
(Introduction to) Logic Programming

D. Vermeir

September 23, 2009

1 / 259

Preliminaries

Outline

1 Preliminaries

2 Introduction

3 Clausal logic

4 Logic programming

5 Representing structured
knowledge

6 Searching graphs

7 Informed search

8 Language processing

9 Reasoning with Incomplete
Information

10 Default Reasoning

11 The Semantics of Negation

12 Abduction

13 Inductive Logic
Programming

2 / 259

Preliminaries

Organization

Evaluation: 50% project, 50% (closed book) theory exam.
Exercise sessions: first one on Wed. Sep. 30 2009, 15:00-17:00,
IG.
Book.
Copies of transparencies.
See website for further information.

3 / 259

Preliminaries

Contents

1 Introduction.
2 Clausal logic.
3 Logic programming in Prolog (incl. meta-programming).
4 Representing structured knowledge.
5 Search.
6 Language processing using definite clause grammars.
7 Reasoning using incomplete information (incl. abduction).
8 Inductive logic programming (concept learning).

4 / 259

Introduction

Outline

1 Preliminaries

2 Introduction

3 Clausal logic

4 Logic programming

5 Representing structured
knowledge

6 Searching graphs

7 Informed search

8 Language processing

9 Reasoning with Incomplete
Information

10 Default Reasoning

11 The Semantics of Negation

12 Abduction

13 Inductive Logic
Programming

5 / 259

Introduction

introduction

Peter Flach, Simply Logical: Intelligent Reasoning by Example, Wiley, 1994.

6 / 259

Introduction

logical representation of map

described by a series of logical facts:

connected(bond_street,oxford_circus,central)
connected(oxford_circus,tottenham_court_road,central)
connected(bond_street,green_park,jubilee)
connected(green_park,charing_cross,jubilee)
connected(green_park,piccadilly_circus,piccadilly)
connected(piccadilly_circus,leicester_square,piccadilly)
connected(green_park,oxford_circus,victoria)
connected(oxford_circus,piccadilly_circus,bakerloo)
connected(piccadilly_circus,charing_cross,bakerloo)
connected(tottenham_court_road,leicester_square,northern)
connected(leicester_square,charing_cross,northern)

7 / 259

Introduction

derived information

“Two stations are near if they are on the same line, with at most one
station in between”

near(bond_street,oxford_circus)
near(oxford_circus,tottenham_court_road)
near(bond_street,tottenham_court_road)
near(bond_street,green_park)
near(green_park,charing_cross)
near(bond_street,charing_cross)
% etc. (16 formulas)

The same effect can be obtained using 2 rules:

near(X,Y) :- connected(X,Y,L).
near(X,Y) :- connected(X,Z,L), connected(Z,Y,L).

8 / 259

Introduction

the meaning of rules

The second rule

near(X,Y) :- connected(X,Z,L), connected(Z,Y,L)

reads:
“For any values of X , Y , Z and L, X is near Y if X is
connected to Z via L, and Z is connected to Y via L.”

or

∀X ,Y ,Z ,L · connected(X ,Z ,L) ∧ connected(Z ,Y ,L)⇒ near(X ,Y)

9 / 259

Introduction

queries

?- connected(W,tottenham_court_road,L)

the answer can be found by matching it with facts:

{ W = oxford_circus , L = central}

?- near(tottenham_court_road,W)

match it with the conclusion of near(X,Y) :- connected(X,Y,L)

yielding the substitution { X = tottenham_court_road, Y = W }

and try to find an answer to the premises

?- connected(tottenham_court_road,W,L)

giving { W = leicester_square, L = northern }

The final result is

{ X = tottenham_court_road, Y = W = leicester_square,
L = northern }

10 / 259

Introduction

solving a query = constructing a proof (tree)

?− connected(tottenham_court_road,W,L)

?− near(tottenham_court_road,W)

{ W = leicester_square

L = northern }

{ X = tottenham_court_road

Y=W }

connected(tottenham_court_road,
leicester_square,northern

near(X,Y) :− connected(X,Y,L)

To solve a query ?−Q1, . . . ,Qn find a rule A : −B1, . . . ,Bm where A
matches Q1 and solve

?− B1, . . . ,Bm,Q2, . . . ,Qn

Resolution gives a procedural interpretation to logic.

11 / 259

Introduction

proof by refutation

Note: the procedural interpretation 6= the declarative semantics (e.g.
because of looping).

The proof technique used is “reductio ad absurdum” or proof by
refutation: assume that the formula (query) is false and deduce a
contradiction:

?- near(tottenham_court_road,W)

stands for

∀W · near(tottenham_court_road ,W)⇒ false

or
there are no stations near tottenham_court_road

12 / 259

Introduction

recursive rules
reachable(X,Y) :- connected(X,Y,L).
reachable(X,Y) :- connected(X,Z,L), reachable(Z,Y).
?- reachable(bond_street,W)

:− reachable(bond_street,W)
reachable(X,Y) :− connected(X,Z,L),

reachable(Z,Y)

:− connected(bond_stree,Z,L), reachable(Z,W)

{ X = bond_street, Y=W}

central)

:− reachable(oxford_circus,W)

{ Z = oxford_circus, L = central }

reachable(X,Y) :− connected(X,Z,L),
reachable(Z,Y).

:− connected(oxford_circus,Z,L),

{ X = oxford_circus, Y = W}

connected(oxford_circus,
tottenham_court_road,

central)

:− reachable(tottenham_court_road,W)

{ Z = tottenham_court_road,L=central}

reachable(X,Y) :− connected(X,Y,L)

:− connected(tottenham_court_road,W,L)

{ X = tottenham_court_road, Y = W }

connected(tottenham_court_road,

leicester_square,norhtern)

{ W = leicester_square, L = northern }

reachable(Z,W)

connected(bond_street,oxford_circus,

13 / 259

Introduction

prolog proof strategy

Prolog uses depth-first search when finding a proof, backtracking
when it fails, until a solution is found or there are no more possibilities.
It tries rules and facts in the given order, always trying to resolve the
first subgoal.

14 / 259

Introduction

functors

can be used to represent complex data structures; the term

route(tottenham_court_road, route(leicester_square, noroute))

represents

route

tottenham_court_road route

leicester_square noroute

15 / 259

Introduction

using functors

reachable(X,Y,noroute) :- connected(X,Y,L).
reachable(X,Y,route(Z,R)) :-

connected(X,Z,L),
reachable(Z,Y,R).

?- reachable(oxford_circus,charing_cross,R)
{ R = route(tottenham_court_road,

route(leicester_square,noroute))}
{ R = route(piccadilly_circus,noroute)}
{ R = route(piccadilly_circus,

route(leicester_square,noroute))}

route(oxford_circus,
route(leicester_square,noroute))

represents a route via ..
Note: functors are not evaluated in normal LP.

16 / 259

Introduction

lists

Lists are also represented by a functor “.” (compare “cons”).
E.g. the list [a,b,c] is represented as

a .

b .

c

.

[]

which can also be written as .(a,.(b,.(c,[])))

We also use [Head | Tail] where Tail is a list, as a shorthand for
.(Head,Tail)

We can also write e.g. [First, Second, Third | Rest]

17 / 259

Introduction

using lists

A route can be represented by a list:

reachable(X,Y,[]) :- connected(X,Y,L).
reachable(X,Y,[Z|R]) :-

connected(X,Z,L),
reachable(Z,Y,R).

?- reachable(oxford_circus,charing_cross,R)
{R=[tottenham_court_road,leicester_square]}
{R=[piccadilly_circus]}
{R=[piccadilly_circus,leicester_square]}

To ask from which station we can reach charing_cross via 4
intermediate stations:

?- reachable(X,charing_cross,[A,B,C,D])

18 / 259

Clausal logic

Outline

1 Preliminaries

2 Introduction

3 Clausal logic

4 Logic programming

5 Representing structured
knowledge

6 Searching graphs

7 Informed search

8 Language processing

9 Reasoning with Incomplete
Information

10 Default Reasoning

11 The Semantics of Negation

12 Abduction

13 Inductive Logic
Programming

19 / 259

Clausal logic

clausal logic

Any logic system has a:
syntax: which “sentences” are legal.
semantics: the meaning of sentences, i.e. what is the truth value
of a sentence.
proof theory: how to derive new sentences (theorems) from
assumed ones (axioms) by means of inference rules.

A logic system is called
sound if anything you can prove is true
complete if anything that is true can be proven

20 / 259

Clausal logic

propositional clausal logic syntax
Connectives
:- “if”
; “or”
, “and”

clause : head [:−body]

head : [proposition[; proposition]∗]

body : proposition[,proposition]∗

proposition : atom
atom : single word starting with lower case

example:

married ; bachelor :- man, adult

Someone is married or a bachelor if he is a man and an adult

21 / 259

Clausal logic

logic program
a program is a finite set of clauses, each terminated by a period; the
clauses are to be read conjunctively

woman;man :- human.
human :- man.
human :- woman.

in traditional logic notation:

(human⇒ (woman ∨man))
∧(man⇒ human)
∧(woman⇒ human)

Using A⇒ B ≡ ¬A ∨ B we get

(¬human ∨ woman ∨man)
∧(¬man ∨ human)
∧(¬woman ∨ human)

22 / 259

Clausal logic

clause

In general a clause

H1; . . . ; Hn :−B1, . . . ,Bm

is equivalent with

H1 ∨ . . . ∨ Hn ∨ ¬B1 ∨ . . . ∨ ¬Bm

A clause can also be defined as

L1 ∨ L2 ∨ . . . ∨ Ln

where each Li is a literal, i.e. Li = Ai or Li = ¬Ai , with Ai a proposition.

23 / 259

Clausal logic

special clauses

An empty head stands for false, an empty body stands for true:

man :- . % usually written as ‘‘man.’’
:- impossible.

is the same as

(true⇒ man) ∧ (impossible⇒ false)

i.e.
man ∧ ¬impossible

24 / 259

Clausal logic

semantics

The Herbrand base BP of a program P is the set of all atoms
occurring in P.
A Herbrand interpretation of P is a mapping

i : BP → {true, false}

We will represent i by I = i−1(true), the set of true propositions.
An interpretation is a model for a clause if the clause is true
under the interpretation, i.e. if either the head is true or the body is
false.
An interpretation is a model for a program if it is a model for each
clause in the program.

25 / 259

Clausal logic

example

Consider P:

woman;man :- human.
human :- man.
human :- woman.

Then:
BP = {woman,man,human}

and a possible interpretation is

i = {(woman, true), (man, false), (human, true)}

or
I = {woman,human}

All clauses in P are true under I so it is a model of P.
The interpretation J = {woman} is not a model of P.

26 / 259

Clausal logic

logical consequence
A clause C is a logical consequence of a program P, denoted

P |= C

if every model of P is also a model of C.
E.g. for P:

woman.
woman;man :- human.
human :- man.
human :- woman.

we have that P |= human. Note that P has two models:

M1 = {woman,human}
M2 = {woman,man,human}

Intuitively, M1 is preferred since it only accepts what must be true.

27 / 259

Clausal logic

minimal models
Thus we could define the best model to be the minimal one.
However, consider P ′:

woman;man :- human.
human.

P has 3 models

M1 = {woman,human}
M2 = {man,human}
M3 = {woman,man,human}

and M1 and M2 are both minimal!
If we restrict (as in Prolog) to definite clauses, which have at most one
atom in the head, then:

Theorem
A definite logic program has a unique minimal model.

28 / 259

Clausal logic

proof theory

How to compute logical consequences without checking all the
models?

Use resolution as an inference rule.

married;bachelor :- man,adult.
has_wife :- man,married.

married;bachelor:−man,adulthas_wife:−man,married

has_wife;bachelor:−man,adult

Using resolution, we get

has_wife;bachelor :- man,adult.

which is a logical consequence of the program.

29 / 259

Clausal logic

resolution: intuition

married;bachelor :- man,adult.
has_wife :- man,married.

¬man ∨ ¬adult ∨married ∨ bachelor
¬man ∨ ¬married ∨ has_wife

either married and then ¬man ∨ has_wife
or ¬married and then ¬man ∨ ¬adult ∨ bachelor

thus
¬man ∨ ¬adult ∨ bachelor ∨ ¬man ∨ has_wife

has_wife;bachelor :- man,adult.

30 / 259

Clausal logic

resolution in traditional notation

E1 ∨ E2
¬E2 ∨ E3
⇒ E1 ∨ E3

31 / 259

Clausal logic

special case: modus ponens

A
A⇒ B
B

In clause notation:
A
¬A ∨ B
B

32 / 259

Clausal logic

special case: modus tollens

¬B
A⇒ B
¬A

In clause notation
¬B
¬A ∨ B
¬A

33 / 259

Clausal logic

resolution with definite clauses

square :- rectangle, equal_sides.
rectangle :- parallelogram, right_angles.

square:−rectangle,equal_sides

rectangle:−parallelogram,right_angles

square:−equal_sides,parallelogram,right_angles

resolvent

The resolvent can be used in further resolution steps...

Definition
A proof or derivation of a clause C from a program P is a sequence
of clauses

C0, . . . ,Cn = C

such that ∀i · = 0 . . . n : either Ci ∈ P or Ci is the resolvent of Ci1 and
Ci2 (i1 < i , i2 < i).

We write P ` C if there is a proof of C from P.

34 / 259

Clausal logic

soundness, completeness

Theorem
Resolution is sound for propositional clausal logic, i.e. if P ` C then
P |= C.

About completeness:
P |= C

iff each model of P is a model of C
iff no model of P is a model of ¬C (1)

If C ≡ L1 ∨ L2 ∨ . . . ∨ Ln then

¬C ≡ ¬L1 ∧ ¬L2 ∧ . . . ∧ ¬Ln

≡ {¬L1,¬L2, . . . ,¬Ln}

i.e. ¬C is a set of clauses and so
(1) ≡ P ∪ ¬C has no model
iff P ∪ ¬C is inconsistent (by definition)

35 / 259

Clausal logic

completeness

Theorem
If Q is inconsistent then Q ` �.

where � is the empty clause (true⇒ false) which has no model.

Theorem
Resolution is complete for propositional clausal logic, i.e. if

P |= C

then
P ∪ ¬C ` �

I.e. C is a logical consequence of P iff one can derive, using
resolution, the empty clause (�) from P ∪ ¬C.

36 / 259

Clausal logic

Example: consider P2

happy :- has_friends.
friendly :- happy.

We show that P2 |= C where C is

friendly :- has_ friends

P2 ∪ ¬C is

happy :- has_friends. (1)
friendly :- happy. (2)
has_friends. (3)
:- friendly. (4)

The proof:

(2+4) :- happy (5)
(1+5) :- has_friends (6)
(3+6) <empty-clause>

37 / 259

Clausal logic

relational clausal logic
Add individual constants and variables; the syntax has the same
connectives as in the propositional case.

constant : single word starting with lower case

variable : single word starting with upper case

term : constant | variable
predicate : single word starting with lower case

atom : predicate[(term[, term]∗)]

clause : head [:−body]

head : [atom[; atom]∗]

body : atom[,atom]∗

likes(peter,S) :- student_of(S,peter)

for any S: if S is a student of peter then peter likes S
38 / 259

Clausal logic

arity, ground term, semantics

A predicate has an arity to denote the number of arguments.
E.g. likes/2. In Prolog, p/2 is different from p/3.
A term (atom) is ground if it does not contain any variables.

semantics:
The Herbrand universe of a program P is the set of all ground
terms occurring in it.
The Herbrand base BP of P is the set of all ground atoms that
can be constructed using predicates in P and arguments in the
Herbrand universe of P.
A Herbrand interpretation is a subset I ⊆ BP of ground atoms
that are true.

39 / 259

Clausal logic

Consider P3

likes(peter,S) :- student_of(S,peter). % C1
student_of(maria,peter).

BP3 =

{ likes(peter,peter), likes(peter,maria), likes(maria,peter),
likes(maria,maria), student_of(peter,peter),
student_of(peter,maria), student_of(maria,peter),
student_of(maria,maria) }

An interpretation
I3 ={likes(peter,maria), student_of(maria,peter)}

Definition
A substitution is a mapping σ : Var→ Trm. For a clause C, the result
of σ on C, denoted Cσ is obtained by replacing all occurrences of
X ∈ Var in C by σ(X). Cσ is an instance of C.

If σ = {S/maria} then C1σ is
likes(peter,maria) :- student_of(maria,peter).

40 / 259

Clausal logic

semantics
Definition
A ground instance of a clause C is the result Cσ of some substitution
such that Cσ contains but ground atoms.

Ground clauses are like propositional clauses.

Definition
An interpretation I is a model of a clause C iff it is a model of every
ground instance of C. An interpretation is a model of a program P iff it
is a model of each clause C ∈ P.

All ground instances of clauses in P3:
likes(peter,peter) :- student_of(peter,peter).
likes(peter,maria) :- student_of(maria,peter).
student_of(maria,peter).

Thus M3 = {likes(peter,maria), student_of(maria,peter)} is a
model of P3.

41 / 259

Clausal logic

proof theory

Naive version: do (propositional) resolution with all ground instances of
clauses in P.

Definition
A substitution σ is a unifier of two atoms a1 and a2 iff a1σ = a2σ. A
substitution σ1 is more general than σ2 if σ2 = σ1θ for some
substitution θ.
A unifier θ of a1 and a2 is a most general unifier (mgu) of a1 and a2 iff
it is more general than any other unifier of a1 and a2.

Theorem
If two atoms are unifiable then they their mgu is unique up to renaming.

42 / 259

Clausal logic

proof theory using mgu: example

student_of(X,T):−follows(X,C),

likes(peter,S):−student_of(S,peter)

likes(peter,maria):−follows(maria,C),teaches(peter,C)

teaches(T,C)
{S/maria,T/peter,X/maria}

43 / 259

Clausal logic

proof theory using mgu

“Do resolution on many clause-instances at once.”

If

C1 = L1
1 ∨ . . . L1

n1

C2 = L2
1 ∨ . . . L2

n2

L1
i θ = ¬L2

j θ for some 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

where θ = mgu(L1
i ,L

2
j), then

L1
1θ∨ . . .∨L1

i−1θ∨L1
i+1θ∨ . . .∨L1

n1
θ∨L2

1θ∨ . . .∨L2
j−1θ∨L2

j+1θ∨ . . .∨L2
n2
θ

44 / 259

Clausal logic

proof theory example
Consider P4:

likes(peter,S) :- student_of(S,peter).
student_of(S,T) :- follows(S,C), teaches(T,C).
teaches(peter,logicpr).
follows(maria,logicpr).

? “is there anyone whom peter likes” (query)
⇒ add “peter likes nobody” (:- likes(peter,N))

:−likes(peter,N) likes(peter,S):−student_of(S,peter)

:−student_of(N,peter)

:−follows(N,C),teaches(peter,C)

{N/maria,C/logicpr}

:−teaches(peter,logicpr) teaches(peter,logicpr)

{S/N}

teaches(T,C){S/N,T/peter}

follows(maria,logicpr)

student_of(S,T):−follows(S,C),

Thus (:- likes(peter,N)){N/maria} ∪ P4 ` � and thus
P4 |= likes(peter,maria)

45 / 259

Clausal logic

soundness, completeness

Theorem
Relational clausal logic is sound and (refutation) complete:

P ` C ⇒ P |= C
P ∪ {C} inconsistent ⇒ P ∪ {C} ` �

New formulation is because: ¬(∀X · p(X)) ≡ ∃X · ¬p(X) but

p(X). ≡ ∀X · p(X)

while
:- p(X). ≡ ∀X · ¬p(X)

46 / 259

Clausal logic

decidability relational clausal logic

Theorem
The question

P |= C

is decidable for relational clausal logic

Because the Herbrand base is finite.

47 / 259

Clausal logic

full clausal logic
Add function symbols (functors), with an arity; constants are 0-ary
functors.

functor : single word starting with lower case

variable : single word starting with upper case

term : variable | functor [(term[, term]∗)]

predicate : single word starting with lower case

atom : predicate[(term[, term]∗)]

clause : head [:−body]

head : [atom[; atom]∗]

body : atom[,atom]∗

plus(0,X,X).
plus(s(X),Y,s(Z)) :- plus(X,Y,Z).
% read s(X) as ‘‘successor of X’’

48 / 259

Clausal logic

semantics

As for relational case; models may be (necessarily) infinite as in P5:

plus(0,X,X).
plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

M5 =

{ plus(0,0,0), plus(s(0),0,s(0),
plus(s(s(0)),0,s(s(0)), ...

plus(0,s(0),s(0)), plus(s(0),s(0),s(s(0))), ...
... }

49 / 259

Clausal logic

computing the mgu

Definition
A set of equations

{si = ti | i = 1 . . . n}

between terms is in solved form if
∀1 ≤ i ≤ n · si ∈ Var

∀1 ≤ i ≤ n · tidoes not contain any variable from {si | 1 ≤ i ≤ n}

A set of equations {Xi = ti} represents a substitution {Xi/ti}.

Theorem
if solve({t1 = t2}) succeeds, it returns mgu(t1, t2).

50 / 259

Clausal logic

proc solve(var E : set of equations)

repeat
select s = t ∈ E
case s = t of

f (s1, . . . , sn) = f (t1, . . . , tn) (n ≥ 0) :
replace s = t by {s1 = t1, . . . , sn = tn}

f (s1, . . . , sm) = g(t1, . . . , tn) (f/m 6= g/n) :
fail

X = X :
remove X = X from E

t = X (t 6∈ Var) :
replace t = X by X = t

X = t (X ∈ Var ∧ X 6= t ∧ X occurs more than once in E) :
if Xoccurs in t
then fail
else replace all occurrences of X in E (except in X = t) by t

esac
until no change

51 / 259

Clausal logic

examples

{f (X ,g(Y)) = f (g(Z),Z)}
⇒ {X = g(Z),g(Y) = Z}
⇒ {X = g(Z),Z = g(Y)}
⇒ {X = g(g(Y)),Z = g(Y)}
⇒ {X/g(g(Y)),Z/g(Y)}

{f (X ,g(X),b) = f (a,g(Z),Z)}
⇒ {X = a,g(X) = g(Z),b = Z}
⇒ {X = a,X = Z ,b = Z}
⇒ {X = a,a = Z ,b = Z}
⇒ {X = a,Z = a,b = Z}
⇒ {X = a,Z = a,b = a}
⇒ fail

52 / 259

Clausal logic

occur check

{l(Y ,Y) = l(X , f (X))}
⇒ {Y = X ,Y = f (X)}
⇒ {Y = X ,X = f (X)}
⇒ fail

The last example illustrates the need for the “occur check” (which is
not done in most Prolog implementations)

53 / 259

Clausal logic

soundness, completeness

Theorem
Full clausal logic is sound and (refutation) complete:

P ` C ⇒ P |= C
P ∪ {C} inconsistent ⇒ P ∪ {C} ` �

However the question
P |= C

is only semi-decidable, i.e. there is no algorithm that will always
answer the question (with “yes” or “no”) in finite time; but there is an
algorithm that, if P |= C, will answer “yes” in finite time but this
algorithm may loop if P 6|= C.
This means that prolog may loop on certain queries.

54 / 259

Clausal logic

definite clause logic

married(X);bachelor(X) :- man(X), adult(X).
man(peter). adult(peter).
:- married(maria). :- bachelor(maria).
man(paul). :- bachelor(paul).

married(X);bachelor(X):−man(X),adult(X) man(peter)

adult(peter)married(peter);bachelor(peter):−adult(peter)

married(peter);bachelor(peter)

{X/peter}

married(X);bachelor(X):−man(X),adult(X)

bachelor(maria):−man(maria),adult(maria)

:−man(maria),adult(maria)

{X/maria}

:−married(maria)

:−bachelor(maria)

married(X);bachelor(X):−man(X),adult(X) man(paul)

married(paul);bachelor(paul):−adult(paul)
:−bachelor(paul)

{X/paul}

married(paul):−adult(paul)

right .. left

left..right

both

55 / 259

Clausal logic

For efficiency reasons: restriction to definite clauses where the
head contains at most 1 atom.

A :−B1, . . . ,Bn

“prove A by proving each of B1, . . . ,Bn”.
This is the procedural interpretation of definite clauses. It makes
the search for a refutation much more efficient.
Problem: how to represent

married(X);bachelor(X) :- man(X), adult(X).

⇒ To prove married(X): show man(X), adult(X) and not
bachelor(X) .

56 / 259

Clausal logic

general clauses

A (pseudo-definite) general clause may contain negations in the body:

married(X) :- man(X), adult(X), not(bachelor(X)).

With man(jim). adult(jim). this will have

{ married(jim), adult(jim), man(jim) }

as a minimal model. Alternatively:

bachelor(X) :- man(X), adult(X), not(married(X)).

has, with man(jim). adult(jim). ,

{ bachelor(jim), adult(jim), man(jim) }

as a minimal model.

57 / 259

Clausal logic

clausal logic vs. predicate logic

Every set of clauses can be rewritten as an equivalent sentence in first
order (predicate) logic.
Example:

married;bachelor :- man,adult.
haswife :- married

becomes

(man ∧ adult ⇒ married ∨ bachelor) ∧ (married ⇒ haswife)

or, using A⇒ B ≡ ¬A ∨ B and ¬(A ∧ B) ≡ ¬A ∨ ¬B:

(¬man ∨ ¬adult ∨married ∨ bachelor) ∧ (¬married ∨ haswife)

which is in conjunctive normal form (a conjunction of disjunctions of
literals).

58 / 259

Clausal logic

Variables in clauses are universally quantified:

reachable(X,Y,route(Z,R)):- connected(X,Z,L), reachable(Z,Y,R).

becomes

∀X∀Y∀Z∀R∀L :
¬connected(X ,Z ,L) ∨ ¬reachable(Z ,Y ,R)
∨reachable(X ,Y , route(Z ,R))

Note that nonempty(X) :- contains(X,Y). becomes

∀X∀Y : nonempty(X) ∨ ¬contains(X ,Y)
≡ ∀X : (∀Y : nonempty(X) ∨ ¬contains(X ,Y))
≡ ∀X : (nonempty(X) ∨ (∀Y : ¬contains(X ,Y)))
≡ ∀X : nonempty(X) ∨ ¬(∃Y : contains(X ,Y))
≡ ∀X : (∃Y : contains(X ,Y))⇒ nonempty(X)

For each first order sentence, there exists an “almost equivalent” set of
clauses.

59 / 259

Clausal logic

algorithm

∀X [brick(X)⇒ (∃Y [on(X ,Y) ∧ ¬pyramid(Y)]
∧¬∃Y [on(X ,Y) ∧ on(Y ,X)] ∧ ∀Y [¬brick(Y)⇒ ¬equal(X ,Y)])]

Step 1: eliminate⇒ using A⇒ B ≡ ¬A ∨ B.

∀X [¬brick(X) ∨ (∃Y [on(X ,Y) ∧ ¬pyramid(Y)]
∧¬∃Y [on(X ,Y) ∧ on(Y ,X)] ∧ ∀Y [¬(¬brick(Y)) ∨ ¬equal(X ,Y)])]

Step 2: move ¬ inside using

¬(A ∧ B) ≡ ¬A ∨ ¬B
¬(A ∨ B) ≡ ¬A ∧ ¬B
¬(¬A) ≡ A

¬∀X [p(X)] ≡ ∃X [¬p(X)]

¬(∃X [p(X)] ≡ ∀X [¬p(X)]

60 / 259

Clausal logic

∀X [¬brick(X) ∨ (∃Y [on(X ,Y) ∧ ¬pyramid(Y)]
∧∀Y [¬on(X ,Y) ∨ ¬on(Y ,X)]
∧∀Y [brick(Y) ∨ ¬equal(X ,Y)])]

Step 3: replace ∃ using skolem functors
E.g.

∀X∃Y : likes(X ,Y)

becomes
∀X : likes(X , f (X))

where “f ” is a new Skolem functor. All universally quantified variables
in whose scope ∃ occurs become arguments of the Skolem term.
E.g. ∃X : likes(peter ,X) becomes likes(peter ,g).
In clausal logic, one is forced to use abstract names (using functors)
for existentially quantified individuals.

61 / 259

Clausal logic

In example:

∀X [¬brick(X) ∨ (∃Y [on(X ,Y) ∧ ¬pyramid(Y)]
∧∀Y [¬on(X ,Y) ∨ ¬on(Y ,X)]
∧∀Y [brick(Y) ∨ ¬equal(X ,Y)])]

becomes

∀X [¬brick(X)∨
([on(X , sup(X)) ∧ ¬pyramid(sup(X))]
∧∀Y [¬on(X ,Y) ∨ ¬on(Y ,X)]
∧∀Y [brick(Y) ∨ ¬equal(X ,Y)])]

Step 4: rename variables (make unique)

∀X [¬brick(X)∨
([on(X , sup(X)) ∧ ¬pyramid(sup(X))]
∧∀Y [¬on(X ,Y) ∨ ¬on(Y ,X)]
∧∀Z [brick(Z) ∨ ¬equal(X ,Z)])]

62 / 259

Clausal logic

∀X [¬brick(X)∨
([on(X , sup(X)) ∧ ¬pyramid(sup(X))]
∧∀Y [¬on(X ,Y) ∨ ¬on(Y ,X)]
∧∀Z [brick(Z) ∨ ¬equal(X ,Z)])]

Step 5: bring ∀ to front

∀X∀Y∀Z [¬brick(X)∨
([on(X , sup(X)) ∧ ¬pyramid(sup(X))]
∧[¬on(X ,Y) ∨ ¬on(Y ,X)]
∧[brick(Z) ∨ ¬equal(X ,Z)])]

63 / 259

Clausal logic

Step 6
: bring ∨ inside using

A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C)

∀X∀Y∀Z [¬brick(X)∨([on(X , sup(X)) ∧ ¬pyramid(sup(X))]

∧[¬on(X ,Y) ∨ ¬on(Y ,X)]∧[brick(Z) ∨ ¬equal(X ,Z)])]

becomes

∀X∀Y∀Z [¬brick(X)∨
([on(X , sup(X))∧¬pyramid(sup(X))]
∧[¬brick(X) ∨ ¬on(X ,Y) ∨ ¬on(Y ,X)]
∧[¬brick(X) ∨ brick(Z) ∨ ¬equal(X ,Z)])]

∀X∀Y∀Z [¬brick(X) ∨ on(X , sup(X))]
∧[¬brick(X) ∨ ¬pyramid(sup(X))]
∧[¬brick(X) ∨ ¬on(X ,Y) ∨ ¬on(Y ,X)]
∧[¬brick(X) ∨ brick(Z) ∨ ¬equal(X ,Z)])]

64 / 259

Clausal logic

Step 7
: eliminate ∧ by splitting

∀X [¬brick(X) ∨ on(X , sup(X))]
∀X [¬brick(X) ∨ ¬pyramid(sup(X))]
∀X∀Y [¬brick(X) ∨ ¬on(X ,Y) ∨ ¬on(Y ,X)]
∀X∀Z [¬brick(X) ∨ brick(Z) ∨ ¬equal(X ,Z)])]

Step 8: rename variables (make unique)

∀X [¬brick(X) ∨ on(X , sup(X))]
∀W [¬brick(W) ∨ ¬pyramid(sup(W))]
∀U∀Y [¬brick(U) ∨ ¬on(U,Y) ∨ ¬on(Y ,U)]
∀V∀Z [¬brick(V) ∨ brick(Z) ∨ ¬equal(V ,Z)])]

Step 9: make clauses
on(X,sup(X)) :- brick(X).
:- brick(W), pyramid(sup(W)).
:- brick(U), on(U,Y), on(Y,U).
brick(Z) :- brick(V), equal(V,Z).

65 / 259

Clausal logic

definite clause programs are universal

Definite clause programs are as powerful as any other programming
language:

Theorem
Let f be an n-ary partial recursive function. There exists a definite
clause program Pf and an n + 1-ary predicate symbol pf such that the
query

:−pf (sk1(0), . . . , skn (0),X)

returns
{X/sk (0)}

iff
f (k1, . . . , kn) = k

66 / 259

Logic programming

Outline

1 Preliminaries

2 Introduction

3 Clausal logic

4 Logic programming

5 Representing structured
knowledge

6 Searching graphs

7 Informed search

8 Language processing

9 Reasoning with Incomplete
Information

10 Default Reasoning

11 The Semantics of Negation

12 Abduction

13 Inductive Logic
Programming

67 / 259

Logic programming

logic programming

sentences in clausal logic:
have a declarative meaning (e.g. order of atoms in the body is
irrelevant)
have a procedural meaning

Thus clausal logic can be used as a programming language:
1 write down knowledge in a (declarative) program that specifies

what the problem is rather than how it should be solved
2 apply inference rules to find solution

algorithm = logic + control

68 / 259

Logic programming

algorithm = logic + control

where
logic is declarative knowledge and
control is procedural knowledge

Prolog is not a purely declarative language since e.g. the order of the
rules matters.
Prolog’s proof procedure is based on resolution refutation in definite
clause logic where a resolution strategy is fixed:

which literal to resolve upon
which clause to resolve with

69 / 259

Logic programming

sld refutation

grandfather(X,Z) :- father(X,Y), parent(Y,Z).
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).
father(a,b).
mother(b,c).

:−grandfather(a,X)

grandfather(C,D):−father(C,E),parent(E,D).

father(a,b).

:−mother(b,X).

parent(U,V):−mother(U,V).

:−parent(b,X).

:−father(a,E),parent(E,X).

{C/a,D/X}

{E/b}

{U/b,V/X}

{X/c}

goal (query)

derived goal

{X/c,C/a,D/c,E/b,U/b,V/c}

computed substitution

computed answer substitution

mother(b,c).

70 / 259

Logic programming

SLD

Always resolve with (derived) goal: Linear proof trees.
Use Selection rule to determine literal in goal to resolve with.
Programs with Definite clauses only.

Prolog’s selection rule:
Consider goal literals left to right.
(Try clauses in order of occurrence in program)

SLD tree: shows (only) alternative resolvents

71 / 259

Logic programming

SLD trees

:−grandfather(a,X)

:−parent(b,X)

:−father(b,X) :−mother(b,X)

blocked

:−father(a,E),parent(E,X)

Every � leaf corresponds to a successful refutation (a success
branch). A blocked leaf corresponds to a failed branch.
Prolog does a depth-first traversal of an SLD tree.
What if an SLD tree has infinite branches?

72 / 259

Logic programming

infinite sld trees

sibling(X,Y) :- sibling(Y,X).
sibling(b,a).

:−sibling(a,X)

:−sibling(X,a)

...

:−sibling(a,X)

:−sibling(X,a)

sibling(a,b).
sibling(b,c).
sibling(X,Y) :- sibling(X,Z), sibling(Z,Y).

:−sibling(a,X)

:−sibling(a,Z),sibling(Z,Y)

:−sibling(a,U),sibling(U,Z),
sibling(Z,Y)

:−sibling(a,Z),sibling(Z,Y)

...

...

:−sibling(b,Y)

73 / 259

Logic programming

problems with SLD resolution

Get trapped in infinite subtree: thus Prolog is incomplete. We
could do e.g. breadth-first search but Prolog sacrifices
completeness for efficiency (also in memory usage).
Any infinite SLD tree may cause the interpreter to loop if no (more)
answers are to be found: this is because clausal logic is only
semi-decidable.

Thus one should be aware of the Prolog strategy (procedural
knowledge), e.g.

recursive clauses after non-recursive ones
be careful with symmetric predicates: p(X,Y) :- p(Y,X)

74 / 259

Logic programming

pruning with “cut”

parent(X,Y) :- father(X,Y), !.
parent(X,Y) :- mother(X,Y).
father(a,b).
mother(b,c).

:−parent(a,X)

:−mother(a,X)

:−!

:−father(a,X),!

The meaning of “cut” (!): don’t try alternatives for
the literals to the left of the cut
the clause in which the cut is found

(A cut is always true.)

75 / 259

Logic programming

red & green cuts

parent(X,Y) :- father(X,Y), !.
parent(X,Y) :- mother(X,Y).
father(a,b).
father(a,c).
mother(m,b).
mother(m,c).

:−parent(a,X)

:−father(a,X),! :−mother(a,X)

:−! :−!

A green cut does not cut away any success branches. A red cut does,
making the procedural meaning of the program different from the
declarative meaning.

76 / 259

Logic programming

the dangers of “!”

max(M,N,M) :- M>=N.
max(M,N,N) :- M=<N.

More efficient using a red cut:

max(M,N,M) :- M>=N,!.
max(M,N,N).

77 / 259

Logic programming

the dangers of “!”

max(M,N,M) :- M>=N.
max(M,N,N) :- M=<N.

More efficient using a red cut:

max(M,N,M) :- M>=N,!.
max(M,N,N).

This is not equivalent! (try max(5,3,3)).
The program would be correct if only queries of the form

max(a,b,X)

were asked.

78 / 259

Logic programming

negation as failure

Cut can be used to ensure that the bodies of clauses are mutually
exclusive.

p :- q,!,r.
p :- s. % only if q fails

is equivalent to

p :- q, r.
p :- not_q,s.
not_q :- q,!,fail.
not_q.

where fail is always false.
More general: meta-predicate not/1 implementing negation by failure.

not(Goal) :- Goal,!,fail.
not(Goal).

79 / 259

Logic programming

naf examples

p :- q, r.
p :- not(q), s.
s.
% not(q) :- q,!,fail.
% not(q).

:−p

:−q,r :−not(q),s.

:−q,!,fail,s :−s

80 / 259

Logic programming

naf examples

p :- q,!,r. % more efficient but less clear
p :- s.
s.

:−p

:−q,!,r :−s

81 / 259

Logic programming

naf examples

p :- not(q), r.
p :- q.
q.
r.
% not(q) :- q,!,fail.
% not(q).

:−not(q),r :−q

:−q,!,fail,r

:−!,fail,r

:−fail,r

:−r

:−p

82 / 259

Logic programming

floundering
occurs when the argument of not/1 is not grounded.

bachelor(X) :- not(married(X)), man(X).
man(fred).
man(peter).
married(peter).

:−bachelor(X)

:−not(married(X)),man(X)

:−married(X),!,fail,man(X) man(X)

:−!,fail,man(peter)

:−fail,man(peter)

X is not a bachelor if anyone is married,..

83 / 259

Logic programming

sldnf resolution

SLDNF resolution says that not(Goal) fails only if Goal has a
refutation with an empty answer substitution (in the example: if
married(X).).
Prolog does not check this; hence Prolog is not sound w.r.t.
negation by failure.
If Goal is ground, only empty answer substitutions are possible...
The example can be fixed by changing the order of the body of the
rule:

bachelor(X) :- man(X), not(married(X)).

You can also read the original as

∀X · ¬(∃Y : married(Y)) ∧man(X)⇒ bachelor(X)

84 / 259

Logic programming

if .. then .. else ..
p:- q,r,s,!,t.
p:- q,r,u.
q.
r.
u.

q , r are evaluated twice.

p :- q,r,if_then_else(s,t,u).
if_then_else(S,T,U):- S,!,T.
if_then_else(S,T,U):- U.

In most prologs:

diagnosis(P,C):- % C: condition, P: patient
temperature(P,T),
(T=<37 -> blood_pressure(P,C)
;T>37,T<38 -> Condition = ok
;otherwise -> fever(P,C)
).

85 / 259

Logic programming

tail recursion and “!”

play(Board,Player):-
lost(Board,Player).

play(Board,Player):-
find_move(Board,Player,Move),
make_move(Board,Move,NewBoard),
next_player(Player,Next),!,
play(NewBoard,Next).

Cut ensures that no previous moves are reconsidered and optimizes
tail recursion to iteration.

86 / 259

Logic programming

arithmetic in prolog

nat(0).
nat(s(X)):- nat(X).

add(0,X,X).
add(s(X),Y,s(Z)):- add(X,Y,Z).

mul(0,X,0).
mul(s(X),Y,Z):-

mul(X,Y,Z1), add(Y,Z1,Z).

Not efficient!
is(Result,expression) is true iff expression can be evaluated as an
expression and its resulting value unified with Result

?- X is 5+7-3
X = 9

?- X is 5*3+7/2
X = 18.5

87 / 259

Logic programming

is/2 is different from =/2 ; the latter succeeds if its arguments can be
unified.

?- X = 5+7-3
X = 5+7-3

?- 9 = 5+7-3
no

?- X = Y+3
X = _947+3
Y = _947

?- X = f(X)
X = f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(..
error: term being written is too deep

The last example illustrates that Prolog does not implement the occur
check.
Prolog also has other built-in arithmetic predicates: <,>,=<,>=.
\=/2 succeeds if its arguments are not unifiable.

88 / 259

Logic programming

accumulators

Tail-recursive clauses are more efficient.

length([],0).
length([H|T],N) :- length(T,N1), N is N1+1.

The program is not tail-recursive.
It can be made tail-recursive by introducing an accumulator:

Read length_acc(L,M,N) as N = M + length(L).

length(L,N) :- length_acc(L,0,N).
length_acc([],N,N).
length_acc([H|T],N0,N) :-

% N0 is "length so far"
N1 is N0+1, length_acc(T,N1,N).

89 / 259

Logic programming

reverse/2

naive_reverse([],[]).
naive_reverse([H|T],R) :-

naive_reverse(T,R1),
append(R1,[H],R).

append([],Y,Y).
append([H|T],Y,[H|Z]) :-

append(T,Y,Z).

90 / 259

Logic programming

efficient reverse using accumulator
Define

reverse(X ,Y ,Z)⇔ Z = reverse(X) + Y

Then:

reverse(X , [],Z) ⇔ Z = reverse(X)

reverse([H|T],Y ,Z) ⇔ Z = reverse([H|T]) + Y
⇔ Z = reverse(T) + [H] + Y
⇔ Z = reverse(T) + [H|Y]

⇔ reverse(T , [H|Y],Z)

reverse(X,Z) :- reverse(X,[],Z).
reverse([],Z,Z).
reverse([H|T],Y,Z) :-

% Y is "reversed so far"
reverse(T,[H|Y],Z).

91 / 259

Logic programming

difference lists

X

YX − Y

Represent a list by a term L1-L2.
[a,b,c,d]-[d] [a,b,c]
[a,b,c,1,2]-[1,2] [a,b,c]
[a,b,c|X]-X [a,b,c]

92 / 259

Logic programming

difference lists

reverse(X ,Y ,Z) ⇔ Z = reverse(X) + Y
⇔ reverse(X) = Z − Y

and

reverse([H|T],Y ,Z) ⇔ Z = reverse([H|T]) + Y
⇔ Z = reverse(T) + [H|Y]

⇔ reverse(T) = Z − [H|Y]

reverse(X,Z) :- reverse_dl(X,Z-[]).
reverse_dl([],Z-Z).
reverse_dl([H|T],Z-Y) :-

reverse_dl(T,Z-[H|Y]).

93 / 259

Logic programming

appending difference lists

Difference lists can be appended in constant time:

X

Y
Z

+ =

X − Z Z − Y X − Y

append(X−Z , Z−Y, X−Y)

94 / 259

Logic programming

difference lists example

append_dl(X-Z, Z-Y, X-Y).

:- append_dl([abc|A] - A, [de|B] - B, D)
% unify with append_dl(X-Z, Z-Y, X-Y)
X = [abc|A]
Z = A = [de|B]
Y = B
D = X - Y = [abc|A] - B = [abcde|B] - B

95 / 259

Logic programming

example: flatten/2

atomic/1 succeeds if its argument is a simple constant.

flatten([X|Xs],Y) :-
flatten(X,Y1), flatten(Xs,Y2),
append(Y1,Y2,Y).

flatten(X,[X]) :- atomic(X), X\=[].
flatten([],[]).

with difference lists:

flatten(X,Y) :- flatten_dl(X,Y-[]).
flatten_dl([X|Xs],Y-Z) :- % append flat(X), flat(Xs)

flatten_dl(X,Y-Y1), flatten_dl(Xs,Y1-Z).
flatten_dl(X,[X|Xs]-Xs) :-

atomic(X), X\=[].
flatten_dl([],U-U).

96 / 259

Logic programming

other incomplete data structures

lookup(Key,[(Key,Value)|Dict],Value).
lookup(Key,[(Key1,Value1)|Dict],Value) :-

Key \= Key1,
lookup(Key,Dict,Value).

Example: suppose D = [(a,b),(c,d)|X]

?- lookup(a,D,V)
V = b
?- lookup(c,D,e)
no
?- lookup(e,D,f)
yes
% D = [(a,b),(c,d),(e,f)|X]

97 / 259

Logic programming

second order predicates

map(R,[],[]).
map(R,[X|Xs],[Y|Ys]):-

R(X,Y), map(R,Xs,Ys).
?-map(parent,[a,b,c],X)

Most systems do not allow R(X,Y) in the body.
Term=..List is true iff

Term is a constant and List is the list [Term]
Term is a compound term f(A1,..,An) and List is a list with
head f and whose tail unifies with [A1,..,An]

map(R,[],[]).
map(R,[X|Xs],[Y|Ys]):-

Goal =.. [R,X,Y],
call(Goal), map(R,Xs,Ys).

98 / 259

Logic programming

findall/3

findall(Term,Goal,Bag) is true iff Bag unifies with the list of values to
which a variable X not occurring in Term or Goal would be bound by
successive resatisfactions of (call(Goal), X=Term) after systematic
replacement of all variables in X by new variables.

parent(a,b).
parent(a,c).
parent(a,d).
parent(e,f).
parent(e,g).
children(Parent,Children):-

findall(C,parent(Parent,C),Children).
?-children(a,Children)
Children = [b,c,d]

99 / 259

Logic programming

bagof/3, setof/3

parent(a,b). parent(a,c). parent(a,d).
parent(e,f). parent(e,g).
?-bagof(C,parent(P,C),L)
C = _951
P = a
L = [b,c,d]

;
C = _951
P = e
L = [f,g]

?-bagof(C,P^parent(P,C),L)
C = _957
P = _958
L = [b,c,d,f,g]

(P ^ parent(P,C)) reads like ∃P : parent(P,C)
setof/3 is like bagof/3 with duplicates removed.

100 / 259

Logic programming

assert/1, retract/1

Variables in Prolog are local to the clause. Global variables can be
simulated using:

asserta(Clause) adds Clause at the beginning of the Prolog
database.
assertz(Clause) adds Clause at the end of the Prolog database.
retract(Clause) removes first clause that unifies with Clause

from the Prolog database.
Note that backtracking does not undo the modifications.

% retract all clauses whose head unifies with ‘‘Term’’
retractall(Term):-
retract(Term), fail.

retractall(Term):-
retract((Term:- Body)), fail.

retractall(Term).

101 / 259

Logic programming

operators

In Prolog, functors and predicates are called operators. Operators can
be declared using

:- op(Priority,Type,Name)

where
Priority is a number between 0 and 1200 (lower priority binds
stronger)
Type is fx or fy (prefix), xfx ,xfy or yfx (infix), and xf or yf (postfix)
The x and y determine associativity:

associative no right left
xfx xfy yfx

X op Y op Z no op(X,op(Y,Z)) op(op(X,Y),Z)

102 / 259

Logic programming

meta-programs

Clauses are represented as terms :- (Head,Body) where :- can be
treated as a functor (meta-level) or as a predicate (object-level).

% if A and B then C = if(then(and(A,B),C))
:- op(900,fx,if).
:- op(800,xfx,then).
:- op(700,yfx,and).
% object-level rules
if has_feathers and lays_eggs then is_bird.
if has_gills and lays_eggs then is_fish.
if tweety then has_feathers.
if tweety then lays_eggs.

it should be possible to show that

if tweety then is_bird

follows from the object-level rules.

103 / 259

Logic programming

meta-program

derive(if Assumptions then Goal):-
if Body then Goal,
derive(if Assumptions then Body).

derive(if Assumptions then G1 and G2):-
derive(if Assumptions then G1),
derive(if Assumptions then G2).

derive(if Assumptions then Goal):-
assumed(Goal,Assumptions). % Goal is one of the assumptions

assumed(A,A).
assumed(A,A and As).
assumed(A,B and As):-
assumed(A,As).

104 / 259

Logic programming

prolog meta-interpreter

prove(Goal):-
clause(Goal,Body),
prove(Body).

prove((Goal1,Goal2)):-
prove(Goal1),
prove(Goal2).

prove(true).

or, more conventionally, and adding negation as failure:

prove(true):- !.
prove((A,B)):- !,

prove(A), prove(B).
prove(not(Goal)):- !,
not(prove(Goal)).

prove(A):-
% not (A=true; A=(X,Y); A=not(G))
clause(A,B), prove(B).

105 / 259

Logic programming

quicksort

% partition(l,n,Smalls,Bigs):
% Smalls contains numbers in l
% smaller than n, Bigs the rest.
partition([],N,[],[]).
partition([H|T],N,[H|Small],Big):-

H<N,partition(T,N,Small,Big).
partition([H|T],N,Small,[H|Big]):-

H>=N,partition(T,N,Small,Big).

quicksort([],[]).
quicksort([X|Xs],Sorted):-

partition(Xs,X,Small,Big),
quicksort(Small,S_Small),
quicksort(Big,S_Big),
append(S_Small,[X|S_Big],Sorted).

106 / 259

Logic programming

towers of hanoi

:- op(900,xfx,to).
% hanoi(N,A,B,C,Moves): Moves is the list of moves to
% move N disks from peg A to peg C, using peg B as
% an intermediary.
hanoi(0,A,B,C,[]).
hanoi(N,A,B,C,Moves):-
N1 is N-1, % assume solved for N-1 disks
hanoi(N1,A,C,B,Moves1),
hanoi(N1,B,A,C,Moves2),
append(Moves1,[A to C|Moves2],Moves).

?- hanoi(3,left,middle,right,M)
M = [left to right, left to middle,

right to middle, left to right,
middle to left, middle to right,
left to right]

107 / 259

Representing structured knowledge

Outline

1 Preliminaries

2 Introduction

3 Clausal logic

4 Logic programming

5 Representing structured
knowledge

6 Searching graphs

7 Informed search

8 Language processing

9 Reasoning with Incomplete
Information

10 Default Reasoning

11 The Semantics of Negation

12 Abduction

13 Inductive Logic
Programming

108 / 259

Representing structured knowledge

Representing structured knowledge

Knowledge is structured if its components have certain logical
relationships.
Explicit relationships are represented directly (as facts).
Implicit relationships are found by reasoning.
Reasoning is often done by searching, e.g. in a graph, a term etc.

109 / 259

Representing structured knowledge

tree as terms adt

% term_tree(Tree,R,S): term Tree represents
% a tree with root R, list of subtrees S
term_tree(Tree, Root, Subtrees):-

Tree =.. [Root|Subtrees].
% term_root(Tree, Root): R is root of T
term_root(Tree, Root):-

term_tree(Tree, Root, Subtrees).
% term_subtree(Tree, Subtree): Subtree is a subtree
term_subtree(Tree, Subtree):-

term_tree(Tree, Root, Subtrees),
element(Subtree, Subtrees).

% element(X,Ys): X is element in list
element(X,[X|Ys]).
element(X,[Y|Ys]):-

element(X,Ys).

110 / 259

Representing structured knowledge

% term_arc(Tree, Arc): A is arc in Tree
term_arc(Tree, [Root, SubRoot]):- % from root
term_root(Tree, Root),
term_subtree(Tree, SubTree),
term_root(Subtree, SubRoot).

term_arc(Tree, Arc):- % in subtree
term_subtree(Tree, Subtree),
term_arc(Subtree, Arc).

% term_path(Tree, Path): Path is path in Tree
term_path(Tree, Path):- % an arc is a path
term_arc(Tree, Path).

term_path(Tree, [Node1,Node2|Nodes]):-
term_arc(Tree,[Node1,Node2]),
term_path(Tree,[Node2|Nodes]).

111 / 259

Representing structured knowledge

writing terms as trees

term_write(Tree):-
term_write(0,Tree), nl.

term_write(Indent,Tree):-
term_tree(Tree, Root, Subtrees),
term_write_node(Indent, NewIndent, Root),
term_write_subtrees(NewIndent, Subtrees).

term_write_subtrees(Indent,[]).
term_write_subtrees(Indent,[Tree]):- !,
term_write(Indent,Tree).

term_write_subtrees(Indent,[Tree|Subtrees]):-
term_write(Indent,Tree),
nl,tabs(Indent), term_write_subtrees(Indent, Subtrees).

term_write_node(Begin,End,Node):-
name(Node,L), length(L,N),
End is Begin+10, N1 is End-Begin-N,
write_line(N1), write(Node).

112 / 259

Representing structured knowledge

write_line(0).
write_line(N):-
N>0, N1 is N-1,
write(’-’), write_line(N1).

:- term_write(f1(f2(f4,f5(f7),f6),f3(f8,f9(f10))))

--------f1--------f2--------f4
--------f5--------f7
--------f6

--------f3--------f8
--------f9-------f10

113 / 259

Representing structured knowledge

graphs generated by a predicate

% path(P): P is a list of nodes representing a path
% in graph defined by arc/2.
path([N1, N2]):-
arc(N1, N2).

path([N1, N2|Nodes]):-
arc(N1, N2), path([N2|Nodes]).

% path_leaf(N, Path): Path is a path starting at N, ending
% in a leaf in graph generated by arc/2.
path_leaf(Leaf, [Leaf]):-
leaf(Leaf).

path_leaf(N1, [N1|Nodes]):-
arc(N1, N2),
path_leaf(N2, Nodes).

%
leaf(Leaf):- % no outgoing arcs
not(arc(Leaf, SomeNode)).

114 / 259

Representing structured knowledge

sld trees

% resolve(goal, clause, newGoal):
% newGoal is resolvent of goal using clause
resolve([Literal|Literals], (Head:- Body), NewGoal):-
Literal = Head, % unify with head
append(Body, Literals, NewGoal).

% an arc in an SLD tree
arc(Goal1, Goal2):-
clause(Head, Body),
resolve(Goal1, (Head:- Body), Goal2).

prove(Goal):-
path(Goal, []).

% where
path(N1, N2) :-
arc(N1, N2).

path(N1, N3) :-
arc(N1, N2), path(N2, N3).

115 / 259

Representing structured knowledge

inheritance hierarchies

saxophone

oboe

flute

Woodwind

Wind

Brass

trumpet

trombone

harp

lute

guitar

Plucked Bowed

violin

cello piano

harpsichord

Keyboard Tuned

triangle

kettledrum snaredrum

cymbal

Untuned

PercussionString

Instrument

A class is represented by a unary predicate, an object by a constant.
instrument(X) :- wind(X).
instrument(X) :- string(X).
instrument(X) :- percussion(X).
wind(X) :- woodwind(X).
wind(X) :- brass(X).
string(X) :- plucked(X).
string(X) :- bowed(X).
string(X) :- keyboard(X).
percussion(X) :- tuned(X).
percussion(X) :- untuned(X).

116 / 259

Representing structured knowledge

woodwind(flute). brass(trumpet).
plucked(guitar). bowed(violin).
keyboard(piano). tuned(triangle).
untuned(cymbal).

Properties:

material(flute, metal).
% string instruments are made of wood
material(X, wood) :- woodwind(X).
material(X, wood) :- string(X).
material(X, metal) :- brass(X).
material(X, metal) :- percussion(X).
?- material(piano, X)

X = wood
?- material(flute, X)

X = metal;
X = wood

Putting most specific clauses first ensures that the first answer is
correct.

117 / 259

Representing structured knowledge

function(X, musical) :- instrument(X).
action(oboe, reed(double)).
action(saxophone, reed(single)).
action(piano, hammered).
action(X, hammered) :- percussion(X).

What are the properties of an object I?

attributes([material,action,function]).
properties(I, Props):- attributes(Attrs),

properties(Attrs, I, Props).
properties([], Instance, []).
properties([Attribute|Attributes],

Instance, [Attribute=Val|Props]):-
get_value(Attribute, Instance, Val) ,!, % first only
properties(Attributes, Instance, Props).

get_value(Attribute, Instance, Value):-
Goal =.. [Attribute, Instance, Value], call(Goal).

118 / 259

Representing structured knowledge

?- properties(saxophone,P)
P = [material = metal,

action=reed(single),
function = musical]

Questions about classes are not easy to answer since one must
resort to second-order programming.

⇒ Design alternative representation where both classes and
instances are represented by terms.

119 / 259

Representing structured knowledge

semantic networks
Represent hierarchy as set of facts.

isa(wind,instrument).
isa(woodwind,wind).
isa(brass,wind).
% etc.
inst(oboe,woodwind).
inst(flute,woodwind).
inst(trumpet,brass).
% etc.
% class properties:
prop(instrument,function,musical).
prop(woodwind,material,wood).
prop(brass,material,metal).
prop(brass,action,reed(lip)).
% instance properties
prop(flute,material,metal).
prop(oboe,action,reed(double)).
% ..

120 / 259

Representing structured knowledge

properties in semantic networks

properties(Instance, Properties):-
direct_properties(Instance, InstanceProperties),
inst(Instance, Class), % inherit rest
inherit(Class, InstanceProps, Properties).

direct_properties(Instance, InstanceProperties):-
findall(Attribute=Value,

prop(Instance,Attribute,Value),
InstanceProperties).

%
isa(instrument,top).

inherit(top, Properties, Properties),
inherit(Class, Properties, AllProperties):-
direct_properties(Class, ClassProperties),
override(Properties, ClassProperties,

ExtendedProperties),
isa(Class, SuperClass),
inherit(SuperClass, ExtendedProperties, AllProperties).

121 / 259

Representing structured knowledge

% override(SpecificProps,ClassProps,Ps): Ps contains all
% SpecificProps and those ClassProps that are not
% overridden by SpecificProps.
override(Properties, [], Properties).
override(Properties, [Attr=AnyValue|ClassProperties],

ExtendedProperties):-
element(Attr=Value, Properties),
override(Properties, ClassProperties,

ExtendedProperties).
override(Properties, [Attr=Value|ClassProperties],

[Attr=Value|ExtendedProperties]):-
not(element(Attr=AnyValue, Properties)),
override(Properties, ClassProperties,

ExtendedProperties).

122 / 259

Representing structured knowledge

frame-based inheritance

Add property list to each arc in the network.

isa(instrument, top, [function=musical]).
isa(wind, instrument, []).
isa(woodwind, wind, [material=wood]).
isa(brass, wind, [material=metal,action=reed(lip)]).
%
instance(flute, woodwind, [material=metal]).
instance(oboe, woodwind, [action=reed(double]).
instance(trumpet, brass, []).

123 / 259

Representing structured knowledge

frame-based inheritance 2

properties(Instance, Properties):-
instance(Instance, Class, InstanceProperties),
inherit(Class, InstanceProperties, Properties).

inherit(top, Properties, Properties).
inherit(Class, Properties, AllProperties):-
class(Class, SuperClass, ClassProperties),
override(Properties, ClassProperties,

ExtendedProperties),
inherit(SuperClass, ExtendedProperties, AllProperties).

124 / 259

Searching graphs

Outline

1 Preliminaries

2 Introduction

3 Clausal logic

4 Logic programming

5 Representing structured
knowledge

6 Searching graphs

7 Informed search

8 Language processing

9 Reasoning with Incomplete
Information

10 Default Reasoning

11 The Semantics of Negation

12 Abduction

13 Inductive Logic
Programming

125 / 259

Searching graphs

searching graphs

A search space is a graph with one or more starting nodes and one or
more goal nodes. A solution is a path from a start node to a goal node.
A cost function assigns a cost to each arc. An optimal solution is a
solution with minimal cost.
Search algorithms differ w.r.t.

completeness: is a solution always found?
optimality: will shorter paths be found before longer ones?
efficiency of the algorithm.

126 / 259

Searching graphs

A general framework

% search(agenda,Goal): agenda contains reached but
% untried nodes.
% succeeds if a node Goal, for which goal(Goal), can
% be reached from a node in Agenda.
search(Agenda, Goal):-
% select/3 selects a node from the Agenda
select(Agenda, Goal, RestOfAgenda),
goal(Goal).

search(Agenda, Goal):-
select(Agenda, CurrentNode, RestOfAgenda),
children(CurrentNode, Children),
add(Children, RestOfAgenda, NewAgenda),
search(NewAgenda, Goal).

Different algorithms result from different implementations of select/3
and add/3 .

127 / 259

Searching graphs

depth-first search

Agenda is a list (stack).
select/3 selects the first node of the list
add/3 puts children in front of the new agenda

search_df([Goal|RestOfAgenda], Goal):-
goal(Goal).

search_df([CurrentNode|RestOfAgenda], Goal):-
children(CurrentNode, Children),
append(Children, RestOfAgenda, NewAgenda),
search_df(NewAgenda, Goal).

children(Node, Children):-
findall(Child, arc(Node,Child), Children).

128 / 259

Searching graphs

depth-first search with paths

Return path to goal: keep paths instead of nodes in agenda.

children([Node|RestOfPath], Children):-
findall([Child,Node|RestOfPath],

arc(Node,Child),
Children).

?- search_df([[initial_node]], PathToGoal).

129 / 259

Searching graphs

depth-first search with loop detection
Loop detection: keep list of visited nodes.
search_df([Goal|RestOfAgenda], VisitedNodes, Goal):-
goal(Goal).

search_df([Node|RestOfAgenda], VisitedNodes, Goal):-
children(Node ,Children),
add_df(Children, RestOfAgenda,

[Node|VisitedNodes], NewAgenda),
search_df(NewAgenda, [Node|VisitedNodes], Goal).

% add_df(Nodes, Agenda, VisitedNodes, NewAgenda)
add_df([], Agenda, VisitedNodes, Agenda).
add_df([Node|Nodes], Agenda, VisitedNodes, [Node|NewAgenda]):-
not(element(Node, Agenda)),
not(element(Node, VisitedNodes),
add_df(Nodes, Agenda, VisitedNodes, NewAgenda).

add_df([Node|Nodes], Agenda, VisitedNodes, NewAgenda):-
element(Node, Agenda),
add_df(Nodes, Agenda, VisitedNodes, NewAgenda).

add_df([Node|Nodes], Agenda, VisitedNodes, NewAgenda):-
element(Node, VisitedNodes),
add_df(Nodes, Agenda, VisitedNodes, NewAgenda).

130 / 259

Searching graphs

depth-first search with agenda on prolog stack

Using Prolog’s goal stack to keep agenda, but without loop detection:

search_df(Goal,Goal):-
goal(Goal).

search_df(CurrentNode, Goal):-
arc(CurrentNode, Child),
search_df(Child, Goal).

131 / 259

Searching graphs

depth-first search with depth bound

An incomplete version with a depth bound:

search_bd(Depth, Goal, Goal):-
goal(Goal).

search_bd(Depth, CurrentNode, Goal):-
Depth>0, NewDepth is Depth-1,
arc(CurrentNode, Child),
search_bd(NewDepth, Child, Goal).

?- search_df(10,initial_node,Goal).

132 / 259

Searching graphs

depth-first search with iterative deepening

Iterative deepening (e.g. in chess):

search_id(CurrentNode, Goal):-
search_id(1, CurrentNode, Goal).

search_id(Depth, CurrentNode, Goal):-
search_bd(Depth, CurrentNode, Goal).

search_id(Depth, CurrentNode, Goal):-
NewDepth is Depth+1,
search_id(NewDepth, CurrentNode, Goal).

133 / 259

Searching graphs

breadth-first search

Agenda is a list (queue).
select/3 selects the first node of the list
add/3 puts children at the back of the new agenda

search_bf([Goal|RestOfAgenda], Goal):-
goal(Goal).

search_bf([CurrentNode|RestOfAgenda], Goal):-
children(CurrentNode, Children),
append(RestOfAgenda ,Children, NewAgenda),
search_bf(NewAgenda, Goal).

children(Node, Children):-
findall(Child, arc(Node,Child), Children).

134 / 259

Searching graphs

a full clause refutation engine

Use breadth-first search.
Clause representation:

clause(([bach(X),married(X)] :- [man(X),adult(X)])).
clause(([] :- [has_wife(paul)])). % empty head
clause(([] :- [])). % empty clause

Because findall(X,G,L) creates new variables for the unbound
variables in X before putting it in L, we keep a copy of the original
goal in order to be able to retrieve the computed substitution.
The agenda is a list of pairs

agenda_item(SubGoalClause, OriginalGoal)

135 / 259

Searching graphs

refute(GoalClause):-
refute([agenda_item(GoalClause,GoalClause)], GoalClause).

% The following clause unifies two versions of the
% original clause where the first version contains
% the answer substitution.
refute([agenda_item(([]:- []), GoalClause) | _], GoalClause).

refute([agenda_item(InputClause,GoalClause)|RestOfAgenda],
OriginalGoalClause):-

findall(agenda_item(Resolvent, GoalClause),
(clause(Resolver),

resolve(InputClause, Resolver, Resolvent)),
Children),

append(RestOfAgenda, Children, NewAgenda), % breadth-first
refute(NewAgenda, OriginalGoalClause).

136 / 259

Searching graphs

% resolve(Clause1,Clause2,R) iff R is a resolvent
% of Clause1 and Clause2.
resolve((H1:-B1), (H2:-B2), (ResHead:-ResBody)):-
% remove common literals from H1, B2, yielding R1, R2
remove_common_element(H1, B2, R1, R2),
append(R1, H2, ResHead),
append(B1, R2, ResBody).

resolve((H1:- B1), (H2:-B2), (ResHead:-ResBody)):-
remove_common_element(H2, B1, R2, R1),
append(H1, R2, ResHead),
append(R1, B2, ResBody).

137 / 259

Searching graphs

% remove_common_element(+L1, +L2, -R1, -R2)
% iff (roughly) exists X such that els(Li) = els(Ri) + {X}
% (note that, necessarily, els(Li) not empty
remove_common_element([A|B], C, B, E) :-
remove_element(A, C, E).

remove_common_element([A|B], C, [A|D], E) :-
remove_common_element(B, C, D, E).

% remove_element(+A,+L,-R)
% iff (roughly) els(L) = els(R) + {A}
remove_element(A, [A|B], B).
remove_element(A, [C|B], [C|D]) :-
A\=C, remove_element(A, B, D).

138 / 259

Searching graphs

clause(([bachelor(X),married(X)]:- [man(X),adult(X)])).
clause(([has_wife(X)]:- [man(X),married(X)])).
clause(([]:- [has_wife(paul)])).
clause(([man(paul)]:- [])).
clause(([adult(paul)]:- [])).

?- refute(([] :- [bach(X)]))
X = paul

The resolution strategy (“input resolution”: every resolvent has at
least one program clause as its parent) used is incomplete for general
clauses (but complete for definite ones).

139 / 259

Searching graphs

forward chaining
% model(-M) iff M is a model of the clauses defined by cl/1
model(M):-

model([], M).

% model(+M0,-M) iff M0 can be extended to a model M
% of the cl/1 clauses.
model(M0, M):-

clause((H:- B)),
% find violated clause instance
is_violated((H:- B), M0),!,
element(L, H), % select ground literal from the head
model([L|M0], M). % and add it to the model

model(M, M). % no violated clauses

% is_violated((H:- B),+M) iff instance of H:-B
% is violated by M
is_violated((H:- B), M):-

satisfied_body(B, M), % this will ground the variables
not(satisfied_head(H, M)).

140 / 259

Searching graphs

% satisfied_body(L,+M) iff M |= A for all A in L,
% may bind vars in L
satisfied_body([], M).
satisfied_body([A|B], M) :-
element(A, M),
satisfied_body(B, M).

% satisfied_head(+L,+M) iff exists A in els(L)
% with M |= A
satisfied_head(L,M):-

element(A, L), element(A, M).

element(A, [A|_]).
element(A, [_|B]) :-
element(A, B).

141 / 259

Searching graphs

clause(([bach(X),married(X)]:- [man(X),adult(X)])).
clause(([has_wife(X)]:- [man(X),married(X)])).
clause(([man(paul)]:- [])).
clause(([adult(paul)]:- [])).

?- model(M)
M = [has_wife(paul), married(paul),

adult(paul), man(paul)];
M = [bach(paul), adult(paul), man(paul)]

The program works correctly only for clauses for which grounding the
body also grounds the head.

clause(([man(X),woman(X)]:- [])).
clause(([]:- [man(jane)])). % jane is not a man
clause(([]:- [woman(peter)])). % peter is not a woman

142 / 259

Searching graphs

range-restricted clauses

This can be fixed:

clause(([man(X),woman(X)]:- [person(X)])).
clause(([person(jane)]:- [])).
clause(([person(peter)]:- [])).
clause(([]:- [man(jane)])).
clause(([]:- [woman(peter)])).

Range-restricted clauses: where all variables in the head also occur in
the body.
Any program can be transformed into an equivalent one using only
range-restricted clauses.

143 / 259

Informed search

Outline

1 Preliminaries

2 Introduction

3 Clausal logic

4 Logic programming

5 Representing structured
knowledge

6 Searching graphs

7 Informed search

8 Language processing

9 Reasoning with Incomplete
Information

10 Default Reasoning

11 The Semantics of Negation

12 Abduction

13 Inductive Logic
Programming

144 / 259

Informed search

best-first search

Informed search uses an heuristic estimate of the distance from a
node to a goal.

% eval(Node,Value) estimates distance from node to goal

search_best([Goal|RestAgenda], Goal):-
goal(Goal).

search_best([CurrentNode|RestAgenda], Goal):-
children(CurrentNode, Children),
add_best(Children, RestAgenda, NewAgenda),
search_best(NewAgenda, Goal).

% add_best(A,B,C): C contains
% els from A,B sorted according to eval/2
add_best([], Agenda, Agenda).
add_best([Node|Nodes], Agenda, NewAgenda):-
insert(Node, Agenda, TmpAgenda),
add_best(Nodes, TmpAgenda, NewAgenda).

145 / 259

Informed search

insert(Node, Agenda, NewAgenda):-
eval(Node, Value),
insert(Value, Node, Agenda, NewAgenda).

insert(Value, Node, [], [Node]).
insert(Value, Node, [FirstNode|RestOfAgenda],

[Node, FirstNode|RestOfAgenda]):-
eval(FirstNode, FirstNodeValue),
Value < FirstNodeValue.

insert(Value, Node, [FirstNode|RestOfAgenda],
[FirstNode|NewRestOfAgenda]):-

eval(FirstNode, FirstNodeValue),
Value >= FirstNodeValue,
insert(Value, Node, RestOfAgenda, NewRestOfAgenda).

Best-first search is not complete since, with certain estimate functions,
it may get lost in an infinite subgraph.

146 / 259

Informed search

example puzzle

A tile may be moved to the empty spot if there are at most 2 tiles
between it and the empty spot.
Find a series of moves that bring all the black tiles to the right of
all the white tiles.

147 / 259

Informed search

representing and manipulating the board

A position of the board is represented using a list, e.g.
[b,b,b,e,w,w,w]

% get_tile(position,n,Tile): position[n]=Tile
get_tile(Position, N, Tile) :-
get_tile(Position, 1, N, Tile).

get_tile([Tile|Tiles], N, N, Tile).
get_tile([Tile|Tiles], N0, N, FoundTile) :-
N1 is N0+1,
get_tile(Tiles, N1, N, FoundTile).

% replace(position,n,t,B): B is position with board[n]=t
replace([Tile|Tiles], 1, ReplacementTile,

[ReplacementTile|Tiles]).
replace([Tile|Tiles], N, ReplacementTile,

[Tile|RestOfTiles]):-
N>1, N1 is N-1,
replace(Tiles, N1, ReplacementTile, RestOfTiles).

148 / 259

Informed search

representing the agenda

A move is represented by a term
move(FromPosition, ToPosition, Cost).
The start move:

start_move(move(noparent, [b,b,b,e,w,w,w], 0)).

showing a move (in a sequence)

show_move(move(OldPosition, NewPosition, Cost), Value):-
write(NewPosition-Value), nl.

An agenda is list of terms move_value(Move, Value) where Value

is the heuristic evaluation of the position reached by Move.

149 / 259

Informed search

tiles/2

tiles(ListOfPositions, TotalCost):-
start_move(StartMove),
% Value is heuristic of distance to goal
eval(StartMove, Value),

% best-first search accumulating moves
tiles([move_value(StartMove, Value)], FinalMove,
[], VisitedMoves), % accumulator

% find (and print) a backward path and its cost in
% VisitedMoves from the final move to the start move
order_moves(FinalMove, VisitedMoves,
[], ListOfPositions, % accumulator
0, TotalCost). % accumulator

150 / 259

Informed search

tiles/4
% tiles(Agenda, LastMove, V0, V): goal can be
% reached from a move in Agenda where LastMove
% is the last move leading to the goal,
% and V is V0 + the set of moves tried.
tiles([move_value(LastMove,Value)|RestAgenda], LastMove,

VisitedMoves, VisitedMoves):-
goal(LastMove). % eval(LastMove, 0), i.e. goal reached

tiles([move_value(Move,Value)|RestAgenda], Goal,
VisitedMoves, FinalVisitedMoves):-

show_move(Move, Value), % show move ‘‘closest to goal’’
% find and evaluate possible next moves from M
setof0(move_value(NextMove, NextValue),

(next_move(Move, NextMove),
eval(NextMove, NextValue)),

Children),
merge(Children, RestAgenda, NewAgenda),
tiles(NewAgenda, Goal,

[Move|VisitedMoves], FinalVisitedMoves).

151 / 259

Informed search

next_move/2

next_move(move(Position, LastPosition, LastCost),
move(LastPosition, NewPosition, Cost)) :-

% consecutive moves: NewPosition can be reached from
% LastPosition in 1 move at cost Cost
% Ne = index of empty spot
get_tile(LastPosition, Ne, e),
% Nbw = index of nonempty spot
get_tile(LastPosition, Nbw, BW), not(BW=e),
Diff is abs(Ne-Nbw), Diff<4, % not too far from Ne
replace(LastPosition, Ne, BW, IntermediatePosition),
replace(IntermediatePosition, Nbw, e, NewPosition),
(
Diff=1 -> Cost=1

; otherwise -> Cost is Diff-1
).

152 / 259

Informed search

% order_moves(FinalMove, VisitedMoves,
% Positions, FinalPositions,
% TotalCost,FinalTotalCost):
% FinalPositions = Positions + connecting sequence of
% target positions from VisitedMoves ending in
% FinalMove’s target position.
% FinalTotalCost = TotalCost + total cost of moves
% added to Positions to obtain FinalPositions.
order_moves(move(noparent,StartPosition,0), VisitedMoves,

Positions, [StartPosition|Positions],
TotalCost, TotalCost).

order_moves(move(FromPosition, ToPosition, Cost),
VisitedMoves,
Positions, FinalPositions,
TotalCost, FinalTotalCost):-

element(PreviousMove, VisitedMoves),
PreviousMove = move(PreviousPosition, FromPosition,

CostOfPreviousMove),
NewTotalCost is TotalCost + Cost,
order_moves(PreviousMove, VisitedMoves,

[ToPosition|Positions], FinalPositions,
NewTotalCost, FinalTotalCost).

153 / 259

Informed search

utilities
% setof0/3: variant of setof/3
% which succeeds with empty list if no solutions are found
setof0(X, G, L):-
setof(X, G, L), !.

setof0(X, G, []).

merge([], Agenda, Agenda).
% avoid succeeding twice on merge([],[],L).
merge([C|Cs],[],[C|Cs]).
merge([C|Cs],[N|Ag],[C|NewAg]):-
eval(C,CVal),
eval(N,NVal),
CVal<NVal,
merge(Cs,[N|Ag],NewAg]).

merge([C|Cs],[N|Ag],[N|NewAg]):-
eval(C,CVal),
eval(N,NVal),
CVal>=NVal,
merge([C|Cs],Ag,NewAg]).

154 / 259

Informed search

eval/1

goal(Move):-
eval(Move,0).

eval(move(OldPosition,Position,C),Value):-
bLeftOfw(Position,Value).

% Val is the sum of the number of black tiles
% to the left of each white tile
bLeftOfw(Pos,Val):-
findall((Nb,Nw),

(get_tile(Pos,Nb,b),
get_tile(Pos,Nw,w), Nb<Nw),

L),
length(L,Val).

155 / 259

Informed search

example run
?- tiles(M,C).
[b,b,b,e,w,w,w]-9
[b,b,b,w,e,w,w]-9
[b,b,e,w,b,w,w]-8
[b,b,w,w,b,e,w]-7
[b,b,w,w,b,w,e]-7
[b,b,w,w,e,w,b]-6
[b,e,w,w,b,w,b]-4
[b,w,e,w,b,w,b]-4
[e,w,b,w,b,w,b]-3
[w,w,b,e,b,w,b]-2
[w,w,b,w,b,e,b]-1
M = [[b,b,b,e,w,w,w],[b,b,b,w,e,w,w],

[b,b,e,w,b,w,w],[b,b,w,w,b,e,w],
[b,b,w,w,b,w,e],[b,b,w,w,e,w,b],
[b,e,w,w,b,w,b],[b,w,e,w,b,w,b],
[e,w,b,w,b,w,b],[w,w,b,e,b,w,b],
[w,w,b,w,b,e,b],[w,w,e,w,b,b,b]]

C = 15

156 / 259

Informed search

optimal best-first search

Best-first search can be made complete by using

f (n) = g(n) + h(n)

where g(n) is actual cost so far and h(n) is estimate on further
cost to reach goal. Such an algorithm is called an A-algorithm.
g(n) will prevent getting lost in an infinite subgraph: adds a
breadth-first flavor.
If h(n) is optimistic, i.e. it underestimates the cost, then the
algorithm always finds an optimal path. Such an algorithm is
called an A∗-algorithm.
In an extreme case, if h(n) = 0, the algorithm degenerates to
breadth-first (the heuristic in the previous example is optimistic).

157 / 259

Language processing

Outline

1 Preliminaries

2 Introduction

3 Clausal logic

4 Logic programming

5 Representing structured
knowledge

6 Searching graphs

7 Informed search

8 Language processing

9 Reasoning with Incomplete
Information

10 Default Reasoning

11 The Semantics of Negation

12 Abduction

13 Inductive Logic
Programming

158 / 259

Language processing

language processing

Syntax: definite clause grammars
Semantics: terms instead of nonterminals
Language generation
An example interpreter

159 / 259

Language processing

definite clause grammars (dcg)

Context-free grammars in prolog.
A sentence is a list of terminals:

[socrates, is, human]

Non-terminals are defined by rules

sentence --> noun_phrase, verb_phrase
verb_phrase --> [is], property
noun_phrase -->proper_noun
proper_noun --> [socrates]
property --> [mortal]
property --> [human]

160 / 259

Language processing

rules and prolog

A rule

sentence --> noun_phrase, verb_phrase

can be read as:

sentence(S) :-
noun_phrase(NP),
verb_phrase(VP),
append(NP,VP,S).

A rule

property --> [mortal]

can be read as:

property([mortal]).

thus: sentence([socrates, is , mortal]) parses the sentence

161 / 259

Language processing

without append/3

A rule

sentence --> noun_phrase, verb_phrase

corresponds to

sentence(L,L0) :-
noun_phrase(L,L1),
verb_phrase(L1,L0).

reading sentence(L,L0) as
“ L consists of a sentence followed by L0 ”.

The conversion of rules to clauses is often built into prolog, as is
the meta-predicate phrase/2 where

phrase(sentence,L) ≡ sentence(L,[])

162 / 259

Language processing

DCGs vs. context-free grammars

non-terminals can have arguments
goals can be put into the rules
no need for deterministic (LL(k), LR(k)) grammars!
a single formalism for specifying syntax, semantics

163 / 259

Language processing

example: adding plurality constraints

sentence --> noun_phrase(N), verb_phrase(N)
noun_phrase(N) --> article(N), noun(N)
verb_phrase(N) --> intransitive_verb(N)
article(singular) --> [a]
article(singular) --> [the]
article(plural) --> [the]
noun(singular) --> [student]
noun(plural) --> [students]
intransitive_verb(singular) --> [sleeps]
intransitive_verb(plural) --> [sleep]

phrase(sentence,[a,student,sleeps]). % yes
phrase(sentence,[the,students,sleep]). % yes
phrase(sentence,[the,students,sleeps]). % no

164 / 259

Language processing

example: explicit parse trees

A parse tree is represented by a term.

sentence(s(NP,VP)) -->
noun_phrase(NP), verb_phrase(VP)

noun_phrase(np(Art,Adj,N)) -->
article(Art), adjective(Adj), noun(N)

noun_phrase(np(Art,N)) -->
article(Art), noun(N)

verb_phrase(vp(IV)) -->
intransitive_verb(IV)

article(art(the)) --> [the]
adjective(adj(lazy)) --> [lazy]
noun(n(student)) --> [student]
intransitive_verb(iv(sleeps)) --> [sleeps]

165 / 259

Language processing

example: explicit parse trees

?- phrase(sentence(T),
[the,lazy,student,sleeps])

T = s(np(art(the),
adj(lazy),
n(student)),

vp(iv(sleeps)))
?- phrase(sentence(T),

[the,lazy,student,sleeps]),
term_write(T)

---s---np---art------the
---adj-----lazy
-----n--student

---vp----iv---sleeps

166 / 259

Language processing

example: number parsing

nX_Y(N) if N is a number in [X..Y].
The grammar:

num(N) --> n1_999(N).
num(N) --> n1_9(N1),[thousand],n1_999(N2),

{N is N1*1000+N2}.
n1_999(N) --> n1_99(N).
n1_999(N) --> n1_9(N1),[hundred],n1_99(N2),

{N is N1*100+N2}.
n1_99(N) --> n0_9(N).
n1_99(N) --> n10_19(N).
n1_99(N) --> tens(N).
n1_99(N) --> tens(N1),n1_9(N2),{N is N1+N2}.
n0_9(0) --> [].
n0_9(N) --> n1_9(N).
n1_9(1) --> [one]. % two, .. , nine
n10_19(10) --> [ten]. % eleven,.., nineteen
tens(20) --> [twenty]. % thirty,.., ninety

167 / 259

Language processing

The rule

n1_99(N) --> tens(N1), n1_9(N2), {N is N1+N2}.

corresponds to the clause

n1_99(N,L,L0) :-
tens(N1,L,L1),
n1_9(N2,L1,L0),
N is N1 + N2.

168 / 259

Language processing

number parsing example

?- phrase(num(N),
[two,thousand,two,hunderd,eleven])

N = 2211

169 / 259

Language processing

interpretation of natural language

Syntax:

sentence --> determiner, noun, verb_phrase
sentence --> proper_noun, verb_phrase
verb_phrase --> [is], property
property --> [a], noun
property --> [mortal]
determiner --> every
proper_noun --> [socrates]
noun --> [human]

Semantics: convert sentences to clauses, e.g.
“every human is mortal”

becomes

mortal(X):- human(X)

170 / 259

Language processing

A proper noun is interpreted as a constant.
proper_noun(socrates) --> [socrates]

A verb phrase is interpreted as a mapping from terms to literals
X=>L:
verb_phrase(M) --> [is], property(M).
property(X=>mortal(X)) --> [mortal].
sentence((L:- true)) --> proper_noun(X),

verb_phrase(X=>L).

?-phrase(sentence(C),[socrates,is,mortal]).
C = (mortal(socrates):- true)

sentence(C) --> determiner(M1,M2,C), noun(M1),
verb_phrase(M2).

determiner(X=>B, X=>H, (H:- B)) --> [every].
noun(X=>human(X)) --> [human].

?-phrase(sentence(C), [every human is mortal])
C = (mortal(X):- human(X))

171 / 259

Language processing

grammar

:- op(600,xfy,’=>’).
sentence(C) --> determiner(N,M1,M2,C), noun(N,M1),

verb_phrase(N,M2).
sentence([(L:- true)]) --> proper_noun(N,X),

verb_phrase(N,X=>L).
verb_phrase(s,M) --> [is], property(s,M).
verb_phrase(p,M) --> [are], property(p,M).
property(N,X=>mortal(X)) --> [mortal].
property(s,M) --> noun(s,M).
property(p,M) --> noun(p,M).
determiner(s, X=>B , X=>H, [(H:- B)]) --> [every].
determiner(p, sk=>H1, sk=>H2,
[(H1 :- true),(H2 :- true)]) -->[some].

proper_noun(s,socrates) --> [socrates].
noun(s,X=>human(X)) --> [human].
noun(p,X=>human(X)) --> [humans].
noun(s,X=>living_being(X)) --> [living],[being].
noun(p,X=>living_being(X)) --> [living],[beings].

172 / 259

Language processing

questions

question(Q) -->
[who], [is], property(s,X=>Q)

question(Q) -->
[is], proper_noun(N,X), property(N,X=>Q)

question((Q1,Q2)) -->
[are], [some], noun(p,sk=>Q1), property(p,sk=>Q2)

173 / 259

Language processing

the interpreter: handle_input/2

% RB = rule base
nl_shell(RB) :-
get_input(Input), handle_input(Input,RB).

handle_input(stop,RB) :- !.
handle_input(show,RB) :- !,
show_rules(RB), nl_shell(RB).

handle_input(Sentence,RB) :-
phrase(sentence(Rule),Sentence),
nl_shell([Rule|RB]).

handle_input(Question,RB) :-
phrase(question(Query),Question),
prove(Query,RB),
transform(Query,Clauses),
phrase(sentence(Clauses),Answer),
show_answer(Answer),
nl_shell(RB).

handle_input(Error,RB) :-
show_answer(’no’), nl_shell(RB).

174 / 259

Language processing

auxiliary clauses

show_rules([]).
show_rules([R|Rs]) :-
phrase(sentence(R),Sentence),
show_answer(Sentence),
show_rules(Rs).

get_input(Input) :-
write(’? ’),read(Input).

show_answer(Answer) :-
write(’! ’),write(Answer), nl.

175 / 259

Language processing

answering questions
prove(true,RB) :- !.
prove((A,B),RB) :- !,
prove(A,RB),prove(B,RB).

prove(A,RB) :-
find_clause((A:- B),RB), prove(B,RB).

%
find_clause(C,[R|Rs]) :-
% don’t instantiate rule
copy_element(C,R).

find_clause(C,[R|Rs]) :-
find_clause(C,Rs).

copy_element(X,Ys) :-
element(X1,Ys),
% copy with fresh variables
copy_term(X1,X).

transform((A,B),[(A:- true)|Rest]) :-
transform(B,Rest).

transform(A,(A:- true)).

176 / 259

Language processing

example session

? [every,human,is,mortal]
? [socrates,is,a,human]
? [who,is,mortal]
! [socrates,is,mortal]
? [some,living,beings,are,humans]
? [are,some,living,beings,mortal]
! [some,living,beings,are,mortal]

177 / 259

Reasoning with Incomplete Information

Outline

1 Preliminaries

2 Introduction

3 Clausal logic

4 Logic programming

5 Representing structured
knowledge

6 Searching graphs

7 Informed search

8 Language processing

9 Reasoning with Incomplete
Information

10 Default Reasoning

11 The Semantics of Negation

12 Abduction

13 Inductive Logic
Programming

178 / 259

Reasoning with Incomplete Information

reasoning with incomplete information

Forms of reasoning where conclusions are plausible but not
guaranteed to be true:

default reasoning: when a “normal” state of affairs is assumed
(“birds fly”).

abductive resoning when there is a choice between several
explanations that explain observations, e.g. in a diagnosis
inductive reasoning when a general rule is learned from examples.

Such reasoning is unsound. Sound reasoning is called deduction.
Deduction only makes implicit information explicit.

179 / 259

Reasoning with Incomplete Information

reasoning with incomplete information

Forms of reasoning where conclusions are plausible but not
guaranteed to be true:

default reasoning: when a “normal” state of affairs is assumed
(“birds fly”).
abductive resoning when there is a choice between several
explanations that explain observations, e.g. in a diagnosis

inductive reasoning when a general rule is learned from examples.
Such reasoning is unsound. Sound reasoning is called deduction.
Deduction only makes implicit information explicit.

179 / 259

Reasoning with Incomplete Information

reasoning with incomplete information

Forms of reasoning where conclusions are plausible but not
guaranteed to be true:

default reasoning: when a “normal” state of affairs is assumed
(“birds fly”).
abductive resoning when there is a choice between several
explanations that explain observations, e.g. in a diagnosis
inductive reasoning when a general rule is learned from examples.

Such reasoning is unsound. Sound reasoning is called deduction.
Deduction only makes implicit information explicit.

179 / 259

Reasoning with Incomplete Information

reasoning with incomplete information

Forms of reasoning where conclusions are plausible but not
guaranteed to be true:

default reasoning: when a “normal” state of affairs is assumed
(“birds fly”).
abductive resoning when there is a choice between several
explanations that explain observations, e.g. in a diagnosis
inductive reasoning when a general rule is learned from examples.

Such reasoning is unsound. Sound reasoning is called deduction.
Deduction only makes implicit information explicit.

179 / 259

Default Reasoning

Outline

1 Preliminaries

2 Introduction

3 Clausal logic

4 Logic programming

5 Representing structured
knowledge

6 Searching graphs

7 Informed search

8 Language processing

9 Reasoning with Incomplete
Information

10 Default Reasoning

11 The Semantics of Negation

12 Abduction

13 Inductive Logic
Programming

180 / 259

Default Reasoning

default reasoning

Tweety is a bird. Normally, birds fly. Therefore, Tweety flies.

bird(tweety).
flies(X) :- bird(X), normal(X).

has 3 models:

{bird(tweety)}
{bird(tweety), flies(tweety)}
{bird(tweety), flies(tweety), normal(tweety)}

181 / 259

Default Reasoning

In default reasoning, it is more natural to use abnormal/1 instead of
normal/1:

flies(X) ; abnormal(X) :- bird(X).

can be transformed to a general definite clause:

flies(X) :- bird(X) , not(abnormal(X)).

Using negation as failure, we can now prove that Tweety flies.

bird(X) :- ostrich(X).
ostrich(tweety).
abnormal(X) :- ostrich(X).

Here the default rule

flies(X) :- bird(X), not(abnormal(X)).

is cancelled by the more specific rule about ostriches.

182 / 259

Default Reasoning

non-monotonic reasoning
In the example, new information invalidates previous conclusions. This
is not the case for deductive reasoning where

Th ` p ⇒ Th ∪ {q} ` p

for any q or, defining Closure(Th) = {p | Th ` p} we get that

deduction is monotonic

Th1 ⊆ Th2 ⇒ Closure(Th1) ⊆ Closure(Th2)

Default reasoning using not/1 is problematic because not/1 has no
declarative semantics (but see later).
Alternatively we can distinguish between rules with exceptions (default
rules) and rules without exceptions. Rules are applied whenever
possible, but default rules are only applied when they do not lead to an
inconsistency.

183 / 259

Default Reasoning

non-monotonic reasoning
In the example, new information invalidates previous conclusions. This
is not the case for deductive reasoning where

Th ` p ⇒ Th ∪ {q} ` p

for any q or, defining Closure(Th) = {p | Th ` p} we get that

deduction is monotonic

Th1 ⊆ Th2 ⇒ Closure(Th1) ⊆ Closure(Th2)

Default reasoning using not/1 is problematic because not/1 has no
declarative semantics (but see later).

Alternatively we can distinguish between rules with exceptions (default
rules) and rules without exceptions. Rules are applied whenever
possible, but default rules are only applied when they do not lead to an
inconsistency.

183 / 259

Default Reasoning

non-monotonic reasoning
In the example, new information invalidates previous conclusions. This
is not the case for deductive reasoning where

Th ` p ⇒ Th ∪ {q} ` p

for any q or, defining Closure(Th) = {p | Th ` p} we get that

deduction is monotonic

Th1 ⊆ Th2 ⇒ Closure(Th1) ⊆ Closure(Th2)

Default reasoning using not/1 is problematic because not/1 has no
declarative semantics (but see later).
Alternatively we can distinguish between rules with exceptions (default
rules) and rules without exceptions. Rules are applied whenever
possible, but default rules are only applied when they do not lead to an
inconsistency.

183 / 259

Default Reasoning

an interpreter for default reasoning

Example

default((flies(X) :- bird(X))).
rule((not(flies(X)) :- penguin(X))).
rule((bird(X) :- penguin(X))).
rule((penguin(tweety) :- true)).
rule((bird(opus) :- true)).

184 / 259

Default Reasoning

the interpreter 1/2

% E explains F from rules, defaults
explain(F,E):-
explain(F,[],E).

explain(true,E,E) :- !.
explain((A,B),E0,E) :- !,
explain(A,E0,E1), explain(B,E1,E).

explain(A,E0,E):-
prove(A,E0,E).

explain(A,E0,[default((A:-B))|E]):-
default((A:-B)),
explain(B,E0,E),
not(contradiction(A,E)).

185 / 259

Default Reasoning

the interpreter 2/2

% prove using non-defaults
prove(true,E,E) :- !.
prove((A,B),E0,E) :- !,
prove(A,E0,E1), prove(B,E1,E).

prove(A,E0,[rule((A:-B))|E]):-
rule((A:-B)), prove(B,E0,E).

contradiction(not(A),E) :- !,
prove(A,E,E1).

contradiction(A,E):-
prove(not(A),E,E1).

186 / 259

Default Reasoning

Example

?- explain(flies(X),E)
X=opus
E=[default((flies(opus) :- bird(opus))),

rule((bird(opus) :- true))]

?- explain(not(flies(X)),E)
X=tweety
E=[rule((not(flies(tweety)) :- penguin(tweety))),

rule((penguin(tweety) :- true))]

187 / 259

Default Reasoning

Example

default((not(flies(X)) :- mammal(X))).
default((flies(X) :- bat(X))).
default((not(flies(X)) :- dead(X))).
rule((mammal(X) :- bat(X))).
rule((bat(a) :- true)).
rule((dead(a) :- true)).

?-explain(flies(a),E)
E=[default((flies(a) :- bat(a))),

rule((bat(a) :- true))]

?-explain(not(flies(a)),E)
E=[default((not(flies(a)) :- mammal(a)))

rule((mammal(a) :- bat(a))),
rule((bat(a) :- true))]

E=[default((not(flies(a)) :- dead(a)))
rule((dead(a) :- true))]

Only the third explanation seems acceptable.

188 / 259

Default Reasoning

We can refine by naming defaults and allow rules to cancel a specific
default by name.

Example

default(mammals_dont_fly(X), (not(flies(X)):- mammal(X))).
default(bats_fly(X),(flies(X):- bat(X))).
default(dead_things_dont_fly(X), (not(flies(X)):- dead(X))).
rule((mammal(X):- bat(X))).
rule((bat(a):- true)).
rule((dead(a):- true)).
rule((not(mammals_dont_fly(X)):- bat(X))).
% cancels mammals_dont_fly

rule((not(bats_fly(X)):- dead(X))). % cancels bats_fly

189 / 259

Default Reasoning

Change the interpreter:

explain(A,E0,[default(Name)|E]):-
default(Name,(A:- B)), explain(B,E0,E),
% default not cancelled
not(contradiction(Name,E)),
not(contradiction(A,E)).

190 / 259

Default Reasoning

Example

?-explain(flies(a),E)
no

?-explain(not(flies(a)),E)
E=[default(dead_things_dont_fly(a)),

rule((dead(a):- true))]

191 / 259

The Semantics of Negation

Outline

1 Preliminaries

2 Introduction

3 Clausal logic

4 Logic programming

5 Representing structured
knowledge

6 Searching graphs

7 Informed search

8 Language processing

9 Reasoning with Incomplete
Information

10 Default Reasoning

11 The Semantics of Negation

12 Abduction

13 Inductive Logic
Programming

192 / 259

The Semantics of Negation

semantics of negation

A program P is “complete” if for every (ground) fact f , we have that
P |= f or P |= ¬f
We consider two methods to “complete” programs:

The closed world assumption works for definite clauses.

Predicate completion works for general clauses (with negation in
the body) but leads to inconsistencies for some programs.

Alternatively, the stable model semantics introduces nondeterminism.

193 / 259

The Semantics of Negation

semantics of negation

A program P is “complete” if for every (ground) fact f , we have that
P |= f or P |= ¬f
We consider two methods to “complete” programs:

The closed world assumption works for definite clauses.
Predicate completion works for general clauses (with negation in
the body) but leads to inconsistencies for some programs.

Alternatively, the stable model semantics introduces nondeterminism.

193 / 259

The Semantics of Negation

semantics of negation

A program P is “complete” if for every (ground) fact f , we have that
P |= f or P |= ¬f
We consider two methods to “complete” programs:

The closed world assumption works for definite clauses.
Predicate completion works for general clauses (with negation in
the body) but leads to inconsistencies for some programs.

Alternatively, the stable model semantics introduces nondeterminism.

193 / 259

The Semantics of Negation

the closed world assumption

CWA: “everything that is not known to be true must be false” (e.g.
databases).

CWA(P) = P ∪ {:−A | A ∈ BP ∧ P 6|= A}

CWA(P) is the intended program of P, according to the CWA.

194 / 259

The Semantics of Negation

Example

likes(peter,S) :- student_of(S,peter).
student_of(paul,peter).

CWA(P):

likes(peter,S) :- student_of(S,peter).
student_of(paul,peter).
:- student(paul,paul). :- student(peter,paul).
:- student(peter,peter).
:- likes(paul,paul). :- likes(paul,peter).
:- likes(peter,peter).

CWA(P) has only one model:

{student_of(paul,peter), likes(peter,paul)}

This intended model is the intersection of all (Herbrand) models.

195 / 259

The Semantics of Negation

Example

bird(tweety).
flies(X);abnormal(X) :- bird(X).

CWA(P):

bird(tweety).
flies(X);abnormal(X) :- bird(X).
:- flies(tweety).
:- abnormal(tweety).

which is inconsistent: CWA is unable to handle indefinite (or general,
pseudo-definite) clauses.

196 / 259

The Semantics of Negation

predicate completion

Regard a clause as part of the definition of a predicate. E.g. if

likes(peter,S) :- student(S,peter).

is the only clause with head likes/2, its completion is

∀X · ∀S · likes(X ,S)↔ X = peter ∧ student(S,peter)

which can be translated back to clausal form:

likes(peter,S) :- student(S,peter).
X=peter :- likes(X,S).
student(S,peter) :- likes(X,S)

197 / 259

The Semantics of Negation

the completion algorithm 1/3

likes(peter,S) :- student(S,peter).
likes(X,Y) :- friend(X,Y).

1. Ensure that each argument of the head of each clause is a distinct
variable by adding literals of the form Var = Term to the body.

likes(X,S) :- X=peter, student(S,peter).
likes(X,Y) :- friend(X,Y).

198 / 259

The Semantics of Negation

the completion algorithm 2/3

likes(X,S) :- X=peter, student(S,peter).
likes(X,Y) :- friend(X,Y).

2. If there are several clauses for the same predicate (in the head),
combine them into a single formula with a disjunctive “body”.

∀X · ∀Y · likes(X ,Y)←
(X = peter ∧ student(Y ,peter))
∨
friend(X ,Y)

199 / 259

The Semantics of Negation

the completion algorithm 3/3

3. Replace the implication by an equivalence.

∀X · ∀Y · likes(X ,Y)↔
(X = peter ∧ student(Y ,peter))
∨friend(X ,Y)

Note: predicates that have no clauses, e.g. p/1 becomes ∀X · ¬p(X)

Clarke completion semantics
The intended model of P is the classical model of the predicate
completion of Comp(P).

200 / 259

The Semantics of Negation

Be careful with variables that do not occur in the head:

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

is equivalent to

∀X · ∀Y · ∀Z · ancestor(X ,Y)← parent(X ,Z) ∧ ancestor(Z ,Y)

but also with

∀X · ∀Y · ancestor(X ,Y)← (∃Z · parent(X ,Z) ∧ ancestor(Z ,Y))

201 / 259

The Semantics of Negation

Example

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

becomes

∀X · ∀Y · ancestor(X ,Y)←
parent(X ,Y)
∨(∃Z · parent(X ,Z) ∧ ancestor(Z ,Y))

in step 2, and

∀X · ∀Y · ancestor(X ,Y)↔
parent(X ,Y)
∨(∃Z · parent(X ,Z) ∧ ancestor(Z ,Y))

in step 3.

202 / 259

The Semantics of Negation

Example

bird(tweety).
flies(X) :- bird(X), not(abnormal(X)).

Comp(P) becomes:

∀X · bird(X)↔ X = tweety
∀X · flies(X)↔ (bird(X) ∧ ¬abnormal(X))
∀X · ¬abnormal(X)

which has a single model

{ bird(tweety), flies(tweety) }

203 / 259

The Semantics of Negation

Predicate completion gives inconsistent results in some cases:

Example

wise(X) :- not(teacher(X)).
teacher(peter) :- wise(peter).

becomes

∀X · wise(X)↔ ¬teacher(X)
∀X · teacher(X)↔ X = peter ∧ wise(peter)

which is inconsistent.

204 / 259

The Semantics of Negation

stratified programs

Definition
A program P is stratified if its predicate symbols can be partitioned into
disjoint sets S0, . . . ,Sn such that for each clause

p(. . .)← L1, . . . ,Lj

where p ∈ Sk , any literal Lj is such that
if Lj = q(. . .) then q ∈ S0 ∪ . . . ∪ Sk

if Lj = ¬q(. . .) then q ∈ S0 ∪ . . . ∪ Sk−1

Theorem
If P is stratified then Comp(P) is consistent.

205 / 259

The Semantics of Negation

stratified programs

Definition
A program P is stratified if its predicate symbols can be partitioned into
disjoint sets S0, . . . ,Sn such that for each clause

p(. . .)← L1, . . . ,Lj

where p ∈ Sk , any literal Lj is such that
if Lj = q(. . .) then q ∈ S0 ∪ . . . ∪ Sk

if Lj = ¬q(. . .) then q ∈ S0 ∪ . . . ∪ Sk−1

Theorem
If P is stratified then Comp(P) is consistent.

205 / 259

The Semantics of Negation

stratified programs

Definition
A program P is stratified if its predicate symbols can be partitioned into
disjoint sets S0, . . . ,Sn such that for each clause

p(. . .)← L1, . . . ,Lj

where p ∈ Sk , any literal Lj is such that
if Lj = q(. . .) then q ∈ S0 ∪ . . . ∪ Sk

if Lj = ¬q(. . .) then q ∈ S0 ∪ . . . ∪ Sk−1

Theorem
If P is stratified then Comp(P) is consistent.

205 / 259

The Semantics of Negation

Theorem
If P is stratified then Comp(P) is consistent.

The condition is sufficient but not necessary:

Example

win(X)← ¬loose(X).
loose(X)← ¬win(X).

is not stratified but its completion is consistent.

206 / 259

The Semantics of Negation

the stable model semantics

Intuition: Guess a model and verify that it can be reconstructed from
the program (“stability”).

Example

win:- not(loose).
loose :- not(win).

Guess M = {win}: first rule becomes

win.

while the second rule is not applicable (since its body is false).

207 / 259

The Semantics of Negation

the Gelfond-Lifschitz transformation
For a program P and an interpretation I, the GL transform PI is defined
by

1 Removing all (true) negations not(b), where b 6∈ I from the bodies
of the rules.

2 Remove all (“blocked”) rules that still contain negations after the
previous step.

The result is a positive program.

Example

win:- not(loose).
loose :- not(win).

P{win} contains just the clause

win.

208 / 259

The Semantics of Negation

stable model definition

Definition
M is a stable model of P iff M is the (unique) minimal model of PM .

Example

win:- not(loose).
loose :- not(win).

Has two stable models: {win} and {loose}.

209 / 259

The Semantics of Negation

graph colorability with stable models

% graph defined by node/1, arc/2
%
% a node must have a color
color(N,red) :- node(N),
not(color(N,green)), not(color(N,blue)).

color(N,green) :- node(N),
not(color(N,blue)), not(color(N,red)).

color(N,blue) :- node(N),
not(color(N,red)), not(color(N,green)).

%
% no two adjacent nodes have the same color
:- arc(X,Y), color(X,C), color(Y,C).

Any stable model of the above program represents a solution to this
NP-complete problem.

210 / 259

The Semantics of Negation

answer set programming

Extension of logic programming based on the stable model
semantics for datalog programs (finite universe).

Without disjunction in the head, NP problems (e.g. satisfiability of
a propositional formula) can be represented.
The stable model semantics can be extended to disjunctive
(datalog) programs, which increases the expressiveness to Σ2P
(NP using an NP (Σ1P) oracle, e.g. deciding whether
∃x · ∀y · φ(x , y) is valid).
Efficient (sic) implementations are available: e.g. the smodels or
the dlv systems.
Applications in configuration (space shuttle), planning,
diagnostics,

211 / 259

The Semantics of Negation

answer set programming

Extension of logic programming based on the stable model
semantics for datalog programs (finite universe).
Without disjunction in the head, NP problems (e.g. satisfiability of
a propositional formula) can be represented.

The stable model semantics can be extended to disjunctive
(datalog) programs, which increases the expressiveness to Σ2P
(NP using an NP (Σ1P) oracle, e.g. deciding whether
∃x · ∀y · φ(x , y) is valid).
Efficient (sic) implementations are available: e.g. the smodels or
the dlv systems.
Applications in configuration (space shuttle), planning,
diagnostics,

211 / 259

The Semantics of Negation

answer set programming

Extension of logic programming based on the stable model
semantics for datalog programs (finite universe).
Without disjunction in the head, NP problems (e.g. satisfiability of
a propositional formula) can be represented.
The stable model semantics can be extended to disjunctive
(datalog) programs, which increases the expressiveness to Σ2P
(NP using an NP (Σ1P) oracle, e.g. deciding whether
∃x · ∀y · φ(x , y) is valid).

Efficient (sic) implementations are available: e.g. the smodels or
the dlv systems.
Applications in configuration (space shuttle), planning,
diagnostics,

211 / 259

The Semantics of Negation

answer set programming

Extension of logic programming based on the stable model
semantics for datalog programs (finite universe).
Without disjunction in the head, NP problems (e.g. satisfiability of
a propositional formula) can be represented.
The stable model semantics can be extended to disjunctive
(datalog) programs, which increases the expressiveness to Σ2P
(NP using an NP (Σ1P) oracle, e.g. deciding whether
∃x · ∀y · φ(x , y) is valid).
Efficient (sic) implementations are available: e.g. the smodels or
the dlv systems.

Applications in configuration (space shuttle), planning,
diagnostics,

211 / 259

The Semantics of Negation

answer set programming

Extension of logic programming based on the stable model
semantics for datalog programs (finite universe).
Without disjunction in the head, NP problems (e.g. satisfiability of
a propositional formula) can be represented.
The stable model semantics can be extended to disjunctive
(datalog) programs, which increases the expressiveness to Σ2P
(NP using an NP (Σ1P) oracle, e.g. deciding whether
∃x · ∀y · φ(x , y) is valid).
Efficient (sic) implementations are available: e.g. the smodels or
the dlv systems.
Applications in configuration (space shuttle), planning,
diagnostics,

211 / 259

The Semantics of Negation

sudoku using answer set programming

(author: Kim Bauters)

size(0..8). % like type declaration
1{p(X, Y, Value) : size(Value)}1 :- size(X), size(Y).
% A value may not appear more than once in any row.
:- p(X, Y1, Value), p(X, Y2, Value), size(X;Y1;Y2;Value), Y1!=Y2.
% A value may not appear more than once in any column.
:- p(X1, Y, Value), p(X2, Y, Value), size(X1;X2;Y;Value), X1!=X2.
% A value may not appear more than once in any subgrid.
:- p(X1, Y1, Value), p(X2, Y2, Value), size(X1;X2;Y1;Y2;Value),

(X1 != X2 | Y1 != Y2), X1 / 3 == X2 / 3, Y1 / 3 == Y2 / 3.
hide size(_).

Note: smodels extension (syntax sugar):
2{p,q,r}3 is true in M iff it contains between 2 and 3 elements of
{p,q, r}.
{p(a,X) : q(X)} is shorthand for the set {p(a,X) | q(X)}.

212 / 259

Abduction

Outline

1 Preliminaries

2 Introduction

3 Clausal logic

4 Logic programming

5 Representing structured
knowledge

6 Searching graphs

7 Informed search

8 Language processing

9 Reasoning with Incomplete
Information

10 Default Reasoning

11 The Semantics of Negation

12 Abduction

13 Inductive Logic
Programming

213 / 259

Abduction

abduction

Given a theory T and an observation O, find an explanation E such
that

T ∪ E ` O

E.g. given the theory

likes(peter,S) :- student_of(S,peter).
likes(X,Y) :- friend(X,Y).

and the observation likes(peter,paul), possible explanations are
{student_of(paul,peter)} or {friend(peter,paul)}
Another possible explanation is
{(likes(X,Y) :- friendly(Y)), friendly(paul)} but abductive
explanations are usually restricted to ground literals with predicates
that are undefined in the theory (abducibles).

214 / 259

Abduction

an abduction algorithm

Try to prove observation from theory; when an abducible literal is
encountered that cannot be resolved, add it to the explanation.

abduce(O,E):- % P+E |- O
abduce(O,[],E).

abduce(true,E,E) :- !.
abduce((A,B),E0,E) :- !,
abduce(A,E0,E1),
abduce(B,E1,E).

abduce(A,E0,E):-
clause(A,B),
abduce(B,E0,E).

abduce(A,E,E):- element(A,E).
abduce(A,E,[A|E]):- not(element(A,E)), abducible(A).
abducible(A):- not(clause(A,B)).
% clauses are assumed to be definitions

215 / 259

Abduction

Example

likes(peter,S) :- student_of(S,peter).
likes(X,Y) :- friend(X,Y).

?-abduce(likes(peter,paul),E)
E = [student_of(paul,peter)];
E = [friend(paul,peter)]

216 / 259

Abduction

Problems with general clauses:

Example

flies(X) :- bird(X), not(abnormal(X)).
abnormal(X) :- penguin(X).
bird(X) :- penguin(X).
bird(X) :- sparrow(X).

?-abduce(flies(tweety),E)
E = [not(abnormal(tweety)),penguin(tweety)];
E = [not(abnormal(tweety)),sparrow(tweety)];

217 / 259

Abduction

adding negation as failure

% E explains not(A) if E does not explain A
abduce(not(A),E,E):-
not(abduce(A,E,E)).

..
abducible(A):-
A \= not(X), not(clause(A,B)).

?-abduce(flies(tweety),E)
E = [sparrow(tweety)]

Still problems because abduce(not(A),E,E) assumes E is “complete”.
E.g.

abduce(not(abnormal(X)),[],[])

succeeds and thus, if flies(X):- not(abnormal(X)),bird(X) any
explanation of bird(X) will explain flies(X).
Thus we need a special abduce_not/3 that provides evidence for
accepting not(..).

218 / 259

Abduction

new interpreter 1/2
abduce(true,E,E) :- !.
abduce((A,B),E0,E) :- !,
abduce(A,E0,E1),
abduce(B,E1,E).

abduce(A,E0,E):-
clause(A,B),
abduce(B,E0,E).

abduce(A,E,E):-
element(A,E).

abduce(A,E,[A|E]):-
not(element(A,E)),
abducible(A),
not(abduce_not(A,E,E)).
% only if E does not explain not(A)

abduce(not(A),E0,E):-
not(element(A,E0)),
abduce_not(A,E0,E).

abducible(A):-
A \= not(X), not(clause(A,B)).

219 / 259

Abduction

new interpreter 2/2
abduce_not((A,B),E0,E):- % disjunction!
abduce_not(A,E0,E) ; abduce_not(B,E0,E).

abduce_not(A,E0,E):-
setof(B,clause(A,B),L), % abduce_not(B) for each body B
abduce_not_list(L,E0,E).

abduce_not(A,E,E):-
element(not(A),E). % not(A) already assumed

abduce_not(A,E,[not(A)|E]):- % assume not(A) if
not(element(not(A),E)), % not already there, and
abducible(A), % it is abducible, and
not(abduce(A,E,E)). % E does not explain A

abduce_not(not(A),E0,E):-
not(element(not(A),E0)),
abduce(A,E0,E).

abduce_not_list([],E,E).
abduce_not_list([B|Bs],E0,E):-
abduce_not(B,E0,E1), % body cannot be used
abduce_not_list(Bs,E1,E).

220 / 259

Abduction

Example

flies(X) :- bird(X),not(abnormal(X)).
flies1(X) :- not(abnormal(X)),bird(X).
abnormal(X) :- penguin(X).
abnormal(X) :- dead(X).
bird(X) :- penguin(X).
bird(X) :- sparrow(X).

?- abduce(flies(tweety),E).
E = [not(penguin(tweety)),not(dead(tweety)),

sparrow(tweety)]
?- abduce(flies1(tweety),E).
E = [sparrow(tweety),

not(penguin(tweety)),not(dead(tweety))]

221 / 259

Abduction

diagnosis using abduction
X

Y

Z

S

Sum

Carry

C1

C2

xor1

and1

and2

xor2

or1

adder(X,Y,Z,Sum,Carry) :-
xor(X,Y,S),xor(Z,S,Sum),
and(X,Y,C1),and(Z,S,C2),
or(C1,C2,Carry).

xor(0,0,0). and(0,0,0). or(0,0,0).
xor(0,1,1). and(0,1,0). or(0,1,1).
xor(1,0,1). and(1,0,0). or(1,0,1).
xor(1,1,0). and(1,1,1). or(1,1,1).

describes normal operation

222 / 259

Abduction

The fault model of a system describes the behavior of each component
when in a faulty state.
We distinguish 2 such states: s0 (“stuck at 0”) and s1 (“stuck at 1”). A
faulty component is described by a literal fault(NameComponent=State)
Names of components can be nested as in
nameSubSystem-nameComponent

adder(N,X,Y,Z,Sum,Carry):-
xorg(N-xor1,X,Y,S), xorg(N-xor2,Z,S,Sum),
andg(N-and1,X,Y,C1), andg(N-and2,X,S,C2),
org(N-or1,C1,C2,Carry).

xorg(N,X,Y,Z) :- xor(X,Y,Z).
xorg(N,0,0,1) :- fault(N=s1).
xorg(N,0,1,0) :- fault(N=s0).
xorg(N,1,0,0) :- fault(N=s0).
xorg(N,1,1,1) :- fault(N=s1).

223 / 259

Abduction

xandg(N,X,Y,Z):- and(X,Y,Z).
xandg(N,0,0,1):- fault(N=s1). xandg(N,0,1,1) :- fault(N=s1).
xandg(N,1,0,1):- fault(N=s1). xandg(N,1,1,0) :- fault(N=s0).

org(N,X,Y,Z):- or(X,Y,Z).
org(N,0,0,1):- fault(N=s1). org(N,0,1,0) :- fault(N=s0).
org(N,1,0,0):- fault(N=s0). org(N,1,1,0) :- fault(N=s0).

diagnosis(Observation,Diagnosis):-
abduce(Observation,Diagnosis).

?-diagnosis(adder(a,0,0,1,0,1),D).
D = [fault(a-or1=s1),fault(a-xor2=s0)];
D = [fault(a-and2=s1),fault(a-xor2=s0)];
D = [fault(a-and1=s1),fault(a-xor2=s0)];
D = [fault(a-and2=s1),fault(a-and1=s1), fault(a-xor2=s0)];
D = [fault(a-xor1=s1)];

224 / 259

Abduction

D = [fault(a-or1=s1),fault(a-and2=s0), fault(a-xor1=s1)];
D = [fault(a-and1=s1),fault(a-xor1=s1)];
D = [fault(a-and2=s0),fault(a-and1=s1), fault(a-xor1=s1)];

Minimal diagnoses are more plausible:

min_diagnosis(O,D) :-
diagnosis(O,D),
not(diagnosis(O,D1),proper_subset(D1,D)).

?-min_diagnosis(adder(a,0,0,1,0,1),D).
D = [fault(a-or1=s1),fault(a-xor2=s0)];
D = [fault(a-and2=s1),fault(a-xor2=s0)];
D = [fault(a-and1=s1),fault(a-xor2=s0)];
D = [fault(a-xor1=s1)];

225 / 259

Inductive Logic Programming

Outline

1 Preliminaries

2 Introduction

3 Clausal logic

4 Logic programming

5 Representing structured
knowledge

6 Searching graphs

7 Informed search

8 Language processing

9 Reasoning with Incomplete
Information

10 Default Reasoning

11 The Semantics of Negation

12 Abduction

13 Inductive Logic
Programming

226 / 259

Inductive Logic Programming Introduction

Inductive logic programming (ILP)

Problem: Given
B background knowledge (theory, i.e. LP)

E+ positive examples (set of facts),
E− negative examples (set of facts),
Find a theory H (hypothesis) such that

∀p ∈ E+ · B ∪ H |= p
∀n ∈ E− · B ∪ H 6|= n

Of course, we assume that ∀e ∈ E+ ∪ E− · B 6|= e
Difference with abduction: H is a theory instead of a set of facts.

227 / 259

Inductive Logic Programming Introduction

Relationship with learning

Concept learning tries to find a suitable concept in a description
space where descriptions are related via
generalization/specialization relationships. Examples are at the
“bottom” of the generalization hierarchy.
A concept is suitable if it covers (generalizes) all positive and none
of the negative examples.
Learning capabilities depend on the characteristics of the
description space: too rough makes learning impossible, too fine
leads to trivial concepts (e.g. when the description space supports
disjunction).
A well-known algorithm is Mitchell’s candidate elimination
algorithm where upper and lower bounds of possible solutions are
updated according to input examples.

228 / 259

Inductive Logic Programming Introduction

ILP as concept learning

ILP as discussed here can be seen as concept learning where the
description space consists of LP’s. The generalization relationship
may be based on subsumption between clauses.

229 / 259

Inductive Logic Programming Introduction

Example: learning append/3

?- induce_rlgg([
+append([1,2],[3,4],[1,2,3,4]),
+append([a],[],[a]),
+append([],[],[]),
+append([],[1,2,3],[1,2,3]),
+append([2],[3,4],[2,3,4]),
+append([],[3,4],[3,4]),
-append([a],[b],[b]),
-append([c],[b],[c,a]),
-append([1,2],[],[1,3])

], Clauses).

230 / 259

Inductive Logic Programming Introduction

Example: learning append/3

RLGG of append([1,2],[3,4],[1,2,3,4]) and
append([a],[],[a]) is

append([X|Y],Z,[X|U]) :- [append(Y,Z,U)]
Covered example: append([1,2],[3,4],[1,2,3,4])
Covered example: append([a],[],[a])
Covered example: append([2],[3,4],[2,3,4])
RLGG of append([],[],[]) and append([],[1,2,3],[1,2,3]) is

append([],X,X) :- []
Covered example: append([],[],[])
Covered example: append([],[1,2,3],[1,2,3])
Covered example: append([],[3,4],[3,4])

Clauses = [(append([],X,X) :- []),
(append([X|Y],Z,[X|U]) :- [append(Y,Z,U)])]

231 / 259

Inductive Logic Programming Generalizing clauses

generalizing clauses: θ-subsumption

Definition
A clause c1 θ-subsumes a clause c2 iff there exists a substitution θ
such that θc1 ⊆ c2 (c1 is “more general” or “more widely applicable”
thant c2).

Here clauses are seen as sets of (positive and negative) literals
(disjunctions).

232 / 259

Inductive Logic Programming Generalizing clauses

θ-subsumption examples

The clause

element(X,V) :- element(X,Z)

θ-subsumes, using θ = {V→ [Y|Z]},
element(X,[Y|Z]) :- element(X,Z)

(i.e. θ “specializes” element(X,V) :- element(X,Z)).
The clause

a(X) :- b(X).

θ-subsumes (with θ identity)

a(X) :- b(X), c(X).

233 / 259

Inductive Logic Programming Generalizing clauses

θ-subsumption implementation

% (H1:- B1) subsumes (H2 :- B2)
theta_subsumes((H1:- B1),(H2 :- B2)):-
verify((grounded((H2:- B2)), H1=H2,subset(B1,B2))).
% H1=H2 creates substitution, note that H2 has no vars

grounded(Term):-
% instantiate vars in Term to terms of the form
% ’$VAR’(i) where i is different for each distinct
% var, first i=0, last = N-1
numbervars(Term,0,N).

verify(Goal) :- % prove without binding
not(not(call(Goal))).

234 / 259

Inductive Logic Programming Generalizing clauses

θ-subsumption implementation

Example

?- theta_subsumes((element(X,V):- []),
(element(X,V):- [element(X,Z)])).

yes.
?- theta_subsumes((element(X,a):- []),

(element(X,V):- [])).
no.

235 / 259

Inductive Logic Programming Generalizing clauses

θ-subsumption vs. logical consequence

Theorem
If c1 θ-subsumes c2 then c1 |= c2

The reverse is not true:

a(X) :- b(X). % c1
p(X) :- p(X). % c2, tautology.

Here c1 |= c2 but there is no substitution θ such that θc1 ⊆ c2

Theorem
The set of (reduced) clauses form a lattice, i.e. a unique least general
generalization lgg(c1, c2) exists for any two clauses c1 and c2.

(a clause is reduced if it is minimal in the collection of equivalent
clauses)

236 / 259

Inductive Logic Programming Generalizing clauses

generalizing 2 terms

Consider the terms

element(1,[1]). %a1
element(z,[z,y,x]). %a2
element(X,[X|Y]). % a3

a3 subsumes a1 using {X/1, Y/[]} and
a3 subsumes a2 using {X/z, Y/[y,x]}

Moreover, a3 is the least generalization, i.e. every other term that
θ-subsumes a1 and a2 also θ-subsumes a3.

237 / 259

Inductive Logic Programming Generalizing clauses

anti_unify

:- op(600,xfx,’<-’). % to record (inverse) substitutions

anti_unify(Term1,Term2,Term):- % use accumulators S1, S2
anti_unify(Term1,Term2,Term,[],S1,[],S2).

anti_unify(Term1,Term2,Term1,S1,S1,S2,S2):-
Term1 == Term2,!.

anti_unify(Term1,Term2,V,S1,S1,S2,S2):-
subs_lookup(S1,S2,Term1,Term2,V), !. % already substituted

anti_unify(Term1,Term2,Term,S10,S1,S20,S2):-
nonvar(Term1), nonvar(Term2),
functor(Term1,F,N), functor(Term2,F,N),!,
functor(Term,F,N), % create F(X1,..,Xn)
anti_unify_args(N,Term1,Term2,Term,S10,S1,S20,S2).

% Create new variable V and substitutions V->Term1, V->Term2
anti_unify(Term1,Term2,
V, S10,[Term1<-V|S10], S20,[Term2<-V|S20]).

238 / 259

Inductive Logic Programming Generalizing clauses

% anti_unify_args(N,T1,T2,T,..):
% anti-unify first N arguments of T1, T2
anti_unify_args(0,Term1,Term2,Term,S1,S1,S2,S2).
anti_unify_args(N,Term1,Term2,Term,S10,S1,S20,S2):-
N>0,N1 is N-1,
arg(N,Term1,Arg1), arg(N,Term2,Arg2), arg(N,Term,ArgN),
anti_unify(Arg1,Arg2,ArgN,S10,S11,S20,S21),
anti_unify_args(N1,Term1,Term2,Term,S11,S1,S21,S2).

% subs_lookup(+subst1,+subst2,+term1,+term2,-var)
% subst1(V) = term1, subst2(V) = term2
subs_lookup([T1<-V|Subs1],[T2<-V|Subs2],Term1,Term2,V):-
T1 == Term1, T2 == Term2,!.

subs_lookup([S1|Subs1],[S2|Subs2],Term1,Term2,V):-
subs_lookup(Subs1,Subs2,Term1,Term2,V).

Example

?- anti_unify(2*2=2+2,2*3=3+3,T,[],S1,[],S2).
T = 2 * _G191 = _G191 + _G191
S1 = [2 <- _G191]
S2 = [3 <- _G191]

239 / 259

Inductive Logic Programming Generalizing clauses

generalizing 2 clauses (1/2)

theta_lgg((H1:-B1),(H2:-B2),(H:-B)):-
anti_unify(H1,H2,H,[],S10,[],S20),
theta_lgg_bodies(B1,B2, [],B, S10,S1, S20,S2).

% theta_lgg_bodies considers each pair of literals
% from both bodies
theta_lgg_bodies([],B2,B,B,S1,S1,S2,S2).
theta_lgg_bodies([Lit|B1],B2, B0,B, S10,S1, S20,S2):-
theta_lgg_literal(Lit,B2, B0,B00, S10,S11, S20,S21),
theta_lgg_bodies(B1,B2, B00,B, S11,S1, S21,S2).

240 / 259

Inductive Logic Programming Generalizing clauses

generalizing 2 clauses (2/2)

% theta_lgg_literal anti-unifies Lit1 with each
% literal in 2nd arg
theta_lgg_literal(Lit1,[], B,B, S1,S1, S2,S2).
theta_lgg_literal(Lit1,[Lit2|B2], B0,B, S10,S1, S20,S2):-
same_predicate(Lit1,Lit2),
anti_unify(Lit1,Lit2,Lit,S10,S11,S20,S21),
theta_lgg_literal(Lit1,B2,[Lit|B0],B,S11,S1,S21,S2).

theta_lgg_literal(Lit1,[Lit2|B2],B0,B,S10,S1,S20,S2):-
not(same_predicate(Lit1,Lit2)),
theta_lgg_literal(Lit1,B2,B0,B,S10,S1,S20,S2).

same_predicate(Lit1,Lit2) :-
functor(Lit1,P,N),
functor(Lit2,P,N).

241 / 259

Inductive Logic Programming Generalizing clauses

theta_lgg example

Example

?- theta_lgg(
(element(c,[b,c]):- [

element(c,[c])
]),

(element(d,[b,c,d]):- [
element(d,[c,d]),
element(d,[d])
]),

C).
C = element(X, [b, c|Y]):- [element(X,[X]), element(X,[c|Y])]

242 / 259

Inductive Logic Programming Generalizing clauses

theta_lgg example

Example

?- theta_lgg(
(reverse([2,1],[3],[1,2,3]):- [

reverse([1],[2,3],[1,2,3])
]),

(reverse([a],[],[a]) :- [
reverse([],[a],[a])
]),

C).
C = reverse([X|Y], Z, [U|V]) :- [reverse(Y, [X|Z], [U|V])]

243 / 259

Inductive Logic Programming A bottom-up induction algorithm

a bottom-up induction algorithm

Definition
The relative least general generalization rlgg(e1,e2,M) of two positive
examples relative to a (partial) model M is defined by

rlgg(e1,e2,M) = lgg((e1 : −M∧), (e2 : −M∧))

244 / 259

Inductive Logic Programming A bottom-up induction algorithm

a bottom-up induction algorithm: example

append([1,2],[3,4],[1,2,3,4]). append([a],[],[a]).
append([],[],[]). append([2],[3,4],[2,3,4]).

the rlgg on the first 2 examples is determined using

?- theta_lgg(
(append([1,2],[3,4],[1,2,3,4]) :- [

append([1,2],[3,4],[1,2,3,4]),
append([a],[],[a]),
append([],[],[]),
append([2],[3,4],[2,3,4])
]),

(append([a],[],[a]):- [
append([1,2],[3,4],[1,2,3,4]),
append([a],[],[a]),
append([],[],[]),
append([2],[3,4],[2,3,4])
]),

C), write_ln(C).

245 / 259

Inductive Logic Programming A bottom-up induction algorithm

example: result
append([X|Y], Z, [X|U]) :- [
append([2], [3, 4], [2, 3, 4]),
append(Y, Z, U),
append([V], Z, [V|Z]),
append([K|L], [3, 4], [K, M, N|O]),
append(L, P, Q),
append([], [], []),
append(R, [], R),
append(S, P, T),
append([A], P, [A|P]),
append(B, [], B),
append([a], [], [a]),
append([C|L], P, [C|Q]),
append([D|Y], [3, 4], [D, E, F|G]),
append(H, Z, I),
append([X|Y], Z, [X|U]),
append([1, 2], [3, 4], [1, 2, 3, 4])
]

too complex!
246 / 259

Inductive Logic Programming A bottom-up induction algorithm

constrained clauses

We remove:
ground facts (examples) are redundant
literals involving variables not occurring in the head: i.e. we
restrict to constrained clauses.

The example result then becomes:

append([X|Y], Z, [X|U]) :-
append(Y, Z, U), append([X|Y], Z, [X|U]).

The head is part of the body: it can also be removed if we restrict to
strictly constrained clauses where the variables in the body are a strict
subset of the variables in the head.

247 / 259

Inductive Logic Programming A bottom-up induction algorithm

computing the rlgg

% rlgg(E1,E2,M,C): C is RLGG of E1 and E2 relative to M
rlgg(E1,E2,M,(H:- B)):-
anti_unify(E1,E2,H,[],S10,[],S20),
varsin(H,V), % determine variables in head of clause
rlgg_bodies(M,M,[],B,S10,S1,S20,S2,V).

% rlgg_bodies(B0,B1,BR0,BR,S10,S1,S20,S2,V): rlgg all
% literals in B0 with all literals in B1, yielding BR
% containing only vars in V
rlgg_bodies([],B2,B,B,S1,S1,S2,S2,V).
rlgg_bodies([L|B1],B2,B0,B,S10,S1,S20,S2,V):-
rlgg_literal(L,B2,B0,B00,S10,S11,S20,S21,V),
rlgg_bodies(B1,B2,B00,B,S11,S1,S21,S2,V).

248 / 259

Inductive Logic Programming A bottom-up induction algorithm

rlgg_literal(L1,[],B,B,S1,S1,S2,S2,V).
rlgg_literal(L1,[L2|B2],B0,B,S10,S1,S20,S2,V):-
same_predicate(L1,L2),
anti_unify(L1,L2,L,S10,S11,S20,S21),
varsin(L,Vars),
var_proper_subset(Vars,V), % no new variables in literal
!,
rlgg_literal(L1,B2,[L|B0],B,S11,S1,S21,S2,V).

rlgg_literal(L1,[L2|B2],B0,B,S10,S1,S20,S2,V):-
rlgg_literal(L1,B2,B0,B,S10,S1,S20,S2,V).

249 / 259

Inductive Logic Programming A bottom-up induction algorithm

varsin/2

% varsin(+term,-list) list is list of
% variables occurring in term
varsin(Term,Vars):-
varsin(Term,[],V), sort(V,Vars).

varsin(V,Vars,[V|Vars]):-
var(V).

varsin(Term,V0,V):-
functor(Term,F,N),
varsin_args(N,Term,V0,V).

% varsin_args(N,T,V0,V) add vars in first
% N args of T to V0, yielding V
varsin_args(0,Term,Vars,Vars).
varsin_args(N,Term,V0,V):-
N>0, N1 is N-1,
arg(N,Term,ArgN),
varsin(ArgN,V0,V1),
varsin_args(N1,Term,V1,V).

250 / 259

Inductive Logic Programming A bottom-up induction algorithm

var_remove_one/3, var_proper_subset/2

var_remove_one(X,[Y|Ys],Ys) :-
X == Y.

var_remove_one(X,[Y|Ys],[Y|Zs) :-
var_remove_one(X,Ys,Zs).

var_proper_subset([],Ys) :-
Ys \= [].

var_proper_subset([X|Xs],Ys) :-
var_remove_one(X,Ys,Zs),
var_proper_subset(Xs,Zs).

251 / 259

Inductive Logic Programming A bottom-up induction algorithm

rlgg
Example

?- rlgg(
append([1,2],[3,4],[1,2,3,4]),
append([a],[],[a]),
[
append([1,2],[3,4],[1,2,3,4]),
append([a],[],[a]),
append([],[],[]),
append([2],[3,4],[2,3,4])
],
(H:- B)).

append([X|Y], Z, [X|U]) :- [
append([2], [3, 4], [2, 3, 4]),
append(Y, Z, U),
append([], [], []),
append([a], [], [a]),
append([1, 2], [3, 4], [1, 2, 3, 4])
]

252 / 259

Inductive Logic Programming A bottom-up induction algorithm

main algorithm

construct rlgg of two examples
remove positive examples that are covered by the resulting clause
remove further literals (generalizing the clause) as long as the
clause does not cover any negative examples
based on GOLEM system (Muggleton & Feng, 1990)

253 / 259

Inductive Logic Programming A bottom-up induction algorithm

induce_rlgg implementation

induce_rlgg(Exs,Clauses):-
pos_neg(Exs,Poss,Negs),
bg_model(BG), append(Poss,BG,Model),
induce_rlgg(Poss,Negs,Model,Clauses).

% induce_rlgg(+pos_exs,+neg_exs,+model,-clauses)
induce_rlgg(Poss,Negs,Model,Clauses):-
covering(Poss,Negs,Model,[],Clauses).

% pos_neg(+exs,-poss,-negs) split
% positive and negative examples
pos_neg([],[],[]).
pos_neg([+E|Exs],[E|Poss],Negs):-
pos_neg(Exs,Poss,Negs).

pos_neg([-E|Exs],Poss,[E|Negs]):-
pos_neg(Exs,Poss,Negs).

254 / 259

Inductive Logic Programming A bottom-up induction algorithm

% covering(+pos_exs, +neg_exs, +model,+old_hypothesis,
% -new_hypothesis): construct new_hypothesis
% covering all of pos_exs and none of the neg_exs
covering(Poss,Negs,Model,Hyp0,NewHyp) :-
construct_hypothesis(Poss,Negs,Model,Hyp), !,
remove_pos(Poss,Model,Hyp,NewPoss),
% cover remaining posexs
covering(NewPoss,Negs,Model,[Hyp|Hyp0],NewHyp).

covering(P,N,M,H0,H) :-
append(H0,P,H). % add uncovered exs to hypothesis

% remove_pos(+old_pos_exs,+model,+clause,-new_pos_ex)
% remove posexs that are covered by clause + model,
% yielding new_pos_ex
remove_pos([],M,H,[]).
remove_pos([P|Ps],Model,Hyp,NewP) :-
covers_ex(Hyp,P,Model), !,
write(’Covered example: ’), write_ln(P),
remove_pos(Ps,Model,Hyp,NewP).

remove_pos([P|Ps],Model,Hyp,[P|NewP]):-
remove_pos(Ps,Model,Hyp,NewP).

255 / 259

Inductive Logic Programming A bottom-up induction algorithm

% covers_ex(+clause,+example,+model):
% example is covered by clause
covers_ex((Head:- Body),Example,Model):-
verify(
(Head=Example, forall(element(L,Body),element(L,Model))
)).

% construct_hypothesis(+pos_exs,+neg_exs,+model,-clause)
construct_hypothesis([E1,E2|Es],Negs,Model,Clause):-
write(’RLGG of ’), write(E1),
write(’ and ’), write(E2), write(’ is’),

rlgg(E1,E2,Model,Cl),
reduce(Cl,Negs,Model,Clause), !,
nl,tab(5), write_ln(Clause).

construct_hypothesis([E1,E2|Es],Negs,Model,Clause):-
write_ln(’ too general’),
construct_hypothesis([E2|Es],Negs,Model,Clause).

256 / 259

Inductive Logic Programming A bottom-up induction algorithm

% reduce(+old_clause,+neg_exs,+model,-new_clause)
% remove redundant literals from body and ensure
% that no negexs are covered
reduce((H:- B0),Negs,M,(H:-B)):-
% remove literals of M from B0, giving B1
setof0(L, (element(L,B0), not(var_element(L,M))), B1),
% body B consists of literals from B1 that are necessary
% not to cover negative examples
reduce_negs(H,B1,[],B,Negs,M).

% covers_neg(+clause,+negs,+model,-n)
% n negative example from negs covered by clause + model
covers_neg(Clause,Negs,Model,N):- element(N,Negs),
covers_ex(Clause,N,Model).

257 / 259

Inductive Logic Programming A bottom-up induction algorithm

% reduce_negs(+H,+In,+B0,-B,+Negs,+Model)
% B is B0 + subsequence of In such that (H:- B) + Model
% does not cover elements of Negs
reduce_negs(H,[L|Rest],B0,B,Negs,Model):-
% try removing L
append(B0,Rest,Body),
not(covers_neg((H:- Body),Negs,Model,N)), !,
reduce_negs(H,Rest,B0,B,Negs,Model).

reduce_negs(H,[L|Rest],B0,B,Negs,Model):-
% L cannot be removed
reduce_negs(H,Rest,[L|B0],B,Negs,Model).

reduce_negs(H,[],Body,Body,Negs,Model):-
not(covers_neg((H:- Body),Negs,Model,N)).

var_element(X,[Y|Ys]):-
X == Y. % syntactic identity

var_element(X,[Y|Ys]):-
var_element(X,Ys).

258 / 259

Inductive Logic Programming A bottom-up induction algorithm

further developments

Top-down (specializing) induction: cfr. book, section 9.3
Application examples:

I scientific discovery: e.g. predicting 3-dimensional shape of proteins
from their amino acid sequence

I data mining; this may use a probabilistic semantics

259 / 259

	Preliminaries
	Introduction
	Clausal logic
	Logic programming
	Representing structured knowledge
	Searching graphs
	Informed search
	Language processing
	Reasoning with Incomplete Information
	Default Reasoning
	The Semantics of Negation
	Abduction
	Inductive Logic Programming
	Introduction
	Generalizing clauses
	A bottom-up induction algorithm

