before features).
2 Assumptions, dependencies and constraints.
3 Risk management.
4 Monitoring and controlling mechanisms (who, (e.g. Sr.

management)? when? how? will review)
5 Staffing plan (names for roles)

4 Technical process.
1 Methods, tools and techniques (e.g. C++, design patterns, . . .)
2 Software documentation (refer to SQAP)
3 Project support functions (e.g. DVD will consult on . . .)

D. Vermeir,September 2009

The Project Management Plan

The SPMP (3/3)

5 Work packages, schedule and budget.
1 Work packages (sketchy before architecture is established)
2 Dependencies.
3 Resource requirements (estimates)
4 Budget and resource allocation (person-days, money for S&HW)
5 Schedule.

See example SPMP on p. 123 – 134.

D. Vermeir,September 2009

Quality in process management

Project Management

12 Introduction

13 Teams

14 Risk Management

15 Choosing tools and support

16 Planning

17 Feasability Analysis

18 Cost Estimation

19 The Project Management Plan

20 Quality in process management

D. Vermeir,September 2009

Quality in process management

Quality in process management

Establish process metrics and targets.
Collect data.
Improve process, based on data.

D. Vermeir,September 2009

Quality in process management

Example process metrics

Number of defects per KLOC detected within 12 months of
delivery.

Variance in schedule on each phase: durationactual−durationprojected
durationprojected

Variance in cost costactual−costprojected
costprojected

Total design time as % of total programming time.
Defect injection and detection rates per phase. E.g. “one defect in
requirements detected during implementation”.

D. Vermeir,September 2009

Quality in process management

Defect detection rate by phase

Injection Phase
Detection phase detailed

requirements
design implementation

detailed
requirements

2 (5)

design 0.5 (1.5) 3 (1)
implementation 0.1 (0.3) 1 (3) 2 (2)

Numbers between parentheses are planned, others are actual results.

D. Vermeir,September 2009

Quality in process management

SQAP Part 2

A table per phase (example on p. 113) containing actual data and
company norms (or goals).
The example on the next slide concerns requirements, 200 of
which have been established in 22 hrs., a productivity of 9.9
requirements/hr.
Since we found 6/100 defects by inspection, vs. the norm of
4/100, we can predict that the defect rate will be the same and
thus there will be 6/4× r , where r is the historic defect rate,
defects in the requirements.

D. Vermeir,September 2009

Quality in process management

Metrics collection for requirements

meeting research exec-
ution

personal
review

inspec-
tion

hours spent 1 × 4 4 5 3 6
% of total time 10% 20% 25% 15% 30%
norm % 15% 15% 30% 15% 25%
quality (self-
assessed)

2 8 5 4 6

defects/100 6 6
norm/100 3 4
hrs/requirement 0.01 0.02 0.025 0.015 0.03
norm hrs/req. 0.02 0.02 0.04 0.01 0.03

D. Vermeir,September 2009

Part IV

Requirements analysis

D. Vermeir,September 2009

Requirements analysis

21 Inroduction

22 Expressing Requirements

23 Rapid Prototyping

24 Detailed Requirements

25 Desired Properties of D-requirements

26 Organizing D-requirements

27 Metrics for Requirements

D. Vermeir,September 2009

Inroduction

Requirements analysis

21 Inroduction

22 Expressing Requirements

23 Rapid Prototyping

24 Detailed Requirements

25 Desired Properties of D-requirements

26 Organizing D-requirements

27 Metrics for Requirements

D. Vermeir,September 2009

Inroduction

Introduction

A requirement is about what, not how (unless customer demands
. . .)
C (“customer”) requirements are intended mainly for the customer,
in language that is clear to her.
D (“detailed”) requirements are mainly intended for the
developers, organized in a specific structure.
SRS (System Requirements Document) (p. 140 for IEEE detail)

1 Introduction.
2 Overall description (C-requirements).
3 Specific requirements (D-requirement).
4 Supporting information.

D. Vermeir,September 2009

Inroduction

Why requirements (document)?

To verify (test, . . .) against
For the engineers: to know what the goal is.
“To write is to think”.
Contract.

D. Vermeir,September 2009

Inroduction

Each requirement must be

expressed properly
made easily accessible
numbered
accompanied by test that verifies it
provided for in the design
accounted for by code
validated

D. Vermeir,September 2009

Inroduction

C-requirements roadmap

1 Identify customer.
2 Interview customer representatives
3 Write C-requirements.
4 Inspect C requirements
5 Review with customer, iterate until approved.

Track metrics: time spent, quantity, self-assessed quality, defect rates
from inspections.

D. Vermeir,September 2009

Inroduction

Requirements sources

People: less constrained.
Other (e.g. physics): highly constrained.

D. Vermeir,September 2009

Inroduction

Stakeholders

Example: e-commerce website application.
Visitors.
Management (e.g. requirements about tracking customers).
Developers (e.g. learn about new technology).

Watch for inconsistent requirements due to different stakeholder
interests.

D. Vermeir,September 2009

Inroduction

Professional responsibilities

Do not accept requirements that are
unrealistic (e.g. not within budget)
untestable

especially for critical (e.g. medical) systems.

D. Vermeir,September 2009

Inroduction

Customer interview

Compare architect - client.
1 List and prioritize customer interviewees.
2 Get strawman requirements from “primary” interviewees and

solicit comments from others.
3 Schedule interview with fixed start, end time. At least two

developers should attend.
4 Probe customer during interview.
5 Draft C-requirements.
6 Email result to customer(s).

D. Vermeir,September 2009

Expressing Requirements

Requirements analysis

21 Inroduction

22 Expressing Requirements

23 Rapid Prototyping

24 Detailed Requirements

25 Desired Properties of D-requirements

26 Organizing D-requirements

27 Metrics for Requirements

D. Vermeir,September 2009

Expressing Requirements

Expressing requirements

Conceptual model.
Use cases.
Data Flow Diagrams.
State transition diagrams.
Class diagram or EAR diagram (for data).
GUI mock screen shots (p.m.)

D. Vermeir,September 2009

Expressing Requirements

Use cases

An informal description of an interaction with the system (scenario).
There should be a use-case for each system function.
Frequently occurring sub-scenarios may be factored as separate
use cases (e.g. “login”).
Jacobson suggests deriving (domain) classes from use cases (via
sequence diagrams).

D. Vermeir,September 2009

Expressing Requirements

Use case

A use-case consists of:
name

summary
actors involved (an actor is an entity that communicates with the

system, e.g. a user, another system).
preconditions on the system’s state at the start of the case (informal)
description should be informal but complete, especially on the

actor-system interaction (but not on details like GUI)
exceptions i.e. special cases

result i.e. postconditions (informal)

D. Vermeir,September 2009

Expressing Requirements

Example use case

name ATM withdrawal
summary Cash withdrawal from an account associated with a cash

card.
actors customer

preconditions The customer has a valid cash card
description The customer inserts the cash card. The system prompts

for a password and then verifies that the cash card
corresponds to an existing account, and that the
password is valid...

exceptions If the link is down, the ATM displays “out of order”
message.

result The account corresponding to the cash card is updated.

D. Vermeir,September 2009

Expressing Requirements

Data Flow Diagrams

→ information flow

© process
= data store

� data source/sink

D. Vermeir,September 2009

Expressing Requirements

State Transition Diagrams

D. Vermeir,September 2009

Expressing Requirements

State Transition Diagrams (cont’d)

D. Vermeir,September 2009

Expressing Requirements

Expressing C requirements

If the requirement is simple and stands alone, express it in clear
sentences within an appropriate section of the SRS.
If the requirement is an interaction involving the application,
express it via a use case.
If the requirement involves process elements taking input and
producing output, use a DFD.
If the requirement involves states that (part of) the application can
be in, use state transition diagrams.
Use whatever else is appropriate (e.g. decision tables)

D. Vermeir,September 2009

Rapid Prototyping

Requirements analysis

21 Inroduction

22 Expressing Requirements

23 Rapid Prototyping

24 Detailed Requirements

25 Desired Properties of D-requirements

26 Organizing D-requirements

27 Metrics for Requirements

D. Vermeir,September 2009

Rapid Prototyping

Rapid prototyping

A rapid prototype is a partial implementation of the application, often
involving GUI components.
Useful for:

Eliciting customer comments (understanding requirements).
Retiring risks.
Proof of concept.

May be throw-away (scripts) or (partly) reusable.

D. Vermeir,September 2009

Rapid Prototyping

To prototype or not?

Possible benefits (quantify in e)
Time wasted on requirements that turn out to be not really
needed.
Retiring risks (e.g. test new technology).
Avoid having to rework because of wrong requirements.

Costs
of developing prototype,

- money saved by expected reuse of (parts of) prototype.
See book p. 162-164.

D. Vermeir,September 2009

Rapid Prototyping

Updating the project plan

iteration 1

iteration 2

risk
management

milestones

week
1 5 10 15 20

SCMP
SQAP

SPMP REQUIREMENTS
FROZEN

BEGIN TESTING

DELIVER

requirements
design

implementation

design
implementation

test

requirements

D. Vermeir,September 2009

Detailed Requirements

Requirements analysis

21 Inroduction

22 Expressing Requirements

23 Rapid Prototyping

24 Detailed Requirements

25 Desired Properties of D-requirements

26 Organizing D-requirements

27 Metrics for Requirements

D. Vermeir,September 2009

Detailed Requirements

D(etailed) requirements

Functional requirements.
Nonfunctional requirements:

I Performance: time, space (RAM,disk), traffic rate.
I Reliability and availability.
I Error handling
I Interface requirements
I Constraints (tool, language, precision, design, standards, HW)

Inverse requirements

D. Vermeir,September 2009

Detailed Requirements

Functional requirements

2.3 Each submission has a status consisting of a set of reports
submitted by PC members (see section 1) and a summarizing
value which is one of

. . .
2.4 An author is able to view the status of her submissions via the

website, after proper authorization, see section 3.
. . .

D. Vermeir,September 2009

Detailed Requirements

Performance requirements

4.1 Excluding network delays, the public web site component of the
system will generate an answer to each request within a second,
provided the overall load on the system does not exceed 1.4.

4.2 The size of the executable for the main application program
(middle tier) will not exceed 6MB.

4.3 The size of the database will not exceed n× 2000 bytes, excluding
the size of the submissions and PC reports, where n is the
number of submissions.

. . .

D. Vermeir,September 2009

Detailed Requirements

Reliability and availability requirements

Reliability:
7.1 The system shall experience no more than 1 level one faults per

month.
. . .
Availability:
7.2 The system shall be available at all times, on either the primary or

backup computer.
. . .

D. Vermeir,September 2009

Detailed Requirements

Error handling

7.3 The cgi program will always return a page. If the middle tier
application does not return any data within the time frame
mentioned in section 1, the cgi program will generate a page
containing a brief description of the fault and the email address of
the support organization.

7.3 There will be a maximum size, selectable by the administrator, of
any page sent by the cgi program. If the system attempts to
exceed this size, an appropriate error message will be sent
instead.

. . .

D. Vermeir,September 2009

Detailed Requirements

Interface requirements

5.1 The protocol of the application server has the following syntax:
request : N \n [key = value\n\n]*
reply : N \n [key = value \n\n]*
name : any string not containing \n or “=”
value : any string not containing the sequence “\n\n”

where N

indicates the number of (key,value) pairs in the message.
. . .

D. Vermeir,September 2009

Detailed Requirements

Constraints

9.1 The system will use the mysql database management system.
9.2 The target system is any linux system with a kernel v.2.4 or higher.
9.3 The cgi program will generate only html according to the WC3

standard v.2. No frames, style sheets, or images will be used,
making it usable for text-only browsers.

. . .

D. Vermeir,September 2009

Detailed Requirements

Inverse requirements

What the system will not do.
10.1 The system will not provide facilities for backup. This is the

responsibility of other programs.
. . .

D. Vermeir,September 2009

Desired Properties of D-requirements

Requirements analysis

21 Inroduction

22 Expressing Requirements

23 Rapid Prototyping

24 Detailed Requirements

25 Desired Properties of D-requirements

26 Organizing D-requirements

27 Metrics for Requirements

D. Vermeir,September 2009

Desired Properties of D-requirements

Desired properties of D-requirements

Traceability.
Testability and nonambiguity.
Priority.
Completeness.
Consistency.

D. Vermeir,September 2009

Desired Properties of D-requirements

Traceability of D-Requirements

Backward to C-requirements.
Forward to
→ Design (module, class)
→ Code ((member) function)
→ Test.

Example: Req. 2.3→ class SubmissionStatus→ Test 35
Also for nonfunctional requirements: e.g. a performance
requirement probably maps to only a few modules (90/10 rule).
Example: req. 7.3 may map to a special subclass of ostream
which limits output etc.

D. Vermeir,September 2009

Desired Properties of D-requirements

Testability and Nonambiguity

“the system will generate html pages” is ambiguous
⇒ Specify exact standard or html-subset.

“The system will have user-friendly interface”
⇒ Specify time to learn for certain category of users.

D. Vermeir,September 2009

Desired Properties of D-requirements

Priority

Put each requirement in a category: “essential”, “desirable” or
“optional”.
80% of benefits come from 20% of requirements.
Should be consistent (e.g. essential requirement cannot depend
on desirable one).
The prioritization impacts the design.

D. Vermeir,September 2009

Desired Properties of D-requirements

Completeness

Check that the requirements cover the use cases and the
C-requirements.
Specify error conditions: e.g. what does a function do when it
receives bad input (in C++: throw exception).

D. Vermeir,September 2009

Desired Properties of D-requirements

How to write a D-requirement

1 Classify as functional/nonfunctional.
2 Size carefully: functional requirement ≈ (member) function.
3 Make traceable and testable, if at all possible.
4 Be precise: avoid ambiguity.
5 Give it a priority.
6 Check completeness, incl. error conditions.
7 Check consistency with other requirements.

D. Vermeir,September 2009

Organizing D-requirements

Requirements analysis

21 Inroduction

22 Expressing Requirements

23 Rapid Prototyping

24 Detailed Requirements

25 Desired Properties of D-requirements

26 Organizing D-requirements

27 Metrics for Requirements

D. Vermeir,September 2009

Organizing D-requirements

Organizing D-requirements

Alternatives: organize by (combination of)
Feature (externally visible service).
System mode/state.
Use case.
Class (if available).

A requirements tool may help with organizing (providing views) and
tracing, incl. links with design etc.

D. Vermeir,September 2009

Metrics for Requirements

Requirements analysis

21 Inroduction

22 Expressing Requirements

23 Rapid Prototyping

24 Detailed Requirements

25 Desired Properties of D-requirements

26 Organizing D-requirements

27 Metrics for Requirements

D. Vermeir,September 2009

Metrics for Requirements

Metrics for requirements

% of defective requirements (that are not testable, traceable,
correctly prioritized, atomic, consistent).
% of missing or defective requirements found per hour of
inspection.
Defect rates (later).
Cost per requirement.
See p. 213.

D. Vermeir,September 2009

Metrics for Requirements

Inspection of requirements

Checklist: is the requirement backward traceable, complete,
consistent, feasible, non-ambiguous, clear, precise, modifiable,
testable, forward traceable.
Can be put in a form with notes for “no” answers.

D. Vermeir,September 2009

Metrics for Requirements

Tracking requirements

RID Priority Responsible Inspection Status Test
1.2 E DV OK 50% -
.

D. Vermeir,September 2009

Metrics for Requirements

SPMP after D-requirements

More risks, some risks retired.
More detailed cost estimate.
More detailed schedule, milestones.
Designate architects.

D. Vermeir,September 2009

Part V

Design

D. Vermeir,September 2009

Design

28 Design Steps

29 UML

30 The Domain Model

31 Architectural Design

32 Design Patterns

33 Detailed Design

D. Vermeir,September 2009

Design Steps

Design

28 Design Steps

29 UML

30 The Domain Model

31 Architectural Design

32 Design Patterns

33 Detailed Design

D. Vermeir,September 2009

Design Steps

Design steps

1 Build domain model.
2 Select architecture.
3 Detailed design.
4 Inspect and update project.

D. Vermeir,September 2009

UML

Design

28 Design Steps

29 UML

30 The Domain Model

31 Architectural Design

32 Design Patterns

33 Detailed Design

D. Vermeir,September 2009

UML

Unified Modeling Language

An informal notation for OO designs.
class model: class diagram.
dynamic model: state transition diagram.
sequence diagram.
collaboration diagram.

D. Vermeir,September 2009

UML

Class Model and Diagram

D. Vermeir,September 2009

UML

Dynamic Model: Sequence Diagram

caller phone_line callee

lift_receiver

start_dial_tone

dial_number

stop_dial_tone

dial_numbers

start_ring_tone

ring_phone

answer

stop_ring_tone

connect connect

hangup
disconnect disconnect

Often elaboration of use case.

D. Vermeir,September 2009

UML

Dynamic Model: Transition Diagram

For those classes where useful.

idle collect
on coins_in(amount): add_to_balance

coins_int(amount) / set_balance

selecting
do: test_and_compute_change

cancel / refund select(item)

dispensing
do: dispense_item

making_change
do: dispense_change

[no_item]
[change<0]

[change>0]
[change==0]

D. Vermeir,September 2009

UML

Dynamic Model: Collaboration Diagram

cgi
cgi

query
1: text

Words

2: text

3: set<word>

db

4: set<word>5: set<url>

D. Vermeir,September 2009

The Domain Model

Design

28 Design Steps

29 UML

30 The Domain Model

31 Architectural Design

32 Design Patterns

33 Detailed Design

D. Vermeir,September 2009

The Domain Model

The Domain Model
Class (and other) diagrams of application domain.

D. Vermeir,September 2009

The Domain Model

Finding Domain Classes

Convert use cases to sequence diagrams
⇒ classes used in these diagrams

Nouns from requirements.
Domain knowledge.
Requirements.
. . .

D. Vermeir,September 2009

The Domain Model

Building Domain Model

Determine, for each class,
I attributes,
I relationships,
I operations.

Use inheritance to represent “is-a” relationship.
Make state diagram for class if appropriate.

D. Vermeir,September 2009

The Domain Model

Domain Model Inspection

Verify w.r.t. requirements:
All concepts represented?
Use cases supported?
Dynamic models correct?

D. Vermeir,September 2009

Architectural Design

Design

28 Design Steps

29 UML

30 The Domain Model

31 Architectural Design

32 Design Patterns

33 Detailed Design

D. Vermeir,September 2009

Architectural Design

Architectural Design

“The initial design process of identifying subsystems
and establishing a framework for subsystem control
and communication.”

Architecture = the highest level design.
Compare with bridge design: decide whether to build a
suspension bridge, a cantilever bridge, a cable-stayed bridge,

D. Vermeir,September 2009

Architectural Design

Architectural Quality

Extensible (adding features).
Flexible (facilitate changing requirements).
Simple (easy to understand).
Reusable (more abstraction⇒ more reusable).
Efficient.

D. Vermeir,September 2009

Architectural Design

Architectural Design Activities

System structuring: determine principal subsystems and their
communications.

Control modeling: establish a general model of the control
relationships between the subsystems.

There are many architectural style models.

D. Vermeir,September 2009

Architectural Design

Example Architecture

D. Vermeir,September 2009

Architectural Design

Categorization of Architectures

(Shaw and Garlan).
Data flow architectures (batch sequential, pipes and filters)
Independent components (parallel communicating processes,
client-server, event-driven)
Virtual machines (interpreters)
Repository architectures (database, blackboard)

Many real architectures are mix (e.g. compiler: pipe and database)

D. Vermeir,September 2009

Architectural Design

Comparing Architecture Alternatives

Give each alternative a score (e.g. “low”, “medium”, “high”) for
each quality attribute considered, e.g.

I Extensibility (easy to add functionality).
I Flexibility (facilitate changing requirements).
I Simplicity (easy to understand, cohesion/coupling).
I Reusable (more abstraction⇒ more reusable).
I Efficiency (time, space).

Give a weight to each quality attribute.
Compare total weighed scores.

See book p. 287 for example.

D. Vermeir,September 2009

Architectural Design

Architecture Inspection

Against requirements.
Are use cases supported by components/control model?
Can domain model be mapped to components?
Are all components necessary?

D. Vermeir,September 2009

Architectural Design

Updating the project

SDD Have chapter/section on architecture alternatives and
selection.

SPMP More detailed schedule for developing and testing
modules, using dependencies between modules.

D. Vermeir,September 2009

Design Patterns

Design

28 Design Steps

29 UML

30 The Domain Model

31 Architectural Design

32 Design Patterns

33 Detailed Design

D. Vermeir,September 2009

Design Patterns

Design Patterns

See book
E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design

Patterns – Elements of Reusable Object-Oriented Software”,
Addison-Wesley, 1995.

D. Vermeir,September 2009

Detailed Design

Design

28 Design Steps

29 UML

30 The Domain Model

31 Architectural Design

32 Design Patterns

33 Detailed Design

D. Vermeir,September 2009

Detailed Design

Detailed Design

Add support classes, member functions:
I Requirements.
I Data storage.
I Control.
I Architecture.

Determine algorithms.
Add invariant description to each class, where appropriate.
Add pre/postconditions to each non-trivial member function.

D. Vermeir,September 2009

Detailed Design

Detailed Design Notation

UML diagrams
C++ header files + documentation generated by doxygen.
example
. . .

D. Vermeir,September 2009

Detailed Design

Detailed Design Inspection

Record metrics: time taken, number and severity of defects found.
Ensure each architectural module is expanded.
Ensure each detail (function, class) is part of a module; perhaps
revise architecture.
Ensure design completeness: e.g. covers all requirements, use
cases (walk through scenario’s, ensure data & functions are
available for caller).
Ensure that design is testable (e.g. special member functions for
testing, printing).
Check detailed design for simplicity, generality and reusability,
expandability, efficiency, portability.
Ensure details (invariants, pre/post conditions) are provided.

D. Vermeir,September 2009

Detailed Design

Updating Cost Estimates

Update KLOC estimate, then reapply model.
Use complete list of member functions (e.g. generated by
doxygen under “component members”).
Estimate the size of each function, e.g. using Humphrey’s table
(book p. 337).
Use sum.

D. Vermeir,September 2009

Detailed Design

Updating Project

SDD Update to reflect design after inspection. E.g. add
documentation generated by doxygen from header files.

SPMP

Complete detail of schedule.
Assign tasks to members.
Improve cost and time estimates, based on detailed
KLOC estimates.
Report metrics for design: e.g. time taken for
preparation, inspection and change, defects (and
severity thereof) found.

SCMP Reflect new parts (e.g. subdirs, source files per module).

D. Vermeir,September 2009

Part VI

Implementation

D. Vermeir,September 2009

Implementation

34 Preparation and Execution

35 Hints

36 Quality

37 Personal Software Documentation

38 Updating The Project

D. Vermeir,September 2009

Preparation and Execution

Implementation

34 Preparation and Execution

35 Hints

36 Quality

37 Personal Software Documentation

38 Updating The Project

D. Vermeir,September 2009

Preparation and Execution

How to Prepare for Implementation

Detailed design confirmed (code only from design).
Set up process metrics.
Prepare defect form.
Prepare standards

I coding
I personal documentation

D. Vermeir,September 2009

Preparation and Execution

How to Implement Code

A unit is the smallest part of the implementation that is separately
maintained (and tested): typically class or (member) function. For each
unit:

Plan structure and residual design. Fill in pre- and postconditions.
Self-inspect residual design.
Write code and unit test program/functions.
Inspect.
Compile & link.
Apply unit tests (autotools: make check).

and collect process metrics and update SQAP,SCMP

D. Vermeir,September 2009

Preparation and Execution

Process Metrics

Time spent

residual detailed design (extra members..)
coding
self-inspection
unit testing
review
repair

Defects

Severity: major (requirements unsatisfied), trivial,
other.
Type (see quality).
Source: requirements, design, implementation.

D. Vermeir,September 2009

Hints

Implementation

34 Preparation and Execution

35 Hints

36 Quality

37 Personal Software Documentation

38 Updating The Project

D. Vermeir,September 2009

Hints

Implementation Hints (1)

Try reuse first. E.g. use STL instead of own container implementation.
Enforce intentions. Prevent unintended use (better: use that can lead

to invariant violation).
Strongly typed parameters: e.g. use const,
reference parameter i/o pointer if null is not allowed.
Define things as locally as possible.
Use patterns such as singleton if appropriate.
Make members as private as possible.
Include example usage in documentation (E.g.
\example in doxygen)

Always initialize data members, variables.

D. Vermeir,September 2009

Hints

Implementation Hints (2)

Encapsulate memory management. Inside class; consider
reference-counted pointers template (shared_ptr).

Prefer references over pointers, if appropriate.
No operator overloading unless meaning is clear.
Check preconditions. E.g. introduce special type: one place to check.

template<int min, int max>
class BoundedInt {
public:
BoundedInt(int i) throw (range_error);
operator int() { return value_; }

private:
int value_;

}

D. Vermeir,September 2009

Hints

Error handling

Inspect. Prevention is better.
Stick to requirements. Refrain from ad-hoc unspecified continuation

when faced with a run time error.
Use exceptions and catch them where possible.

D. Vermeir,September 2009

Hints

E. Raymond’s hints
From “The Art of Unix Programming”.

Modularity: Write Simple Parts connected by clean interfaces.
Clarity: Clarity is better than cleverness.
Separation: Separate policy from mechanism; separate
interfaces from engines.
Simplicity: Design for simplicity; add complexity only where you
must
Parsimony: Write a big program only when it is clear by
demonstration that nothing else will do.
Transparency: Design for visibility to make inspection and
debugging easier.
Robustness: Robustness is the child of transparency and
simplicity.
Representation: Fold Knowledge into data, so program logic can
be stupid and robust.
...

D. Vermeir,September 2009

Hints

E. Raymond’s hints 2/2
Least Surprise: In interface design, always do the least
surprising thing.
Silence: When a program has nothing surprising to say, it should
say nothing.
Repair: Repair what you can–but when you must fail, fail noisily
and as soon as possible.
Economy: Programmer time is expensive; conserve it in
preference to machine time.
Generation: Avoid hand-hacking; write programs to write
programs when you can.
Optimization: Prototype before polishing. Get it working before
you optimize it.
Diversity: Distrust all claims for one true way.
Extensibility: Design for the future, because it will be here sooner
than you think

D. Vermeir,September 2009

Quality

Implementation

34 Preparation and Execution

35 Hints

36 Quality

37 Personal Software Documentation

38 Updating The Project

D. Vermeir,September 2009

Quality

Coding Standards

Rules about
Naming.
Comments.
Indentation.
Unit tests.
. . .

D. Vermeir,September 2009

Quality

Implementation Inspection Checklist (1)

Classes Overall

C1 Appropriate name? consistent with requirements,
design? sufficiently general/specialized?

C2 Could it be an abstract class?
C3 Header comment describing purpose?
C4 Header references requirements or design

element(s)?
C5 As private as can be? (e.g. nested)
C6 Operators allowed? (gang of three)
C7 Documentation standards applied?

D. Vermeir,September 2009

Quality

Implementation Inspection Checklist (2)

Class Data Members

A1 Necessary?
A2 Could it be static?
A3 Could it be const?
A4 Naming conventions applied?
A5 As private as possible?
A6 Attributes are orthogonal?
A7 Initialized?

D. Vermeir,September 2009

Quality

Implementation Inspection Checklist (3)

Class Constructors

O1 Necessary?
O2 Would a factory method be better?
O3 Maximal use of initialization list?
O4 Private as possible?
O5 Complete? (all data members)

D. Vermeir,September 2009

Quality

Implementation Inspection Checklist (4)

Function Declarations

F1 Appropriate name? consistent with requirements,
design? sufficiently general/specialized?

F2 As private as possible?
F3 Should it be static?
F4 Maximal use of const?
F5 Purpose described?
F6 Header references requirements or design

element(s)?
F7 Pre- postconditions, invariants stated?
F8 Documentation standards?
F9 Parameter types as tight as possible for correct

functioning?

D. Vermeir,September 2009

Quality

Implementation Inspection Checklist (5)

Function Bodies

B1 Algorithm consistent with SDD?
B2 Code assumes no more than preconditions?
B3 Code realizes all postconditions?
B4 Code maintains invariant?
B5 Each loop terminates?
B6 Coding standards observed?
B7 Each line of code necessary & has a clear purpose?
B8 Check for illegal parameter values?
B9 Appropriate comments that fit code?

D. Vermeir,September 2009

Quality

Source Code Metrics

KLOC Need standard for counting comments, white space.
Detail is not important but keep constant for comparison.

Cyclomatic Complexity . Based on number of loops in block of code:
C = E − N + 1 where N, E are numbers of nodes and
edges in graph. In example: C = 2. High complexity code
needs more thorough inspection.

1 int x(x1;
2 int y(y1);
3 while (x!=y)
4 if (x>y)

6 else

8 cout << x;

5 x = x−y;

7 y = y−x;

1

2

3

4

7

5

8

D. Vermeir,September 2009

Quality

Defect Types (1)

Logic. Forgotten case, extreme condition neglected,
unnecessary functions, misinterpretation, missing test,
wrong check, incorrect iteration,

Computational. Loss of precision, wrong equation,
Interface. Misunderstanding.

Data handling. Incorrect initialization, incorrect access or assignment,
incorrect scaling or dimension,

Data. Embedded or external data incorrect or missing, output
data incorrect or missing, input data incorrect or missing,
. . . .

D. Vermeir,September 2009

Quality

Defect Types (2)

Documentation. Mismatch with code, incorrect, missing,
Document quality. Standards not followed.

Failure caused by previous fix.
Interoperability. with other software component.

Standards conformance error.
Other

D. Vermeir,September 2009

Personal Software Documentation

Implementation

34 Preparation and Execution

35 Hints

36 Quality

37 Personal Software Documentation

38 Updating The Project

D. Vermeir,September 2009

Personal Software Documentation

Personal Software Documentation

Source code.
Defect log.

Defect type
Personal phase (residual design, personal
inspection, personal unit test) during which
injected/removed.

Time log: time spent on residual design, coding, testing.
Engineering notebook. Status, notes,

Bring to exam!

D. Vermeir,September 2009

Updating The Project

Implementation

34 Preparation and Execution

35 Hints

36 Quality

37 Personal Software Documentation

38 Updating The Project

D. Vermeir,September 2009

Updating The Project

Updating Project

SQAP

Coding standards.
Process metrics data; e.g. from inspections, personal
software documentation.

SCMP Location of implementation CI’s.

D. Vermeir,September 2009

Part VII

Integration and Testing

D. Vermeir,September 2009

Integration and Testing

39 Introduction

40 Unit Testing

41 Integration and System Testing

D. Vermeir,September 2009

Introduction

Integration and Testing

39 Introduction

40 Unit Testing

41 Integration and System Testing

D. Vermeir,September 2009

Introduction

Testing

Goal of testing: maximize number and severity of errors found with
given budget.

Limit of testing:

testing can only determine the presence of defects,
not their absence.
Inspections are more (HP: ×10) efficient than testing.

Hierarchy of tests:

Unit tests: of function (members), classes, modules.
Integration tests: of use cases (combination of modules).
System tests: of system.

D. Vermeir,September 2009

Unit Testing

Integration and Testing

39 Introduction

40 Unit Testing

41 Integration and System Testing

D. Vermeir,September 2009

Unit Testing

Unit Testing Road Map

1 Based on requirements (& associated code) and detailed design
(extra classes): determine which items will be tested in what order
⇒ Unit Test Plan.

2 Get input and output data for each test. These may come from
previous iterations⇒ Test Set.

3 Execute tests.

D. Vermeir,September 2009

Unit Testing

Unit Test Types

Black Box: based on requirements/specifications only, without
considering design.

White Box: based on detailed design; attempts code coverage and
looks at weak spots in design.

D. Vermeir,September 2009

Unit Testing

Black Box Testing

The space of test data can be divided into classes of data that should
be processed in an equivalent way: select test cases from each of the
classes.
Example: search value in an array
Input classes:

Array Element
single value present
single value not present
> 1 value first in array
> 1 value last in array
> 1 value middle in array
> 1 value not in array

D. Vermeir,September 2009

Unit Testing

White Box Testing

Use knowledge of code to derive test data (e.g. further classes):
path testing ensures that test cases cover each branch in the flow
graph.
Insert assertions to verify (at run time) predicates that should hold
at that point. (E.g. assert macro in C, C++).

D. Vermeir,September 2009

Unit Testing

Planning Unit Tests

.
1 Policy: Responsibility of author? By project team or external QA

team? Reviewed by?
2 Documentation (see next slide): Incorporate in STD? How to

incorporate in other types of testing? Tools?
3 Determine extent of tests. Prioritize tests: tests that are likely to

uncover errors first.
4 Decide how and where to get test input.
5 Estimate required resources (e.g. based on historic data).
6 Arrange to track metrics: time, defect count & type & source.

D. Vermeir,September 2009

Unit Testing

Unit Test Documentation

Typical:
Test procedures (source code and scripts):

I An example using program test-class.C for each class and a
“check” target in the Makefile.

I Autotools automatically generates a check target based on a Make
variable check_PROGRAMS: An example.

Test (input and output) data.

D. Vermeir,September 2009

Unit Testing

(Member) Function Unit Tests

Verify with normal parameters (black box).
Verify with limit parameters (black box).
Verify with illegal parameters (black box).
Ensure code coverage (white box).
Check termination of all loops (white box) – can also be done
using formal proof.
Check termination of all recursive calls (white box) – can also be
done using formal proof.
Check the handling of error conditions.

See book pp. 408–412.

D. Vermeir,September 2009

Unit Testing

Class Unit Test

Exercise member functions in combination:
I Use most common sequences first.
I Include sequences likely to cause defects.
I Verify with expected result.

Focus unit tests on usage of each data member.
Verify class invariant is not changed (assert).
Verify state diagram is followed.

See book pp. 415–417.

D. Vermeir,September 2009

Integration and System Testing

Integration and Testing

39 Introduction

40 Unit Testing

41 Integration and System Testing

D. Vermeir,September 2009

Integration and System Testing

Integration and System Testing

Integration: Building a (partial) system out of the different modules.
Integration proceeds by iterations.

Builds: A build is a partial system made during integration. An
iteration may involve several builds.

Associated tests:

Interface tests.
Regression tests.
Integration tests.
System tests.
Usability tests.
Acceptance test.

D. Vermeir,September 2009

Integration and System Testing

Planning Integration

1 Identify parts of architecture that will be integrated in each
iteration:

I Try to build bottom-up (no stubs for lower levels).
I Document requirements and use cases supported by iteration.
I Retire risks as early as possible.

2 Plan inspection, testing and review process.
3 Make schedule.

D. Vermeir,September 2009

Integration and System Testing

Testing during integration

Retest functions, modules in the context of the system (e.g.
using no or higher level stubs).

Interface testing of integration.
Regression tests ensures that we did not break anything that worked

in the previous build.
Integration tests exercise the combination of modules, verifying the

architecture (and the requirements).
System tests test the whole system against the architecture and the

requirements.
Usability testing validates the acceptability for the end user.
Acceptance testing is done by the customer to validate the

acceptability of the product.

D. Vermeir,September 2009

Integration and System Testing

Integration Test Road Map

1 Plan integration.
2 For each iteration:

1 For each build:
1 Perform regression tests from previous build.
2 Retest functions, classes, modules.
3 Test interfaces.
4 Perform integration tests.

2 Perform iteration system and usability tests.
3 Perform installation test.
4 Perform acceptance test.

D. Vermeir,September 2009

Integration and System Testing

Integration Testing

1 Decide how and where to store, reuse, code the integration tests
(show in project schedule).

2 Execute unit tests in context of the build.
3 Execute regression tests.
4 Ensure build requirements and (partial) use cases are known.
5 Test against these requirements and use cases.
6 Execute system tests supported by this build.

D. Vermeir,September 2009

Integration and System Testing

Interface Testing

When testing integrated components or modules: look for errors that
misuse, or misunderstand the interface of a component:

Passing parameters that do not conform to the interface
specification, e.g. unsorted array where sorted array expected.
Misunderstanding of error behavior, e.g. no check on overflow or
misinterpretation of return value.

D. Vermeir,September 2009

Integration and System Testing

System Testing

A test (script) for each requirement/use case. In addition, do tests for:
High volume of data.
Performance.
Compatibility.
Reliability and availability (uptime).
Security.
Resource usage.
Installability.
Recoverability.
Load/Stress resistance.

D. Vermeir,September 2009

Integration and System Testing

Usability Testing

Against requirements.
Typically measured by having a sample of users giving a score to
various usability criteria.
Usability criteria should have been specified in advance in the
SRS.

D. Vermeir,September 2009

Integration and System Testing

The Integration and Testing Process

SCMP Specify iterations and builds (example on p. 466–468)
STD (example on p. 470 – 478, yours can be simpler) Mainly

description of tests associated with iterations, builds,
system.

Requirements to be tested.
Responsible.
Resources and schedule.
CI’s that will be produced: e.g. for each test:

I Test script/program.
I Test data.
I Test log.
I Test incidence report.

D. Vermeir,September 2009

