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Preliminaries

Organization

Evaluation: 50% project, 50% (closed book) theory exam.
Exercise sessions: first one on Wed. Sep. 30 2009, 15:00-17:00,
IG.
Book.
Copies of transparencies.
See website for further information.
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Preliminaries
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Introduction

introduction

Peter Flach, Simply Logical: Intelligent Reasoning by Example, Wiley, 1994.
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Introduction

logical representation of map

described by a series of logical facts:

connected(bond_street,oxford_circus,central)
connected(oxford_circus,tottenham_court_road,central)
connected(bond_street,green_park,jubilee)
connected(green_park,charing_cross,jubilee)
connected(green_park,piccadilly_circus,piccadilly)
connected(piccadilly_circus,leicester_square,piccadilly)
connected(green_park,oxford_circus,victoria)
connected(oxford_circus,piccadilly_circus,bakerloo)
connected(piccadilly_circus,charing_cross,bakerloo)
connected(tottenham_court_road,leicester_square,northern)
connected(leicester_square,charing_cross,northern)

7 / 259



Introduction

derived information

“Two stations are near if they are on the same line, with at most one
station in between”

near(bond_street,oxford_circus)
near(oxford_circus,tottenham_court_road)
near(bond_street,tottenham_court_road)
near(bond_street,green_park)
near(green_park,charing_cross)
near(bond_street,charing_cross)
% etc. (16 formulas)

The same effect can be obtained using 2 rules:

near(X,Y) :- connected(X,Y,L).
near(X,Y) :- connected(X,Z,L), connected(Z,Y,L).
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Introduction

the meaning of rules

The second rule

near(X,Y) :- connected(X,Z,L), connected(Z,Y,L)

reads:
“For any values of X , Y , Z and L, X is near Y if X is
connected to Z via L, and Z is connected to Y via L.”

or

∀X ,Y ,Z ,L · connected(X ,Z ,L) ∧ connected(Z ,Y ,L)⇒ near(X ,Y )
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Introduction

queries

?- connected(W,tottenham_court_road,L)

the answer can be found by matching it with facts:

{ W = oxford_circus , L = central}

?- near(tottenham_court_road,W)

match it with the conclusion of near(X,Y) :- connected(X,Y,L)

yielding the substitution { X = tottenham_court_road, Y = W }

and try to find an answer to the premises

?- connected(tottenham_court_road,W,L)

giving { W = leicester_square, L = northern }

The final result is

{ X = tottenham_court_road, Y = W = leicester_square,
L = northern }
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Introduction

solving a query = constructing a proof (tree)

?− connected(tottenham_court_road,W,L)

?− near(tottenham_court_road,W)

{ W = leicester_square

L = northern }

{ X = tottenham_court_road

Y=W }

connected(tottenham_court_road,
leicester_square,northern

near(X,Y) :− connected(X,Y,L)

To solve a query ?−Q1, . . . ,Qn find a rule A : −B1, . . . ,Bm where A
matches Q1 and solve

?− B1, . . . ,Bm,Q2, . . . ,Qn

Resolution gives a procedural interpretation to logic.
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Introduction

proof by refutation

Note: the procedural interpretation 6= the declarative semantics (e.g.
because of looping).

The proof technique used is “reductio ad absurdum” or proof by
refutation: assume that the formula (query) is false and deduce a
contradiction:

?- near(tottenham_court_road,W)

stands for

∀W · near(tottenham_court_road ,W )⇒ false

or
there are no stations near tottenham_court_road
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Introduction

recursive rules
reachable(X,Y) :- connected(X,Y,L).
reachable(X,Y) :- connected(X,Z,L), reachable(Z,Y).
?- reachable(bond_street,W)

:− reachable(bond_street,W)
reachable(X,Y) :− connected(X,Z,L),

reachable(Z,Y)

:− connected(bond_stree,Z,L), reachable(Z,W)

{ X = bond_street, Y=W}

central)

:− reachable(oxford_circus,W)

{ Z = oxford_circus, L = central }

reachable(X,Y) :− connected(X,Z,L),
reachable(Z,Y).

:− connected(oxford_circus,Z,L),

{ X = oxford_circus, Y = W}

connected(oxford_circus,
tottenham_court_road,

central)

:− reachable(tottenham_court_road,W)

{ Z = tottenham_court_road,L=central}

reachable(X,Y) :− connected(X,Y,L)

:− connected(tottenham_court_road,W,L)

{ X = tottenham_court_road, Y = W }

connected(tottenham_court_road,

leicester_square,norhtern)

{ W = leicester_square, L = northern }

reachable(Z,W)

connected(bond_street,oxford_circus,
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Introduction

prolog proof strategy

Prolog uses depth-first search when finding a proof, backtracking
when it fails, until a solution is found or there are no more possibilities.
It tries rules and facts in the given order, always trying to resolve the
first subgoal.
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Introduction

functors

can be used to represent complex data structures; the term

route(tottenham_court_road, route(leicester_square, noroute) )

represents

route

tottenham_court_road route

leicester_square noroute
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Introduction

using functors

reachable(X,Y,noroute) :- connected(X,Y,L).
reachable(X,Y,route(Z,R)) :-

connected(X,Z,L),
reachable(Z,Y,R).

?- reachable(oxford_circus,charing_cross,R)
{ R = route(tottenham_court_road,

route(leicester_square,noroute))}
{ R = route(piccadilly_circus,noroute)}
{ R = route(piccadilly_circus,

route(leicester_square,noroute))}

route(oxford_circus,
route(leicester_square,noroute))

represents a route via ..
Note: functors are not evaluated in normal LP.
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Introduction

lists

Lists are also represented by a functor “.” (compare “cons”).
E.g. the list [a,b,c] is represented as

a .

b .

c

.

[]

which can also be written as .(a,.(b,.(c,[])))

We also use [Head | Tail ] where Tail is a list, as a shorthand for
.(Head,Tail)

We can also write e.g. [ First, Second, Third | Rest ]
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Introduction

using lists

A route can be represented by a list:

reachable(X,Y,[]) :- connected(X,Y,L).
reachable(X,Y,[Z|R]) :-

connected(X,Z,L),
reachable(Z,Y,R).

?- reachable(oxford_circus,charing_cross,R)
{R=[tottenham_court_road,leicester_square]}
{R=[piccadilly_circus]}
{R=[piccadilly_circus,leicester_square]}

To ask from which station we can reach charing_cross via 4
intermediate stations:

?- reachable(X,charing_cross,[A,B,C,D])
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Clausal logic

clausal logic

Any logic system has a:
syntax: which “sentences” are legal.
semantics: the meaning of sentences, i.e. what is the truth value
of a sentence.
proof theory: how to derive new sentences (theorems) from
assumed ones (axioms) by means of inference rules.

A logic system is called
sound if anything you can prove is true
complete if anything that is true can be proven
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Clausal logic

propositional clausal logic syntax
Connectives
:- “if”
; “or”
, “and”

clause : head [:−body ]

head : [proposition[; proposition]∗]

body : proposition[,proposition]∗

proposition : atom
atom : single word starting with lower case

example:

married ; bachelor :- man, adult

Someone is married or a bachelor if he is a man and an adult
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Clausal logic

logic program
a program is a finite set of clauses, each terminated by a period; the
clauses are to be read conjunctively

woman;man :- human.
human :- man.
human :- woman.

in traditional logic notation:

(human⇒ (woman ∨man))
∧(man⇒ human)
∧(woman⇒ human)

Using A⇒ B ≡ ¬A ∨ B we get

(¬human ∨ woman ∨man)
∧(¬man ∨ human)
∧(¬woman ∨ human)
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Clausal logic

clause

In general a clause

H1; . . . ; Hn :−B1, . . . ,Bm

is equivalent with

H1 ∨ . . . ∨ Hn ∨ ¬B1 ∨ . . . ∨ ¬Bm

A clause can also be defined as

L1 ∨ L2 ∨ . . . ∨ Ln

where each Li is a literal, i.e. Li = Ai or Li = ¬Ai , with Ai a proposition.
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Clausal logic

special clauses

An empty head stands for false, an empty body stands for true:

man :- . % usually written as ‘‘man.’’
:- impossible.

is the same as

(true⇒ man) ∧ (impossible⇒ false)

i.e.
man ∧ ¬impossible
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Clausal logic

semantics

The Herbrand base BP of a program P is the set of all atoms
occurring in P.
A Herbrand interpretation of P is a mapping

i : BP → {true, false}

We will represent i by I = i−1(true), the set of true propositions.
An interpretation is a model for a clause if the clause is true
under the interpretation, i.e. if either the head is true or the body is
false.
An interpretation is a model for a program if it is a model for each
clause in the program.
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Clausal logic

example

Consider P:

woman;man :- human.
human :- man.
human :- woman.

Then:
BP = {woman,man,human}

and a possible interpretation is

i = {(woman, true), (man, false), (human, true)}

or
I = {woman,human}

All clauses in P are true under I so it is a model of P.
The interpretation J = {woman} is not a model of P.
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Clausal logic

logical consequence
A clause C is a logical consequence of a program P, denoted

P |= C

if every model of P is also a model of C.
E.g. for P:

woman.
woman;man :- human.
human :- man.
human :- woman.

we have that P |= human. Note that P has two models:

M1 = {woman,human}
M2 = {woman,man,human}

Intuitively, M1 is preferred since it only accepts what must be true.
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Clausal logic

minimal models
Thus we could define the best model to be the minimal one.
However, consider P ′:

woman;man :- human.
human.

P has 3 models

M1 = {woman,human}
M2 = {man,human}
M3 = {woman,man,human}

and M1 and M2 are both minimal!
If we restrict (as in Prolog) to definite clauses, which have at most one
atom in the head, then:

Theorem
A definite logic program has a unique minimal model.
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Clausal logic

proof theory

How to compute logical consequences without checking all the
models?

Use resolution as an inference rule.

married;bachelor :- man,adult.
has_wife :- man,married.

married;bachelor:−man,adulthas_wife:−man,married

has_wife;bachelor:−man,adult

Using resolution, we get

has_wife;bachelor :- man,adult.

which is a logical consequence of the program.
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Clausal logic

resolution: intuition

married;bachelor :- man,adult.
has_wife :- man,married.

¬man ∨ ¬adult ∨married ∨ bachelor
¬man ∨ ¬married ∨ has_wife

either married and then ¬man ∨ has_wife
or ¬married and then ¬man ∨ ¬adult ∨ bachelor

thus
¬man ∨ ¬adult ∨ bachelor ∨ ¬man ∨ has_wife

has_wife;bachelor :- man,adult.
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Clausal logic

resolution in traditional notation

E1 ∨ E2
¬E2 ∨ E3
⇒ E1 ∨ E3
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Clausal logic

special case: modus ponens

A
A⇒ B
B

In clause notation:
A
¬A ∨ B
B
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Clausal logic

special case: modus tollens

¬B
A⇒ B
¬A

In clause notation
¬B
¬A ∨ B
¬A
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Clausal logic

resolution with definite clauses

square :- rectangle, equal_sides.
rectangle :- parallelogram, right_angles.

square:−rectangle,equal_sides

rectangle:−parallelogram,right_angles

square:−equal_sides,parallelogram,right_angles

resolvent

The resolvent can be used in further resolution steps...

Definition
A proof or derivation of a clause C from a program P is a sequence
of clauses

C0, . . . ,Cn = C

such that ∀i · = 0 . . . n : either Ci ∈ P or Ci is the resolvent of Ci1 and
Ci2 (i1 < i , i2 < i).

We write P ` C if there is a proof of C from P.
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Clausal logic

soundness, completeness

Theorem
Resolution is sound for propositional clausal logic, i.e. if P ` C then
P |= C.

About completeness:
P |= C

iff each model of P is a model of C
iff no model of P is a model of ¬C (1)

If C ≡ L1 ∨ L2 ∨ . . . ∨ Ln then

¬C ≡ ¬L1 ∧ ¬L2 ∧ . . . ∧ ¬Ln

≡ {¬L1,¬L2, . . . ,¬Ln}

i.e. ¬C is a set of clauses and so
(1) ≡ P ∪ ¬C has no model
iff P ∪ ¬C is inconsistent (by definition)
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Clausal logic

completeness

Theorem
If Q is inconsistent then Q ` �.

where � is the empty clause (true⇒ false) which has no model.

Theorem
Resolution is complete for propositional clausal logic, i.e. if

P |= C

then
P ∪ ¬C ` �

I.e. C is a logical consequence of P iff one can derive, using
resolution, the empty clause (�) from P ∪ ¬C.
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Clausal logic

Example: consider P2

happy :- has_friends.
friendly :- happy.

We show that P2 |= C where C is

friendly :- has_ friends

P2 ∪ ¬C is

happy :- has_friends. (1)
friendly :- happy. (2)
has_friends. (3)
:- friendly. (4)

The proof:

(2+4) :- happy (5)
(1+5) :- has_friends (6)
(3+6) <empty-clause>
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Clausal logic

relational clausal logic
Add individual constants and variables; the syntax has the same
connectives as in the propositional case.

constant : single word starting with lower case

variable : single word starting with upper case

term : constant | variable
predicate : single word starting with lower case

atom : predicate[(term[, term]∗)]

clause : head [:−body ]

head : [atom[; atom]∗]

body : atom[,atom]∗

likes(peter,S) :- student_of(S,peter)

for any S: if S is a student of peter then peter likes S
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Clausal logic

arity, ground term, semantics

A predicate has an arity to denote the number of arguments.
E.g. likes/2. In Prolog, p/2 is different from p/3.
A term (atom) is ground if it does not contain any variables.

semantics:
The Herbrand universe of a program P is the set of all ground
terms occurring in it.
The Herbrand base BP of P is the set of all ground atoms that
can be constructed using predicates in P and arguments in the
Herbrand universe of P.
A Herbrand interpretation is a subset I ⊆ BP of ground atoms
that are true.
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Clausal logic

Consider P3

likes(peter,S) :- student_of(S,peter). % C1
student_of(maria,peter).

BP3 =

{ likes(peter,peter), likes(peter,maria), likes(maria,peter),
likes(maria,maria), student_of(peter,peter),
student_of(peter,maria), student_of(maria,peter),
student_of(maria,maria) }

An interpretation
I3 ={likes(peter,maria), student_of(maria,peter)}

Definition
A substitution is a mapping σ : Var→ Trm. For a clause C, the result
of σ on C, denoted Cσ is obtained by replacing all occurrences of
X ∈ Var in C by σ(X ). Cσ is an instance of C.

If σ = {S/maria} then C1σ is
likes(peter,maria) :- student_of(maria,peter).
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Clausal logic

semantics
Definition
A ground instance of a clause C is the result Cσ of some substitution
such that Cσ contains but ground atoms.

Ground clauses are like propositional clauses.

Definition
An interpretation I is a model of a clause C iff it is a model of every
ground instance of C. An interpretation is a model of a program P iff it
is a model of each clause C ∈ P.

All ground instances of clauses in P3:
likes(peter,peter) :- student_of(peter,peter).
likes(peter,maria) :- student_of(maria,peter).
student_of(maria,peter).

Thus M3 = {likes(peter,maria), student_of(maria,peter)} is a
model of P3.
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Clausal logic

proof theory

Naive version: do (propositional) resolution with all ground instances of
clauses in P.

Definition
A substitution σ is a unifier of two atoms a1 and a2 iff a1σ = a2σ. A
substitution σ1 is more general than σ2 if σ2 = σ1θ for some
substitution θ.
A unifier θ of a1 and a2 is a most general unifier (mgu) of a1 and a2 iff
it is more general than any other unifier of a1 and a2.

Theorem
If two atoms are unifiable then they their mgu is unique up to renaming.
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Clausal logic

proof theory using mgu: example

student_of(X,T):−follows(X,C),

likes(peter,S):−student_of(S,peter)

likes(peter,maria):−follows(maria,C),teaches(peter,C)

teaches(T,C)
{S/maria,T/peter,X/maria}
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Clausal logic

proof theory using mgu

“Do resolution on many clause-instances at once.”

If

C1 = L1
1 ∨ . . . L1

n1

C2 = L2
1 ∨ . . . L2

n2

L1
i θ = ¬L2

j θ for some 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

where θ = mgu(L1
i ,L

2
j ), then

L1
1θ∨ . . .∨L1

i−1θ∨L1
i+1θ∨ . . .∨L1

n1
θ∨L2

1θ∨ . . .∨L2
j−1θ∨L2

j+1θ∨ . . .∨L2
n2
θ
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Clausal logic

proof theory example
Consider P4:

likes(peter,S) :- student_of(S,peter).
student_of(S,T) :- follows(S,C), teaches(T,C).
teaches(peter,logicpr).
follows(maria,logicpr).

? “is there anyone whom peter likes” (query)
⇒ add “peter likes nobody” ( :- likes(peter,N))

:−likes(peter,N) likes(peter,S):−student_of(S,peter)

:−student_of(N,peter)

:−follows(N,C),teaches(peter,C)

{N/maria,C/logicpr}

:−teaches(peter,logicpr) teaches(peter,logicpr)

{S/N}

teaches(T,C){S/N,T/peter}

follows(maria,logicpr)

student_of(S,T):−follows(S,C),

Thus (:- likes(peter,N)){N/maria} ∪ P4 ` � and thus
P4 |= likes(peter,maria)
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Clausal logic

soundness, completeness

Theorem
Relational clausal logic is sound and (refutation) complete:

P ` C ⇒ P |= C
P ∪ {C} inconsistent ⇒ P ∪ {C} ` �

New formulation is because: ¬(∀X · p(X )) ≡ ∃X · ¬p(X ) but

p(X). ≡ ∀X · p(X )

while
:- p(X). ≡ ∀X · ¬p(X )
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Clausal logic

decidability relational clausal logic

Theorem
The question

P |= C

is decidable for relational clausal logic

Because the Herbrand base is finite.
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Clausal logic

full clausal logic
Add function symbols (functors), with an arity; constants are 0-ary
functors.

functor : single word starting with lower case

variable : single word starting with upper case

term : variable | functor [(term[, term]∗)]

predicate : single word starting with lower case

atom : predicate[(term[, term]∗)]

clause : head [:−body ]

head : [atom[; atom]∗]

body : atom[,atom]∗

plus(0,X,X).
plus(s(X),Y,s(Z)) :- plus(X,Y,Z).
% read s(X) as ‘‘successor of X’’
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Clausal logic

semantics

As for relational case; models may be (necessarily) infinite as in P5:

plus(0,X,X).
plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

M5 =

{ plus(0,0,0), plus(s(0),0,s(0),
plus(s(s(0)),0,s(s(0)), ...

plus(0,s(0),s(0)), plus(s(0),s(0),s(s(0))), ...
... }
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Clausal logic

computing the mgu

Definition
A set of equations

{si = ti | i = 1 . . . n}

between terms is in solved form if
∀1 ≤ i ≤ n · si ∈ Var

∀1 ≤ i ≤ n · tidoes not contain any variable from {si | 1 ≤ i ≤ n}

A set of equations {Xi = ti} represents a substitution {Xi/ti}.

Theorem
if solve({t1 = t2}) succeeds, it returns mgu(t1, t2).
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Clausal logic

proc solve(var E : set of equations)

repeat
select s = t ∈ E
case s = t of

f (s1, . . . , sn) = f (t1, . . . , tn) (n ≥ 0) :
replace s = t by {s1 = t1, . . . , sn = tn}

f (s1, . . . , sm) = g(t1, . . . , tn) (f/m 6= g/n) :
fail

X = X :
remove X = X from E

t = X (t 6∈ Var) :
replace t = X by X = t

X = t (X ∈ Var ∧ X 6= t ∧ X occurs more than once in E) :
if Xoccurs in t
then fail
else replace all occurrences of X in E (except in X = t) by t

esac
until no change
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Clausal logic

examples

{f (X ,g(Y )) = f (g(Z ),Z )}
⇒ {X = g(Z ),g(Y ) = Z}
⇒ {X = g(Z ),Z = g(Y )}
⇒ {X = g(g(Y )),Z = g(Y )}
⇒ {X/g(g(Y )),Z/g(Y )}

{f (X ,g(X ),b) = f (a,g(Z ),Z )}
⇒ {X = a,g(X ) = g(Z ),b = Z}
⇒ {X = a,X = Z ,b = Z}
⇒ {X = a,a = Z ,b = Z}
⇒ {X = a,Z = a,b = Z}
⇒ {X = a,Z = a,b = a}
⇒ fail
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Clausal logic

occur check

{l(Y ,Y ) = l(X , f (X ))}
⇒ {Y = X ,Y = f (X )}
⇒ {Y = X ,X = f (X )}
⇒ fail

The last example illustrates the need for the “occur check” (which is
not done in most Prolog implementations)
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Clausal logic

soundness, completeness

Theorem
Full clausal logic is sound and (refutation) complete:

P ` C ⇒ P |= C
P ∪ {C} inconsistent ⇒ P ∪ {C} ` �

However the question
P |= C

is only semi-decidable, i.e. there is no algorithm that will always
answer the question (with “yes” or “no”) in finite time; but there is an
algorithm that, if P |= C, will answer “yes” in finite time but this
algorithm may loop if P 6|= C.
This means that prolog may loop on certain queries.
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Clausal logic

definite clause logic

married(X);bachelor(X) :- man(X), adult(X).
man(peter). adult(peter).
:- married(maria). :- bachelor(maria).
man(paul). :- bachelor(paul).

married(X);bachelor(X):−man(X),adult(X) man(peter)

adult(peter)married(peter);bachelor(peter):−adult(peter)

married(peter);bachelor(peter)

{X/peter}

married(X);bachelor(X):−man(X),adult(X)

bachelor(maria):−man(maria),adult(maria)

:−man(maria),adult(maria)

{X/maria}

:−married(maria)

:−bachelor(maria)

married(X);bachelor(X):−man(X),adult(X) man(paul)

married(paul);bachelor(paul):−adult(paul)
:−bachelor(paul)

{X/paul}

married(paul):−adult(paul)

right .. left

left..right

both
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Clausal logic

For efficiency reasons: restriction to definite clauses where the
head contains at most 1 atom.

A :−B1, . . . ,Bn

“prove A by proving each of B1, . . . ,Bn”.
This is the procedural interpretation of definite clauses. It makes
the search for a refutation much more efficient.
Problem: how to represent

married(X);bachelor(X) :- man(X), adult(X).

⇒ To prove married(X): show man(X), adult(X) and not
bachelor(X) .
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Clausal logic

general clauses

A (pseudo-definite) general clause may contain negations in the body:

married(X) :- man(X), adult(X), not(bachelor(X)).

With man(jim). adult(jim). this will have

{ married(jim), adult(jim), man(jim) }

as a minimal model. Alternatively:

bachelor(X) :- man(X), adult(X), not(married(X)).

has, with man(jim). adult(jim). ,

{ bachelor(jim), adult(jim), man(jim) }

as a minimal model.
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clausal logic vs. predicate logic

Every set of clauses can be rewritten as an equivalent sentence in first
order (predicate) logic.
Example:

married;bachelor :- man,adult.
haswife :- married

becomes

(man ∧ adult ⇒ married ∨ bachelor) ∧ (married ⇒ haswife)

or, using A⇒ B ≡ ¬A ∨ B and ¬(A ∧ B) ≡ ¬A ∨ ¬B:

(¬man ∨ ¬adult ∨married ∨ bachelor) ∧ (¬married ∨ haswife)

which is in conjunctive normal form (a conjunction of disjunctions of
literals).
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Variables in clauses are universally quantified:

reachable(X,Y,route(Z,R)):- connected(X,Z,L), reachable(Z,Y,R).

becomes

∀X∀Y∀Z∀R∀L :
¬connected(X ,Z ,L) ∨ ¬reachable(Z ,Y ,R)
∨reachable(X ,Y , route(Z ,R))

Note that nonempty(X) :- contains(X,Y). becomes

∀X∀Y : nonempty(X ) ∨ ¬contains(X ,Y )
≡ ∀X : (∀Y : nonempty(X ) ∨ ¬contains(X ,Y ))
≡ ∀X : (nonempty(X ) ∨ (∀Y : ¬contains(X ,Y )))
≡ ∀X : nonempty(X ) ∨ ¬(∃Y : contains(X ,Y ))
≡ ∀X : (∃Y : contains(X ,Y ))⇒ nonempty(X )

For each first order sentence, there exists an “almost equivalent” set of
clauses.
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Clausal logic

algorithm

∀X [brick(X )⇒ (∃Y [on(X ,Y ) ∧ ¬pyramid(Y )]
∧¬∃Y [on(X ,Y ) ∧ on(Y ,X )] ∧ ∀Y [¬brick(Y )⇒ ¬equal(X ,Y )])]

Step 1: eliminate⇒ using A⇒ B ≡ ¬A ∨ B.

∀X [¬brick(X ) ∨ (∃Y [on(X ,Y ) ∧ ¬pyramid(Y )]
∧¬∃Y [on(X ,Y ) ∧ on(Y ,X )] ∧ ∀Y [¬(¬brick(Y )) ∨ ¬equal(X ,Y )])]

Step 2: move ¬ inside using

¬(A ∧ B) ≡ ¬A ∨ ¬B
¬(A ∨ B) ≡ ¬A ∧ ¬B
¬(¬A) ≡ A

¬∀X [p(X )] ≡ ∃X [¬p(X )]

¬(∃X [p(X )] ≡ ∀X [¬p(X )]
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∀X [¬brick(X ) ∨ (∃Y [on(X ,Y ) ∧ ¬pyramid(Y )]
∧∀Y [¬on(X ,Y ) ∨ ¬on(Y ,X )]
∧∀Y [brick(Y ) ∨ ¬equal(X ,Y )])]

Step 3: replace ∃ using skolem functors
E.g.

∀X∃Y : likes(X ,Y )

becomes
∀X : likes(X , f (X ))

where “f ” is a new Skolem functor. All universally quantified variables
in whose scope ∃ occurs become arguments of the Skolem term.
E.g. ∃X : likes(peter ,X ) becomes likes(peter ,g).
In clausal logic, one is forced to use abstract names (using functors)
for existentially quantified individuals.
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Clausal logic

In example:

∀X [¬brick(X ) ∨ (∃Y [on(X ,Y ) ∧ ¬pyramid(Y )]
∧∀Y [¬on(X ,Y ) ∨ ¬on(Y ,X )]
∧∀Y [brick(Y ) ∨ ¬equal(X ,Y )])]

becomes

∀X [¬brick(X )∨
([on(X , sup(X )) ∧ ¬pyramid(sup(X ))]
∧∀Y [¬on(X ,Y ) ∨ ¬on(Y ,X )]
∧∀Y [brick(Y ) ∨ ¬equal(X ,Y )])]

Step 4: rename variables (make unique)

∀X [¬brick(X )∨
([on(X , sup(X )) ∧ ¬pyramid(sup(X ))]
∧∀Y [¬on(X ,Y ) ∨ ¬on(Y ,X )]
∧∀Z [brick(Z ) ∨ ¬equal(X ,Z )])]
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∀X [¬brick(X )∨
([on(X , sup(X )) ∧ ¬pyramid(sup(X ))]
∧∀Y [¬on(X ,Y ) ∨ ¬on(Y ,X )]
∧∀Z [brick(Z ) ∨ ¬equal(X ,Z )])]

Step 5: bring ∀ to front

∀X∀Y∀Z [¬brick(X )∨
([on(X , sup(X )) ∧ ¬pyramid(sup(X ))]
∧[¬on(X ,Y ) ∨ ¬on(Y ,X )]
∧[brick(Z ) ∨ ¬equal(X ,Z )])]
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Step 6
: bring ∨ inside using

A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C)

∀X∀Y∀Z [¬brick(X )∨([on(X , sup(X )) ∧ ¬pyramid(sup(X ))]

∧[¬on(X ,Y ) ∨ ¬on(Y ,X )]∧[brick(Z ) ∨ ¬equal(X ,Z )])]

becomes

∀X∀Y∀Z [¬brick(X )∨
([on(X , sup(X ))∧¬pyramid(sup(X ))]
∧[¬brick(X ) ∨ ¬on(X ,Y ) ∨ ¬on(Y ,X )]
∧[¬brick(X ) ∨ brick(Z ) ∨ ¬equal(X ,Z )])]

∀X∀Y∀Z [¬brick(X ) ∨ on(X , sup(X ))]
∧[¬brick(X ) ∨ ¬pyramid(sup(X ))]
∧[¬brick(X ) ∨ ¬on(X ,Y ) ∨ ¬on(Y ,X )]
∧[¬brick(X ) ∨ brick(Z ) ∨ ¬equal(X ,Z )])]
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Step 7
: eliminate ∧ by splitting

∀X [¬brick(X ) ∨ on(X , sup(X ))]
∀X [¬brick(X ) ∨ ¬pyramid(sup(X ))]
∀X∀Y [¬brick(X ) ∨ ¬on(X ,Y ) ∨ ¬on(Y ,X )]
∀X∀Z [¬brick(X ) ∨ brick(Z ) ∨ ¬equal(X ,Z )])]

Step 8: rename variables (make unique)

∀X [¬brick(X ) ∨ on(X , sup(X ))]
∀W [¬brick(W ) ∨ ¬pyramid(sup(W ))]
∀U∀Y [¬brick(U) ∨ ¬on(U,Y ) ∨ ¬on(Y ,U)]
∀V∀Z [¬brick(V ) ∨ brick(Z ) ∨ ¬equal(V ,Z )])]

Step 9: make clauses
on(X,sup(X)) :- brick(X).
:- brick(W), pyramid(sup(W)).
:- brick(U), on(U,Y), on(Y,U).
brick(Z) :- brick(V), equal(V,Z).
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Clausal logic

definite clause programs are universal

Definite clause programs are as powerful as any other programming
language:

Theorem
Let f be an n-ary partial recursive function. There exists a definite
clause program Pf and an n + 1-ary predicate symbol pf such that the
query

:−pf (sk1(0), . . . , skn (0),X )

returns
{X/sk (0)}

iff
f (k1, . . . , kn) = k
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logic programming

sentences in clausal logic:
have a declarative meaning (e.g. order of atoms in the body is
irrelevant)
have a procedural meaning

Thus clausal logic can be used as a programming language:
1 write down knowledge in a (declarative) program that specifies

what the problem is rather than how it should be solved
2 apply inference rules to find solution

algorithm = logic + control
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algorithm = logic + control

where
logic is declarative knowledge and
control is procedural knowledge

Prolog is not a purely declarative language since e.g. the order of the
rules matters.
Prolog’s proof procedure is based on resolution refutation in definite
clause logic where a resolution strategy is fixed:

which literal to resolve upon
which clause to resolve with
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sld refutation

grandfather(X,Z) :- father(X,Y), parent(Y,Z).
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).
father(a,b).
mother(b,c).

:−grandfather(a,X)

grandfather(C,D):−father(C,E),parent(E,D).

father(a,b).

:−mother(b,X).

parent(U,V):−mother(U,V).

:−parent(b,X).

:−father(a,E),parent(E,X).

{C/a,D/X}

{E/b}

{U/b,V/X}

{X/c}

goal (query)

derived goal

{X/c,C/a,D/c,E/b,U/b,V/c}

computed substitution

computed answer substitution

mother(b,c).
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Logic programming

SLD

Always resolve with (derived) goal: Linear proof trees.
Use Selection rule to determine literal in goal to resolve with.
Programs with Definite clauses only.

Prolog’s selection rule:
Consider goal literals left to right.
(Try clauses in order of occurrence in program)

SLD tree: shows (only) alternative resolvents
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SLD trees

:−grandfather(a,X)

:−parent(b,X)

:−father(b,X) :−mother(b,X)

blocked

:−father(a,E),parent(E,X)

Every � leaf corresponds to a successful refutation ( a success
branch). A blocked leaf corresponds to a failed branch.
Prolog does a depth-first traversal of an SLD tree.
What if an SLD tree has infinite branches?
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infinite sld trees

sibling(X,Y) :- sibling(Y,X).
sibling(b,a).

:−sibling(a,X)

:−sibling(X,a)

...

:−sibling(a,X)

:−sibling(X,a)

sibling(a,b).
sibling(b,c).
sibling(X,Y) :- sibling(X,Z), sibling(Z,Y).

:−sibling(a,X)

:−sibling(a,Z),sibling(Z,Y)

:−sibling(a,U),sibling(U,Z),
sibling(Z,Y)

:−sibling(a,Z),sibling(Z,Y)

...

...

:−sibling(b,Y)
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Logic programming

problems with SLD resolution

Get trapped in infinite subtree: thus Prolog is incomplete. We
could do e.g. breadth-first search but Prolog sacrifices
completeness for efficiency (also in memory usage).
Any infinite SLD tree may cause the interpreter to loop if no (more)
answers are to be found: this is because clausal logic is only
semi-decidable.

Thus one should be aware of the Prolog strategy (procedural
knowledge), e.g.

recursive clauses after non-recursive ones
be careful with symmetric predicates: p(X,Y) :- p(Y,X)
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pruning with “cut”

parent(X,Y) :- father(X,Y), !.
parent(X,Y) :- mother(X,Y).
father(a,b).
mother(b,c).

:−parent(a,X)

:−mother(a,X)

:−!

:−father(a,X),!

The meaning of “cut” (!): don’t try alternatives for
the literals to the left of the cut
the clause in which the cut is found

(A cut is always true.)
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red & green cuts

parent(X,Y) :- father(X,Y), !.
parent(X,Y) :- mother(X,Y).
father(a,b).
father(a,c).
mother(m,b).
mother(m,c).

:−parent(a,X)

:−father(a,X),! :−mother(a,X)

:−! :−!

A green cut does not cut away any success branches. A red cut does,
making the procedural meaning of the program different from the
declarative meaning.
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the dangers of “!”

max(M,N,M) :- M>=N.
max(M,N,N) :- M=<N.

More efficient using a red cut:

max(M,N,M) :- M>=N,!.
max(M,N,N).
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the dangers of “!”

max(M,N,M) :- M>=N.
max(M,N,N) :- M=<N.

More efficient using a red cut:

max(M,N,M) :- M>=N,!.
max(M,N,N).

This is not equivalent! (try max(5,3,3) ).
The program would be correct if only queries of the form

max(a,b,X)

were asked.
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negation as failure

Cut can be used to ensure that the bodies of clauses are mutually
exclusive.

p :- q,!,r.
p :- s. % only if q fails

is equivalent to

p :- q, r.
p :- not_q,s.
not_q :- q,!,fail.
not_q.

where fail is always false.
More general: meta-predicate not/1 implementing negation by failure.

not(Goal) :- Goal,!,fail.
not(Goal).
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naf examples

p :- q, r.
p :- not(q), s.
s.
% not(q) :- q,!,fail.
% not(q).

:−p

:−q,r :−not(q),s.

:−q,!,fail,s :−s
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Logic programming

naf examples

p :- q,!,r. % more efficient but less clear
p :- s.
s.

:−p

:−q,!,r :−s
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Logic programming

naf examples

p :- not(q), r.
p :- q.
q.
r.
% not(q) :- q,!,fail.
% not(q).

:−not(q),r :−q

:−q,!,fail,r

:−!,fail,r

:−fail,r

:−r

:−p
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floundering
occurs when the argument of not/1 is not grounded.

bachelor(X) :- not(married(X)), man(X).
man(fred).
man(peter).
married(peter).

:−bachelor(X)

:−not(married(X)),man(X)

:−married(X),!,fail,man(X) man(X)

:−!,fail,man(peter)

:−fail,man(peter)

X is not a bachelor if anyone is married,..
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sldnf resolution

SLDNF resolution says that not(Goal) fails only if Goal has a
refutation with an empty answer substitution (in the example: if
married(X).).
Prolog does not check this; hence Prolog is not sound w.r.t.
negation by failure.
If Goal is ground, only empty answer substitutions are possible...
The example can be fixed by changing the order of the body of the
rule:

bachelor(X) :- man(X), not(married(X)).

You can also read the original as

∀X · ¬(∃Y : married(Y )) ∧man(X )⇒ bachelor(X )
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if .. then .. else ..
p:- q,r,s,!,t.
p:- q,r,u.
q.
r.
u.

q , r are evaluated twice.

p :- q,r,if_then_else(s,t,u).
if_then_else(S,T,U):- S,!,T.
if_then_else(S,T,U):- U.

In most prologs:

diagnosis(P,C):- % C: condition, P: patient
temperature(P,T),
(T=<37 -> blood_pressure(P,C)
;T>37,T<38 -> Condition = ok
;otherwise -> fever(P,C)
).
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tail recursion and “!”

play(Board,Player):-
lost(Board,Player).

play(Board,Player):-
find_move(Board,Player,Move),
make_move(Board,Move,NewBoard),
next_player(Player,Next),!,
play(NewBoard,Next).

Cut ensures that no previous moves are reconsidered and optimizes
tail recursion to iteration.
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arithmetic in prolog

nat(0).
nat(s(X)):- nat(X).

add(0,X,X).
add(s(X),Y,s(Z)):- add(X,Y,Z).

mul(0,X,0).
mul(s(X),Y,Z):-

mul(X,Y,Z1), add(Y,Z1,Z).

Not efficient!
is(Result,expression) is true iff expression can be evaluated as an
expression and its resulting value unified with Result

?- X is 5+7-3
X = 9

?- X is 5*3+7/2
X = 18.5
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is/2 is different from =/2 ; the latter succeeds if its arguments can be
unified.

?- X = 5+7-3
X = 5+7-3

?- 9 = 5+7-3
no

?- X = Y+3
X = _947+3
Y = _947

?- X = f(X)
X = f(f(f(f(f(f(f(f(f(f(f(f(f(f(f( ..
error: term being written is too deep

The last example illustrates that Prolog does not implement the occur
check.
Prolog also has other built-in arithmetic predicates: <,>,=<,>=.
\=/2 succeeds if its arguments are not unifiable.
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accumulators

Tail-recursive clauses are more efficient.

length([],0).
length([H|T],N) :- length(T,N1), N is N1+1.

The program is not tail-recursive.
It can be made tail-recursive by introducing an accumulator:

Read length_acc(L,M,N) as N = M + length(L).

length(L,N) :- length_acc(L,0,N).
length_acc([],N,N).
length_acc([H|T],N0,N) :-

% N0 is "length so far"
N1 is N0+1, length_acc(T,N1,N).
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reverse/2

naive_reverse([],[]).
naive_reverse([H|T],R) :-

naive_reverse(T,R1),
append(R1,[H],R).

append([],Y,Y).
append([H|T],Y,[H|Z]) :-

append(T,Y,Z).
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efficient reverse using accumulator
Define

reverse(X ,Y ,Z )⇔ Z = reverse(X ) + Y

Then:

reverse(X , [],Z ) ⇔ Z = reverse(X )

reverse([H|T ],Y ,Z ) ⇔ Z = reverse([H|T ]) + Y
⇔ Z = reverse(T ) + [H] + Y
⇔ Z = reverse(T ) + [H|Y ]

⇔ reverse(T , [H|Y ],Z )

reverse(X,Z) :- reverse(X,[],Z).
reverse([],Z,Z).
reverse([H|T],Y,Z) :-

% Y is "reversed so far"
reverse(T,[H|Y],Z).
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difference lists

X

YX − Y

Represent a list by a term L1-L2.
[a,b,c,d]-[d] [a,b,c]
[a,b,c,1,2]-[1,2] [a,b,c]
[a,b,c|X]-X [a,b,c]
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difference lists

reverse(X ,Y ,Z ) ⇔ Z = reverse(X ) + Y
⇔ reverse(X ) = Z − Y

and

reverse([H|T ],Y ,Z ) ⇔ Z = reverse([H|T ]) + Y
⇔ Z = reverse(T ) + [H|Y ]

⇔ reverse(T ) = Z − [H|Y ]

reverse(X,Z) :- reverse_dl(X,Z-[]).
reverse_dl([],Z-Z).
reverse_dl([H|T],Z-Y) :-

reverse_dl(T,Z-[H|Y]).
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appending difference lists

Difference lists can be appended in constant time:

X

Y
Z

+ = 

X − Z Z − Y X − Y

append(X−Z , Z−Y, X−Y)
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difference lists example

append_dl(X-Z, Z-Y, X-Y).

:- append_dl([abc|A] - A, [de|B] - B, D)
% unify with append_dl(X-Z, Z-Y, X-Y)
X = [abc|A]
Z = A = [de|B]
Y = B
D = X - Y = [abc|A] - B = [abcde|B] - B
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example: flatten/2

atomic/1 succeeds if its argument is a simple constant.

flatten([X|Xs],Y) :-
flatten(X,Y1), flatten(Xs,Y2),
append(Y1,Y2,Y).

flatten(X,[X]) :- atomic(X), X\=[].
flatten([],[]).

with difference lists:

flatten(X,Y) :- flatten_dl(X,Y-[]).
flatten_dl([X|Xs],Y-Z) :- % append flat(X), flat(Xs)

flatten_dl(X,Y-Y1), flatten_dl(Xs,Y1-Z).
flatten_dl(X,[X|Xs]-Xs) :-

atomic(X), X\=[].
flatten_dl([],U-U).
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other incomplete data structures

lookup(Key,[(Key,Value)|Dict],Value).
lookup(Key,[(Key1,Value1)|Dict],Value) :-

Key \= Key1,
lookup(Key,Dict,Value).

Example: suppose D = [(a,b),(c,d)|X]

?- lookup(a,D,V)
V = b
?- lookup(c,D,e)
no
?- lookup(e,D,f)
yes
% D = [(a,b),(c,d),(e,f)|X]
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second order predicates

map(R,[],[]).
map(R,[X|Xs],[Y|Ys]):-

R(X,Y), map(R,Xs,Ys).
?-map(parent,[a,b,c],X)

Most systems do not allow R(X,Y) in the body.
Term=..List is true iff

Term is a constant and List is the list [Term]
Term is a compound term f(A1,..,An) and List is a list with
head f and whose tail unifies with [A1,..,An]

map(R,[],[]).
map(R,[X|Xs],[Y|Ys]):-

Goal =.. [R,X,Y],
call(Goal), map(R,Xs,Ys).
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findall/3

findall(Term,Goal,Bag) is true iff Bag unifies with the list of values to
which a variable X not occurring in Term or Goal would be bound by
successive resatisfactions of (call(Goal), X=Term) after systematic
replacement of all variables in X by new variables.

parent(a,b).
parent(a,c).
parent(a,d).
parent(e,f).
parent(e,g).
children(Parent,Children):-

findall(C,parent(Parent,C),Children).
?-children(a,Children)
Children = [b,c,d]
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bagof/3, setof/3

parent(a,b). parent(a,c). parent(a,d).
parent(e,f). parent(e,g).
?-bagof(C,parent(P,C),L)
C = _951
P = a
L = [b,c,d]

;
C = _951
P = e
L = [f,g]

?-bagof(C,P^parent(P,C),L)
C = _957
P = _958
L = [b,c,d,f,g]

(P ^ parent(P,C)) reads like ∃P : parent(P,C)
setof/3 is like bagof/3 with duplicates removed.
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assert/1, retract/1

Variables in Prolog are local to the clause. Global variables can be
simulated using:

asserta(Clause) adds Clause at the beginning of the Prolog
database.
assertz(Clause) adds Clause at the end of the Prolog database.
retract(Clause) removes first clause that unifies with Clause

from the Prolog database.
Note that backtracking does not undo the modifications.

% retract all clauses whose head unifies with ‘‘Term’’
retractall(Term):-
retract(Term), fail.

retractall(Term):-
retract((Term:- Body)), fail.

retractall(Term).
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operators

In Prolog, functors and predicates are called operators. Operators can
be declared using

:- op(Priority,Type,Name)

where
Priority is a number between 0 and 1200 (lower priority binds
stronger)
Type is fx or fy (prefix), xfx ,xfy or yfx (infix), and xf or yf (postfix)
The x and y determine associativity:

associative no right left
xfx xfy yfx

X op Y op Z no op(X,op(Y,Z)) op(op(X,Y),Z)
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meta-programs

Clauses are represented as terms :- (Head,Body) where :- can be
treated as a functor (meta-level) or as a predicate (object-level).

% if A and B then C = if(then(and(A,B),C))
:- op(900,fx,if).
:- op(800,xfx,then).
:- op(700,yfx,and).
% object-level rules
if has_feathers and lays_eggs then is_bird.
if has_gills and lays_eggs then is_fish.
if tweety then has_feathers.
if tweety then lays_eggs.

it should be possible to show that

if tweety then is_bird

follows from the object-level rules.
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meta-program

derive(if Assumptions then Goal):-
if Body then Goal,
derive(if Assumptions then Body).

derive(if Assumptions then G1 and G2):-
derive(if Assumptions then G1),
derive(if Assumptions then G2).

derive(if Assumptions then Goal):-
assumed(Goal,Assumptions). % Goal is one of the assumptions

assumed(A,A).
assumed(A,A and As).
assumed(A,B and As):-
assumed(A,As).
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Logic programming

prolog meta-interpreter

prove(Goal):-
clause(Goal,Body),
prove(Body).

prove((Goal1,Goal2)):-
prove(Goal1),
prove(Goal2).

prove(true).

or, more conventionally, and adding negation as failure:

prove(true):- !.
prove((A,B)):- !,

prove(A), prove(B).
prove(not(Goal)):- !,
not(prove(Goal)).

prove(A):-
% not (A=true; A=(X,Y); A=not(G))
clause(A,B), prove(B).
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Logic programming

quicksort

% partition(l,n,Smalls,Bigs):
% Smalls contains numbers in l
% smaller than n, Bigs the rest.
partition([],N,[],[]).
partition([H|T],N,[H|Small],Big):-

H<N,partition(T,N,Small,Big).
partition([H|T],N,Small,[H|Big]):-

H>=N,partition(T,N,Small,Big).

quicksort([],[]).
quicksort([X|Xs],Sorted):-

partition(Xs,X,Small,Big),
quicksort(Small,S_Small),
quicksort(Big,S_Big),
append(S_Small,[X|S_Big],Sorted).
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Logic programming

towers of hanoi

:- op(900,xfx,to).
% hanoi(N,A,B,C,Moves): Moves is the list of moves to
% move N disks from peg A to peg C, using peg B as
% an intermediary.
hanoi(0,A,B,C,[]).
hanoi(N,A,B,C,Moves):-
N1 is N-1, % assume solved for N-1 disks
hanoi(N1,A,C,B,Moves1),
hanoi(N1,B,A,C,Moves2),
append(Moves1,[A to C|Moves2],Moves).

?- hanoi(3,left,middle,right,M)
M = [ left to right, left to middle,

right to middle, left to right,
middle to left, middle to right,
left to right ]
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Representing structured knowledge

Representing structured knowledge

Knowledge is structured if its components have certain logical
relationships.
Explicit relationships are represented directly (as facts).
Implicit relationships are found by reasoning.
Reasoning is often done by searching, e.g. in a graph, a term etc.
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Representing structured knowledge

tree as terms adt

% term_tree(Tree,R,S): term Tree represents
% a tree with root R, list of subtrees S
term_tree(Tree, Root, Subtrees):-

Tree =.. [Root|Subtrees].
% term_root(Tree, Root): R is root of T
term_root(Tree, Root):-

term_tree(Tree, Root, Subtrees).
% term_subtree(Tree, Subtree): Subtree is a subtree
term_subtree(Tree, Subtree):-

term_tree(Tree, Root, Subtrees),
element(Subtree, Subtrees).

% element(X,Ys): X is element in list
element(X,[X|Ys]).
element(X,[Y|Ys]):-

element(X,Ys).
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Representing structured knowledge

% term_arc(Tree, Arc): A is arc in Tree
term_arc(Tree, [Root, SubRoot]):- % from root
term_root(Tree, Root),
term_subtree(Tree, SubTree),
term_root(Subtree, SubRoot).

term_arc(Tree, Arc):- % in subtree
term_subtree(Tree, Subtree),
term_arc(Subtree, Arc).

% term_path(Tree, Path): Path is path in Tree
term_path(Tree, Path):- % an arc is a path
term_arc(Tree, Path).

term_path(Tree, [Node1,Node2|Nodes]):-
term_arc(Tree,[Node1,Node2]),
term_path(Tree,[Node2|Nodes]).
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Representing structured knowledge

writing terms as trees

term_write(Tree):-
term_write(0,Tree), nl.

term_write(Indent,Tree):-
term_tree(Tree, Root, Subtrees),
term_write_node(Indent, NewIndent, Root),
term_write_subtrees(NewIndent, Subtrees).

term_write_subtrees(Indent,[]).
term_write_subtrees(Indent,[Tree]):- !,
term_write(Indent,Tree).

term_write_subtrees(Indent,[Tree|Subtrees]):-
term_write(Indent,Tree),
nl,tabs(Indent), term_write_subtrees(Indent, Subtrees).

term_write_node(Begin,End,Node):-
name(Node,L), length(L,N),
End is Begin+10, N1 is End-Begin-N,
write_line(N1), write(Node).
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Representing structured knowledge

write_line(0).
write_line(N):-
N>0, N1 is N-1,
write(’-’), write_line(N1).

:- term_write(f1(f2(f4,f5(f7),f6),f3(f8,f9(f10))))

--------f1--------f2--------f4
--------f5--------f7
--------f6

--------f3--------f8
--------f9-------f10
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Representing structured knowledge

graphs generated by a predicate

% path(P): P is a list of nodes representing a path
% in graph defined by arc/2.
path([N1, N2]):-
arc(N1, N2).

path([N1, N2|Nodes]):-
arc(N1, N2), path([N2|Nodes]).

% path_leaf(N, Path): Path is a path starting at N, ending
% in a leaf in graph generated by arc/2.
path_leaf(Leaf, [Leaf]):-
leaf(Leaf).

path_leaf(N1, [N1|Nodes]):-
arc(N1, N2),
path_leaf(N2, Nodes).

%
leaf(Leaf):- % no outgoing arcs
not(arc(Leaf, SomeNode)).
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Representing structured knowledge

sld trees

% resolve(goal, clause, newGoal):
% newGoal is resolvent of goal using clause
resolve([Literal|Literals], (Head:- Body), NewGoal):-
Literal = Head, % unify with head
append(Body, Literals, NewGoal).

% an arc in an SLD tree
arc(Goal1, Goal2):-
clause(Head, Body),
resolve(Goal1, (Head:- Body), Goal2).

prove(Goal):-
path(Goal, []).

% where
path(N1, N2) :-
arc(N1, N2).

path(N1, N3) :-
arc(N1, N2), path(N2, N3).
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Representing structured knowledge

inheritance hierarchies

saxophone

oboe

flute

Woodwind

Wind

Brass

trumpet

trombone

harp

lute

guitar

Plucked Bowed

violin

cello piano

harpsichord

Keyboard Tuned

triangle

kettledrum snaredrum

cymbal

Untuned

PercussionString

Instrument

A class is represented by a unary predicate, an object by a constant.
instrument(X) :- wind(X).
instrument(X) :- string(X).
instrument(X) :- percussion(X).
wind(X) :- woodwind(X).
wind(X) :- brass(X).
string(X) :- plucked(X).
string(X) :- bowed(X).
string(X) :- keyboard(X).
percussion(X) :- tuned(X).
percussion(X) :- untuned(X).
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Representing structured knowledge

woodwind(flute). brass(trumpet).
plucked(guitar). bowed(violin).
keyboard(piano). tuned(triangle).
untuned(cymbal).

Properties:

material(flute, metal).
% string instruments are made of wood
material(X, wood) :- woodwind(X).
material(X, wood) :- string(X).
material(X, metal) :- brass(X).
material(X, metal) :- percussion(X).
?- material(piano, X)

X = wood
?- material(flute, X)

X = metal;
X = wood

Putting most specific clauses first ensures that the first answer is
correct.
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Representing structured knowledge

function(X, musical) :- instrument(X).
action(oboe, reed(double)).
action(saxophone, reed(single)).
action(piano, hammered).
action(X, hammered) :- percussion(X).

What are the properties of an object I?

attributes([material,action,function]).
properties(I, Props):- attributes(Attrs),

properties(Attrs, I, Props).
properties([], Instance, []).
properties([Attribute|Attributes],

Instance, [Attribute=Val|Props]):-
get_value(Attribute, Instance, Val) ,!, % first only
properties(Attributes, Instance, Props).

get_value(Attribute, Instance, Value):-
Goal =.. [Attribute, Instance, Value], call(Goal).
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Representing structured knowledge

?- properties(saxophone,P)
P = [ material = metal,

action=reed(single),
function = musical]

Questions about classes are not easy to answer since one must
resort to second-order programming.

⇒ Design alternative representation where both classes and
instances are represented by terms.
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Representing structured knowledge

semantic networks
Represent hierarchy as set of facts.

isa(wind,instrument).
isa(woodwind,wind).
isa(brass,wind).
% etc.
inst(oboe,woodwind).
inst(flute,woodwind).
inst(trumpet,brass).
% etc.
% class properties:
prop(instrument,function,musical).
prop(woodwind,material,wood).
prop(brass,material,metal).
prop(brass,action,reed(lip)).
% instance properties
prop(flute,material,metal).
prop(oboe,action,reed(double)).
% ..
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Representing structured knowledge

properties in semantic networks

properties(Instance, Properties):-
direct_properties(Instance, InstanceProperties),
inst(Instance, Class), % inherit rest
inherit(Class, InstanceProps, Properties).

direct_properties(Instance, InstanceProperties):-
findall(Attribute=Value,

prop(Instance,Attribute,Value),
InstanceProperties).

%
isa(instrument,top).

inherit(top, Properties, Properties),
inherit(Class, Properties, AllProperties):-
direct_properties(Class, ClassProperties),
override(Properties, ClassProperties,

ExtendedProperties),
isa(Class, SuperClass),
inherit(SuperClass, ExtendedProperties, AllProperties).
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Representing structured knowledge

% override(SpecificProps,ClassProps,Ps): Ps contains all
% SpecificProps and those ClassProps that are not
% overridden by SpecificProps.
override(Properties, [], Properties).
override(Properties, [Attr=AnyValue|ClassProperties],

ExtendedProperties):-
element(Attr=Value, Properties),
override(Properties, ClassProperties,

ExtendedProperties).
override(Properties, [Attr=Value|ClassProperties],

[Attr=Value|ExtendedProperties]):-
not(element(Attr=AnyValue, Properties)),
override(Properties, ClassProperties,

ExtendedProperties).
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Representing structured knowledge

frame-based inheritance

Add property list to each arc in the network.

isa(instrument, top, [function=musical]).
isa(wind, instrument, []).
isa(woodwind, wind, [material=wood]).
isa(brass, wind, [material=metal,action=reed(lip)]).
%
instance(flute, woodwind, [material=metal]).
instance(oboe, woodwind, [action=reed(double]).
instance(trumpet, brass, []).
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Representing structured knowledge

frame-based inheritance 2

properties(Instance, Properties):-
instance(Instance, Class, InstanceProperties),
inherit(Class, InstanceProperties, Properties).

inherit(top, Properties, Properties).
inherit(Class, Properties, AllProperties):-
class(Class, SuperClass, ClassProperties),
override(Properties, ClassProperties,

ExtendedProperties),
inherit(SuperClass, ExtendedProperties, AllProperties).

124 / 259



Searching graphs

Outline

1 Preliminaries

2 Introduction

3 Clausal logic

4 Logic programming

5 Representing structured
knowledge

6 Searching graphs

7 Informed search

8 Language processing

9 Reasoning with Incomplete
Information

10 Default Reasoning

11 The Semantics of Negation

12 Abduction

13 Inductive Logic
Programming

125 / 259



Searching graphs

searching graphs

A search space is a graph with one or more starting nodes and one or
more goal nodes. A solution is a path from a start node to a goal node.
A cost function assigns a cost to each arc. An optimal solution is a
solution with minimal cost.
Search algorithms differ w.r.t.

completeness: is a solution always found?
optimality: will shorter paths be found before longer ones?
efficiency of the algorithm.
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Searching graphs

A general framework

% search(agenda,Goal): agenda contains reached but
% untried nodes.
% succeeds if a node Goal, for which goal(Goal), can
% be reached from a node in Agenda.
search(Agenda, Goal):-
% select/3 selects a node from the Agenda
select(Agenda, Goal, RestOfAgenda),
goal(Goal).

search(Agenda, Goal):-
select(Agenda, CurrentNode, RestOfAgenda),
children(CurrentNode, Children),
add(Children, RestOfAgenda, NewAgenda),
search(NewAgenda, Goal).

Different algorithms result from different implementations of select/3
and add/3 .
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Searching graphs

depth-first search

Agenda is a list (stack).
select/3 selects the first node of the list
add/3 puts children in front of the new agenda

search_df([Goal|RestOfAgenda], Goal):-
goal(Goal).

search_df([CurrentNode|RestOfAgenda], Goal):-
children(CurrentNode, Children),
append(Children, RestOfAgenda, NewAgenda),
search_df(NewAgenda, Goal).

children(Node, Children):-
findall(Child, arc(Node,Child), Children).
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Searching graphs

depth-first search with paths

Return path to goal: keep paths instead of nodes in agenda.

children([Node|RestOfPath], Children):-
findall([Child,Node|RestOfPath],

arc(Node,Child),
Children).

?- search_df([[initial_node]], PathToGoal).
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Searching graphs

depth-first search with loop detection
Loop detection: keep list of visited nodes.
search_df([Goal|RestOfAgenda], VisitedNodes, Goal):-
goal(Goal).

search_df([Node|RestOfAgenda], VisitedNodes, Goal):-
children(Node ,Children),
add_df(Children, RestOfAgenda,

[Node|VisitedNodes], NewAgenda),
search_df(NewAgenda, [Node|VisitedNodes], Goal).

% add_df(Nodes, Agenda, VisitedNodes, NewAgenda)
add_df([], Agenda, VisitedNodes, Agenda).
add_df([Node|Nodes], Agenda, VisitedNodes, [Node|NewAgenda]):-
not(element(Node, Agenda)),
not(element(Node, VisitedNodes),
add_df(Nodes, Agenda, VisitedNodes, NewAgenda).

add_df([Node|Nodes], Agenda, VisitedNodes, NewAgenda):-
element(Node, Agenda),
add_df(Nodes, Agenda, VisitedNodes, NewAgenda).

add_df([Node|Nodes], Agenda, VisitedNodes, NewAgenda):-
element(Node, VisitedNodes),
add_df(Nodes, Agenda, VisitedNodes, NewAgenda).
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Searching graphs

depth-first search with agenda on prolog stack

Using Prolog’s goal stack to keep agenda, but without loop detection:

search_df(Goal,Goal):-
goal(Goal).

search_df(CurrentNode, Goal):-
arc(CurrentNode, Child),
search_df(Child, Goal).
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Searching graphs

depth-first search with depth bound

An incomplete version with a depth bound:

search_bd(Depth, Goal, Goal):-
goal(Goal).

search_bd(Depth, CurrentNode, Goal):-
Depth>0, NewDepth is Depth-1,
arc(CurrentNode, Child),
search_bd(NewDepth, Child, Goal).

?- search_df(10,initial_node,Goal).
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Searching graphs

depth-first search with iterative deepening

Iterative deepening (e.g. in chess):

search_id(CurrentNode, Goal):-
search_id(1, CurrentNode, Goal).

search_id(Depth, CurrentNode, Goal):-
search_bd(Depth, CurrentNode, Goal).

search_id(Depth, CurrentNode, Goal):-
NewDepth is Depth+1,
search_id(NewDepth, CurrentNode, Goal).
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Searching graphs

breadth-first search

Agenda is a list (queue).
select/3 selects the first node of the list
add/3 puts children at the back of the new agenda

search_bf([Goal|RestOfAgenda], Goal):-
goal(Goal).

search_bf([CurrentNode|RestOfAgenda], Goal):-
children(CurrentNode, Children),
append(RestOfAgenda ,Children, NewAgenda),
search_bf(NewAgenda, Goal).

children(Node, Children):-
findall(Child, arc(Node,Child), Children).
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Searching graphs

a full clause refutation engine

Use breadth-first search.
Clause representation:

clause(([bach(X),married(X)] :- [man(X),adult(X)])).
clause(([] :- [has_wife(paul)])). % empty head
clause(([] :- [])). % empty clause

Because findall(X,G,L) creates new variables for the unbound
variables in X before putting it in L, we keep a copy of the original
goal in order to be able to retrieve the computed substitution.
The agenda is a list of pairs

agenda_item(SubGoalClause, OriginalGoal)
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Searching graphs

refute(GoalClause):-
refute([agenda_item(GoalClause,GoalClause)], GoalClause).

% The following clause unifies two versions of the
% original clause where the first version contains
% the answer substitution.
refute([ agenda_item(([]:- []), GoalClause) | _ ], GoalClause).

refute([agenda_item(InputClause,GoalClause)|RestOfAgenda],
OriginalGoalClause):-

findall( agenda_item(Resolvent, GoalClause),
( clause(Resolver),

resolve(InputClause, Resolver, Resolvent) ),
Children),

append(RestOfAgenda, Children, NewAgenda), % breadth-first
refute(NewAgenda, OriginalGoalClause).
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Searching graphs

% resolve(Clause1,Clause2,R) iff R is a resolvent
% of Clause1 and Clause2.
resolve((H1:-B1), (H2:-B2), (ResHead:-ResBody)):-
% remove common literals from H1, B2, yielding R1, R2
remove_common_element(H1, B2, R1, R2),
append(R1, H2, ResHead),
append(B1, R2, ResBody).

resolve((H1:- B1), (H2:-B2), (ResHead:-ResBody)):-
remove_common_element(H2, B1, R2, R1),
append(H1, R2, ResHead),
append(R1, B2, ResBody).
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Searching graphs

% remove_common_element(+L1, +L2, -R1, -R2)
% iff (roughly) exists X such that els(Li) = els(Ri) + {X}
% (note that, necessarily, els(Li) not empty
remove_common_element([A|B], C, B, E) :-
remove_element(A, C, E).

remove_common_element([A|B], C, [A|D], E) :-
remove_common_element(B, C, D, E).

% remove_element(+A,+L,-R)
% iff (roughly) els(L) = els(R) + {A}
remove_element(A, [A|B], B).
remove_element(A, [C|B], [C|D]) :-
A\=C, remove_element(A, B, D).
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Searching graphs

clause(([bachelor(X),married(X)]:- [man(X),adult(X)])).
clause(([has_wife(X)]:- [man(X),married(X)])).
clause(([]:- [has_wife(paul)])).
clause(([man(paul)]:- [])).
clause(([adult(paul)]:- [])).

?- refute(([] :- [bach(X)]))
X = paul

The resolution strategy (“input resolution”: every resolvent has at
least one program clause as its parent) used is incomplete for general
clauses (but complete for definite ones).
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Searching graphs

forward chaining
% model(-M) iff M is a model of the clauses defined by cl/1
model(M):-

model([], M).

% model(+M0,-M) iff M0 can be extended to a model M
% of the cl/1 clauses.
model(M0, M):-

clause((H:- B)),
% find violated clause instance
is_violated((H:- B), M0),!,
element(L, H), % select ground literal from the head
model([L|M0], M). % and add it to the model

model(M, M). % no violated clauses

% is_violated((H:- B),+M) iff instance of H:-B
% is violated by M
is_violated((H:- B), M):-

satisfied_body(B, M), % this will ground the variables
not(satisfied_head(H, M)).
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Searching graphs

% satisfied_body(L,+M) iff M |= A for all A in L,
% may bind vars in L
satisfied_body([], M).
satisfied_body([A|B], M) :-
element(A, M),
satisfied_body(B, M).

% satisfied_head(+L,+M) iff exists A in els(L)
% with M |= A
satisfied_head(L,M):-

element(A, L), element(A, M).

element(A, [A|_]).
element(A, [_|B]) :-
element(A, B).
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Searching graphs

clause(([bach(X),married(X)]:- [man(X),adult(X)])).
clause(([has_wife(X)]:- [man(X),married(X)])).
clause(([man(paul)]:- [])).
clause(([adult(paul)]:- [])).

?- model(M)
M = [has_wife(paul), married(paul),

adult(paul), man(paul)];
M = [bach(paul), adult(paul), man(paul)]

The program works correctly only for clauses for which grounding the
body also grounds the head.

clause(([man(X),woman(X)]:- [])).
clause(([]:- [man(jane)])). % jane is not a man
clause(([]:- [woman(peter)])). % peter is not a woman
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Searching graphs

range-restricted clauses

This can be fixed:

clause(([man(X),woman(X)]:- [person(X)])).
clause(([person(jane)]:- [])).
clause(([person(peter)]:- [])).
clause(([]:- [man(jane)])).
clause(([]:- [woman(peter)])).

Range-restricted clauses: where all variables in the head also occur in
the body.
Any program can be transformed into an equivalent one using only
range-restricted clauses.
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Informed search

best-first search

Informed search uses an heuristic estimate of the distance from a
node to a goal.

% eval(Node,Value) estimates distance from node to goal

search_best([Goal|RestAgenda], Goal):-
goal(Goal).

search_best([CurrentNode|RestAgenda], Goal):-
children(CurrentNode, Children),
add_best(Children, RestAgenda, NewAgenda),
search_best(NewAgenda, Goal).

% add_best(A,B,C): C contains
% els from A,B sorted according to eval/2
add_best([], Agenda, Agenda).
add_best([Node|Nodes], Agenda, NewAgenda):-
insert(Node, Agenda, TmpAgenda),
add_best(Nodes, TmpAgenda, NewAgenda).
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Informed search

insert(Node, Agenda, NewAgenda):-
eval(Node, Value),
insert(Value, Node, Agenda, NewAgenda).

insert(Value, Node, [], [Node]).
insert(Value, Node, [FirstNode|RestOfAgenda],

[Node, FirstNode|RestOfAgenda]):-
eval(FirstNode, FirstNodeValue),
Value < FirstNodeValue.

insert(Value, Node, [FirstNode|RestOfAgenda],
[FirstNode|NewRestOfAgenda]):-

eval(FirstNode, FirstNodeValue),
Value >= FirstNodeValue,
insert(Value, Node, RestOfAgenda, NewRestOfAgenda).

Best-first search is not complete since, with certain estimate functions,
it may get lost in an infinite subgraph.
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Informed search

example puzzle

A tile may be moved to the empty spot if there are at most 2 tiles
between it and the empty spot.
Find a series of moves that bring all the black tiles to the right of
all the white tiles.
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Informed search

representing and manipulating the board

A position of the board is represented using a list, e.g.
[b,b,b,e,w,w,w]

% get_tile(position,n,Tile): position[n]=Tile
get_tile(Position, N, Tile) :-
get_tile(Position, 1, N, Tile).

get_tile([Tile|Tiles], N, N, Tile).
get_tile([Tile|Tiles], N0, N, FoundTile) :-
N1 is N0+1,
get_tile(Tiles, N1, N, FoundTile).

% replace(position,n,t,B): B is position with board[n]=t
replace([Tile|Tiles], 1, ReplacementTile,

[ReplacementTile|Tiles]).
replace([Tile|Tiles], N, ReplacementTile,

[Tile|RestOfTiles]):-
N>1, N1 is N-1,
replace(Tiles, N1, ReplacementTile, RestOfTiles).
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Informed search

representing the agenda

A move is represented by a term
move(FromPosition, ToPosition, Cost).
The start move:

start_move( move(noparent, [b,b,b,e,w,w,w], 0) ).

showing a move (in a sequence)

show_move( move(OldPosition, NewPosition, Cost), Value):-
write(NewPosition-Value), nl.

An agenda is list of terms move_value(Move, Value) where Value

is the heuristic evaluation of the position reached by Move.
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Informed search

tiles/2

tiles(ListOfPositions, TotalCost):-
start_move(StartMove),
% Value is heuristic of distance to goal
eval(StartMove, Value),

% best-first search accumulating moves
tiles([move_value(StartMove, Value)], FinalMove,
[], VisitedMoves), % accumulator

% find (and print) a backward path and its cost in
% VisitedMoves from the final move to the start move
order_moves(FinalMove, VisitedMoves,
[], ListOfPositions, % accumulator
0, TotalCost). % accumulator

150 / 259



Informed search

tiles/4
% tiles(Agenda, LastMove, V0, V): goal can be
% reached from a move in Agenda where LastMove
% is the last move leading to the goal,
% and V is V0 + the set of moves tried.
tiles([move_value(LastMove,Value)|RestAgenda], LastMove,

VisitedMoves, VisitedMoves):-
goal(LastMove). % eval(LastMove, 0), i.e. goal reached

tiles([move_value(Move,Value)|RestAgenda], Goal,
VisitedMoves, FinalVisitedMoves):-

show_move(Move, Value), % show move ‘‘closest to goal’’
% find and evaluate possible next moves from M
setof0( move_value(NextMove, NextValue),

( next_move(Move, NextMove),
eval(NextMove, NextValue) ),

Children),
merge(Children, RestAgenda, NewAgenda),
tiles(NewAgenda, Goal,

[Move|VisitedMoves], FinalVisitedMoves).
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Informed search

next_move/2

next_move( move(Position, LastPosition, LastCost),
move(LastPosition, NewPosition, Cost) ) :-

% consecutive moves: NewPosition can be reached from
% LastPosition in 1 move at cost Cost
% Ne = index of empty spot
get_tile(LastPosition, Ne, e),
% Nbw = index of nonempty spot
get_tile(LastPosition, Nbw, BW), not(BW=e),
Diff is abs(Ne-Nbw), Diff<4, % not too far from Ne
replace(LastPosition, Ne, BW, IntermediatePosition),
replace(IntermediatePosition, Nbw, e, NewPosition),
(
Diff=1 -> Cost=1

; otherwise -> Cost is Diff-1
).
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Informed search

% order_moves(FinalMove, VisitedMoves,
% Positions, FinalPositions,
% TotalCost,FinalTotalCost):
% FinalPositions = Positions + connecting sequence of
% target positions from VisitedMoves ending in
% FinalMove’s target position.
% FinalTotalCost = TotalCost + total cost of moves
% added to Positions to obtain FinalPositions.
order_moves(move(noparent,StartPosition,0), VisitedMoves,

Positions, [StartPosition|Positions],
TotalCost, TotalCost).

order_moves(move(FromPosition, ToPosition, Cost),
VisitedMoves,
Positions, FinalPositions,
TotalCost, FinalTotalCost):-

element( PreviousMove, VisitedMoves),
PreviousMove = move(PreviousPosition, FromPosition,

CostOfPreviousMove),
NewTotalCost is TotalCost + Cost,
order_moves(PreviousMove, VisitedMoves,

[ToPosition|Positions], FinalPositions,
NewTotalCost, FinalTotalCost).
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Informed search

utilities
% setof0/3: variant of setof/3
% which succeeds with empty list if no solutions are found
setof0(X, G, L):-
setof(X, G, L), !.

setof0(X, G, []).

merge([], Agenda, Agenda).
% avoid succeeding twice on merge([],[],L).
merge([C|Cs],[],[C|Cs]).
merge([C|Cs],[N|Ag],[C|NewAg]):-
eval(C,CVal),
eval(N,NVal),
CVal<NVal,
merge(Cs,[N|Ag],NewAg]).

merge([C|Cs],[N|Ag],[N|NewAg]):-
eval(C,CVal),
eval(N,NVal),
CVal>=NVal,
merge([C|Cs],Ag,NewAg]).
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Informed search

eval/1

goal(Move):-
eval(Move,0).

eval(move(OldPosition,Position,C),Value):-
bLeftOfw(Position,Value).

% Val is the sum of the number of black tiles
% to the left of each white tile
bLeftOfw(Pos,Val):-
findall((Nb,Nw),

( get_tile(Pos,Nb,b),
get_tile(Pos,Nw,w), Nb<Nw),

L),
length(L,Val).

155 / 259



Informed search

example run
?- tiles(M,C).
[b,b,b,e,w,w,w]-9
[b,b,b,w,e,w,w]-9
[b,b,e,w,b,w,w]-8
[b,b,w,w,b,e,w]-7
[b,b,w,w,b,w,e]-7
[b,b,w,w,e,w,b]-6
[b,e,w,w,b,w,b]-4
[b,w,e,w,b,w,b]-4
[e,w,b,w,b,w,b]-3
[w,w,b,e,b,w,b]-2
[w,w,b,w,b,e,b]-1
M = [[b,b,b,e,w,w,w],[b,b,b,w,e,w,w],

[b,b,e,w,b,w,w],[b,b,w,w,b,e,w],
[b,b,w,w,b,w,e],[b,b,w,w,e,w,b],
[b,e,w,w,b,w,b],[b,w,e,w,b,w,b],
[e,w,b,w,b,w,b],[w,w,b,e,b,w,b],
[w,w,b,w,b,e,b],[w,w,e,w,b,b,b]]

C = 15
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Informed search

optimal best-first search

Best-first search can be made complete by using

f (n) = g(n) + h(n)

where g(n) is actual cost so far and h(n) is estimate on further
cost to reach goal. Such an algorithm is called an A-algorithm.
g(n) will prevent getting lost in an infinite subgraph: adds a
breadth-first flavor.
If h(n) is optimistic, i.e. it underestimates the cost, then the
algorithm always finds an optimal path. Such an algorithm is
called an A∗-algorithm.
In an extreme case, if h(n) = 0, the algorithm degenerates to
breadth-first (the heuristic in the previous example is optimistic).
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Language processing

language processing

Syntax: definite clause grammars
Semantics: terms instead of nonterminals
Language generation
An example interpreter
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Language processing

definite clause grammars (dcg)

Context-free grammars in prolog.
A sentence is a list of terminals:

[socrates, is, human]

Non-terminals are defined by rules

sentence --> noun_phrase, verb_phrase
verb_phrase --> [is], property
noun_phrase -->proper_noun
proper_noun --> [socrates]
property --> [mortal]
property --> [human]
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Language processing

rules and prolog

A rule

sentence --> noun_phrase, verb_phrase

can be read as:

sentence(S) :-
noun_phrase(NP),
verb_phrase(VP),
append(NP,VP,S).

A rule

property --> [mortal]

can be read as:

property([mortal]).

thus: sentence([socrates, is , mortal]) parses the sentence
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Language processing

without append/3

A rule

sentence --> noun_phrase, verb_phrase

corresponds to

sentence(L,L0) :-
noun_phrase(L,L1),
verb_phrase(L1,L0).

reading sentence(L,L0) as
“ L consists of a sentence followed by L0 ”.

The conversion of rules to clauses is often built into prolog, as is
the meta-predicate phrase/2 where

phrase(sentence,L) ≡ sentence(L,[])
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Language processing

DCGs vs. context-free grammars

non-terminals can have arguments
goals can be put into the rules
no need for deterministic (LL(k), LR(k)) grammars!
a single formalism for specifying syntax, semantics
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Language processing

example: adding plurality constraints

sentence --> noun_phrase(N), verb_phrase(N)
noun_phrase(N) --> article(N), noun(N)
verb_phrase(N) --> intransitive_verb(N)
article(singular) --> [a]
article(singular) --> [the]
article(plural) --> [the]
noun(singular) --> [student]
noun(plural) --> [students]
intransitive_verb(singular) --> [sleeps]
intransitive_verb(plural) --> [sleep]

phrase(sentence,[a,student,sleeps]). % yes
phrase(sentence,[the,students,sleep]). % yes
phrase(sentence,[the,students,sleeps]). % no
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Language processing

example: explicit parse trees

A parse tree is represented by a term.

sentence(s(NP,VP)) -->
noun_phrase(NP), verb_phrase(VP)

noun_phrase(np(Art,Adj,N)) -->
article(Art), adjective(Adj), noun(N)

noun_phrase(np(Art,N)) -->
article(Art), noun(N)

verb_phrase(vp(IV)) -->
intransitive_verb(IV)

article(art(the)) --> [the]
adjective(adj(lazy)) --> [lazy]
noun(n(student)) --> [student]
intransitive_verb(iv(sleeps)) --> [sleeps]
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Language processing

example: explicit parse trees

?- phrase(sentence(T),
[the,lazy,student,sleeps])

T = s(np(art(the),
adj(lazy),
n(student)),

vp(iv(sleeps)))
?- phrase(sentence(T),

[the,lazy,student,sleeps]),
term_write(T)

---s---np---art------the
---adj-----lazy
-----n--student

---vp----iv---sleeps
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Language processing

example: number parsing

nX_Y(N) if N is a number in [X..Y].
The grammar:

num(N) --> n1_999(N).
num(N) --> n1_9(N1),[thousand],n1_999(N2),

{N is N1*1000+N2}.
n1_999(N) --> n1_99(N).
n1_999(N) --> n1_9(N1),[hundred],n1_99(N2),

{N is N1*100+N2}.
n1_99(N) --> n0_9(N).
n1_99(N) --> n10_19(N).
n1_99(N) --> tens(N).
n1_99(N) --> tens(N1),n1_9(N2),{N is N1+N2}.
n0_9(0) --> [].
n0_9(N) --> n1_9(N).
n1_9(1) --> [one]. % two, .. , nine
n10_19(10) --> [ten]. % eleven,.., nineteen
tens(20) --> [twenty]. % thirty,.., ninety

167 / 259



Language processing

The rule

n1_99(N) --> tens(N1), n1_9(N2), {N is N1+N2}.

corresponds to the clause

n1_99(N,L,L0) :-
tens(N1,L,L1),
n1_9(N2,L1,L0),
N is N1 + N2.
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Language processing

number parsing example

?- phrase(num(N),
[two,thousand,two,hunderd,eleven])

N = 2211
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Language processing

interpretation of natural language

Syntax:

sentence --> determiner, noun, verb_phrase
sentence --> proper_noun, verb_phrase
verb_phrase --> [is], property
property --> [a], noun
property --> [mortal]
determiner --> every
proper_noun --> [socrates]
noun --> [human]

Semantics: convert sentences to clauses, e.g.
“every human is mortal”

becomes

mortal(X):- human(X)
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Language processing

A proper noun is interpreted as a constant.
proper_noun(socrates) --> [socrates]

A verb phrase is interpreted as a mapping from terms to literals
X=>L:
verb_phrase(M) --> [is], property(M).
property(X=>mortal(X)) --> [mortal].
sentence((L:- true)) --> proper_noun(X),

verb_phrase(X=>L).

?-phrase(sentence(C),[socrates,is,mortal]).
C = (mortal(socrates):- true)

sentence(C) --> determiner(M1,M2,C), noun(M1),
verb_phrase(M2).

determiner(X=>B, X=>H, (H:- B)) --> [every].
noun(X=>human(X)) --> [human].

?-phrase(sentence(C), [every human is mortal])
C = (mortal(X):- human(X))
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Language processing

grammar

:- op(600,xfy,’=>’).
sentence(C) --> determiner(N,M1,M2,C), noun(N,M1),

verb_phrase(N,M2).
sentence([(L:- true)]) --> proper_noun(N,X),

verb_phrase(N,X=>L).
verb_phrase(s,M) --> [is], property(s,M).
verb_phrase(p,M) --> [are], property(p,M).
property(N,X=>mortal(X)) --> [mortal].
property(s,M) --> noun(s,M).
property(p,M) --> noun(p,M).
determiner(s, X=>B , X=>H, [(H:- B)]) --> [every].
determiner(p, sk=>H1, sk=>H2,
[(H1 :- true),(H2 :- true)]) -->[some].

proper_noun(s,socrates) --> [socrates].
noun(s,X=>human(X)) --> [human].
noun(p,X=>human(X)) --> [humans].
noun(s,X=>living_being(X)) --> [living],[being].
noun(p,X=>living_being(X)) --> [living],[beings].
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Language processing

questions

question(Q) -->
[who], [is], property(s,X=>Q)

question(Q) -->
[is], proper_noun(N,X), property(N,X=>Q)

question((Q1,Q2)) -->
[are], [some], noun(p,sk=>Q1), property(p,sk=>Q2)
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Language processing

the interpreter: handle_input/2

% RB = rule base
nl_shell(RB) :-
get_input(Input), handle_input(Input,RB).

handle_input(stop,RB) :- !.
handle_input(show,RB) :- !,
show_rules(RB), nl_shell(RB).

handle_input(Sentence,RB) :-
phrase(sentence(Rule),Sentence),
nl_shell([Rule|RB]).

handle_input(Question,RB) :-
phrase(question(Query),Question),
prove(Query,RB),
transform(Query,Clauses),
phrase(sentence(Clauses),Answer),
show_answer(Answer),
nl_shell(RB).

handle_input(Error,RB) :-
show_answer(’no’), nl_shell(RB).
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Language processing

auxiliary clauses

show_rules([]).
show_rules([R|Rs]) :-
phrase(sentence(R),Sentence),
show_answer(Sentence),
show_rules(Rs).

get_input(Input) :-
write(’? ’),read(Input).

show_answer(Answer) :-
write(’! ’),write(Answer), nl.
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Language processing

answering questions
prove(true,RB) :- !.
prove((A,B),RB) :- !,
prove(A,RB),prove(B,RB).

prove(A,RB) :-
find_clause((A:- B),RB), prove(B,RB).

%
find_clause(C,[R|Rs]) :-
% don’t instantiate rule
copy_element(C,R).

find_clause(C,[R|Rs]) :-
find_clause(C,Rs).

copy_element(X,Ys) :-
element(X1,Ys),
% copy with fresh variables
copy_term(X1,X).

transform((A,B),[(A:- true)|Rest]) :-
transform(B,Rest).

transform(A,(A:- true)).
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Language processing

example session

? [every,human,is,mortal]
? [socrates,is,a,human]
? [who,is,mortal]
! [socrates,is,mortal]
? [some,living,beings,are,humans]
? [are,some,living,beings,mortal]
! [some,living,beings,are,mortal]
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Reasoning with Incomplete Information

reasoning with incomplete information

Forms of reasoning where conclusions are plausible but not
guaranteed to be true:

default reasoning: when a “normal” state of affairs is assumed
(“birds fly”).

abductive resoning when there is a choice between several
explanations that explain observations, e.g. in a diagnosis
inductive reasoning when a general rule is learned from examples.

Such reasoning is unsound. Sound reasoning is called deduction.
Deduction only makes implicit information explicit.
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Default Reasoning

default reasoning

Tweety is a bird. Normally, birds fly. Therefore, Tweety flies.

bird(tweety).
flies(X) :- bird(X), normal(X).

has 3 models:

{bird(tweety)}
{bird(tweety), flies(tweety)}
{bird(tweety), flies(tweety), normal(tweety)}
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Default Reasoning

In default reasoning, it is more natural to use abnormal/1 instead of
normal/1:

flies(X) ; abnormal(X) :- bird(X).

can be transformed to a general definite clause:

flies(X) :- bird(X) , not(abnormal(X)).

Using negation as failure, we can now prove that Tweety flies.

bird(X) :- ostrich(X).
ostrich(tweety).
abnormal(X) :- ostrich(X).

Here the default rule

flies(X) :- bird(X), not(abnormal(X)).

is cancelled by the more specific rule about ostriches.
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Default Reasoning

non-monotonic reasoning
In the example, new information invalidates previous conclusions. This
is not the case for deductive reasoning where

Th ` p ⇒ Th ∪ {q} ` p

for any q or, defining Closure(Th) = {p | Th ` p} we get that

deduction is monotonic

Th1 ⊆ Th2 ⇒ Closure(Th1) ⊆ Closure(Th2)

Default reasoning using not/1 is problematic because not/1 has no
declarative semantics (but see later).
Alternatively we can distinguish between rules with exceptions (default
rules) and rules without exceptions. Rules are applied whenever
possible, but default rules are only applied when they do not lead to an
inconsistency.
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Default Reasoning

an interpreter for default reasoning

Example

default((flies(X) :- bird(X))).
rule((not(flies(X)) :- penguin(X))).
rule((bird(X) :- penguin(X))).
rule((penguin(tweety) :- true)).
rule((bird(opus) :- true)).
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Default Reasoning

the interpreter 1/2

% E explains F from rules, defaults
explain(F,E):-
explain(F,[],E).

explain(true,E,E) :- !.
explain((A,B),E0,E) :- !,
explain(A,E0,E1), explain(B,E1,E).

explain(A,E0,E):-
prove(A,E0,E).

explain(A,E0,[default((A:-B))|E]):-
default((A:-B)),
explain(B,E0,E),
not(contradiction(A,E)).
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Default Reasoning

the interpreter 2/2

% prove using non-defaults
prove(true,E,E) :- !.
prove((A,B),E0,E) :- !,
prove(A,E0,E1), prove(B,E1,E).

prove(A,E0,[rule((A:-B))|E]):-
rule((A:-B)), prove(B,E0,E).

contradiction(not(A),E) :- !,
prove(A,E,E1).

contradiction(A,E):-
prove(not(A),E,E1).
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Default Reasoning

Example

?- explain(flies(X),E)
X=opus
E=[default((flies(opus) :- bird(opus))),

rule((bird(opus) :- true))]

?- explain(not(flies(X)),E)
X=tweety
E=[rule((not(flies(tweety)) :- penguin(tweety))),

rule((penguin(tweety) :- true))]
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Default Reasoning

Example

default((not(flies(X)) :- mammal(X))).
default((flies(X) :- bat(X))).
default((not(flies(X)) :- dead(X))).
rule((mammal(X) :- bat(X))).
rule((bat(a) :- true)).
rule((dead(a) :- true)).

?-explain(flies(a),E)
E=[default((flies(a) :- bat(a))),

rule((bat(a) :- true))]

?-explain(not(flies(a)),E)
E=[default((not(flies(a)) :- mammal(a)))

rule((mammal(a) :- bat(a))),
rule((bat(a) :- true))]

E=[default((not(flies(a)) :- dead(a)))
rule((dead(a) :- true))]

Only the third explanation seems acceptable.

188 / 259



Default Reasoning

We can refine by naming defaults and allow rules to cancel a specific
default by name.

Example

default(mammals_dont_fly(X), (not(flies(X)):- mammal(X))).
default(bats_fly(X),(flies(X):- bat(X))).
default(dead_things_dont_fly(X), (not(flies(X)):- dead(X))).
rule((mammal(X):- bat(X))).
rule((bat(a):- true)).
rule((dead(a):- true)).
rule((not(mammals_dont_fly(X)):- bat(X))).
% cancels mammals_dont_fly

rule((not(bats_fly(X)):- dead(X))). % cancels bats_fly
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Default Reasoning

Change the interpreter:

explain(A,E0,[default(Name)|E]):-
default(Name,(A:- B)), explain(B,E0,E),
% default not cancelled
not(contradiction(Name,E)),
not(contradiction(A,E)).
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Default Reasoning

Example

?-explain(flies(a),E)
no

?-explain(not(flies(a)),E)
E=[default(dead_things_dont_fly(a)),

rule((dead(a):- true))]
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The Semantics of Negation

semantics of negation

A program P is “complete” if for every (ground) fact f , we have that
P |= f or P |= ¬f
We consider two methods to “complete” programs:

The closed world assumption works for definite clauses.

Predicate completion works for general clauses (with negation in
the body) but leads to inconsistencies for some programs.

Alternatively, the stable model semantics introduces nondeterminism.

193 / 259



The Semantics of Negation

semantics of negation

A program P is “complete” if for every (ground) fact f , we have that
P |= f or P |= ¬f
We consider two methods to “complete” programs:

The closed world assumption works for definite clauses.
Predicate completion works for general clauses (with negation in
the body) but leads to inconsistencies for some programs.

Alternatively, the stable model semantics introduces nondeterminism.

193 / 259



The Semantics of Negation

semantics of negation

A program P is “complete” if for every (ground) fact f , we have that
P |= f or P |= ¬f
We consider two methods to “complete” programs:

The closed world assumption works for definite clauses.
Predicate completion works for general clauses (with negation in
the body) but leads to inconsistencies for some programs.

Alternatively, the stable model semantics introduces nondeterminism.

193 / 259



The Semantics of Negation

the closed world assumption

CWA: “everything that is not known to be true must be false” (e.g.
databases).

CWA(P) = P ∪ {:−A | A ∈ BP ∧ P 6|= A}

CWA(P) is the intended program of P, according to the CWA.
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The Semantics of Negation

Example

likes(peter,S) :- student_of(S,peter).
student_of(paul,peter).

CWA(P):

likes(peter,S) :- student_of(S,peter).
student_of(paul,peter).
:- student(paul,paul). :- student(peter,paul).
:- student(peter,peter).
:- likes(paul,paul). :- likes(paul,peter).
:- likes(peter,peter).

CWA(P) has only one model:

{student_of(paul,peter), likes(peter,paul)}

This intended model is the intersection of all (Herbrand) models.
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The Semantics of Negation

Example

bird(tweety).
flies(X);abnormal(X) :- bird(X).

CWA(P):

bird(tweety).
flies(X);abnormal(X) :- bird(X).
:- flies(tweety).
:- abnormal(tweety).

which is inconsistent: CWA is unable to handle indefinite (or general,
pseudo-definite) clauses.
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The Semantics of Negation

predicate completion

Regard a clause as part of the definition of a predicate. E.g. if

likes(peter,S) :- student(S,peter).

is the only clause with head likes/2, its completion is

∀X · ∀S · likes(X ,S)↔ X = peter ∧ student(S,peter)

which can be translated back to clausal form:

likes(peter,S) :- student(S,peter).
X=peter :- likes(X,S).
student(S,peter) :- likes(X,S)
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The Semantics of Negation

the completion algorithm 1/3

likes(peter,S) :- student(S,peter).
likes(X,Y) :- friend(X,Y).

1. Ensure that each argument of the head of each clause is a distinct
variable by adding literals of the form Var = Term to the body.

likes(X,S) :- X=peter, student(S,peter).
likes(X,Y) :- friend(X,Y).
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The Semantics of Negation

the completion algorithm 2/3

likes(X,S) :- X=peter, student(S,peter).
likes(X,Y) :- friend(X,Y).

2. If there are several clauses for the same predicate (in the head),
combine them into a single formula with a disjunctive “body”.

∀X · ∀Y · likes(X ,Y )←
(X = peter ∧ student(Y ,peter))
∨
friend(X ,Y )
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The Semantics of Negation

the completion algorithm 3/3

3. Replace the implication by an equivalence.

∀X · ∀Y · likes(X ,Y )↔
(X = peter ∧ student(Y ,peter))
∨friend(X ,Y )

Note: predicates that have no clauses, e.g. p/1 becomes ∀X · ¬p(X )

Clarke completion semantics
The intended model of P is the classical model of the predicate
completion of Comp(P).

200 / 259



The Semantics of Negation

Be careful with variables that do not occur in the head:

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

is equivalent to

∀X · ∀Y · ∀Z · ancestor(X ,Y )← parent(X ,Z ) ∧ ancestor(Z ,Y )

but also with

∀X · ∀Y · ancestor(X ,Y )← (∃Z · parent(X ,Z ) ∧ ancestor(Z ,Y ))
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The Semantics of Negation

Example

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

becomes

∀X · ∀Y · ancestor(X ,Y )←
parent(X ,Y )
∨(∃Z · parent(X ,Z ) ∧ ancestor(Z ,Y ))

in step 2, and

∀X · ∀Y · ancestor(X ,Y )↔
parent(X ,Y )
∨(∃Z · parent(X ,Z ) ∧ ancestor(Z ,Y ))

in step 3.
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The Semantics of Negation

Example

bird(tweety).
flies(X) :- bird(X), not(abnormal(X)).

Comp(P) becomes:

∀X · bird(X )↔ X = tweety
∀X · flies(X )↔ (bird(X ) ∧ ¬abnormal(X ))
∀X · ¬abnormal(X )

which has a single model

{ bird(tweety), flies(tweety) }
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The Semantics of Negation

Predicate completion gives inconsistent results in some cases:

Example

wise(X) :- not(teacher(X)).
teacher(peter) :- wise(peter).

becomes

∀X · wise(X )↔ ¬teacher(X )
∀X · teacher(X )↔ X = peter ∧ wise(peter)

which is inconsistent.
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The Semantics of Negation

stratified programs

Definition
A program P is stratified if its predicate symbols can be partitioned into
disjoint sets S0, . . . ,Sn such that for each clause

p(. . .)← L1, . . . ,Lj

where p ∈ Sk , any literal Lj is such that
if Lj = q(. . .) then q ∈ S0 ∪ . . . ∪ Sk

if Lj = ¬q(. . .) then q ∈ S0 ∪ . . . ∪ Sk−1

Theorem
If P is stratified then Comp(P) is consistent.
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The Semantics of Negation

Theorem
If P is stratified then Comp(P) is consistent.

The condition is sufficient but not necessary:

Example

win(X )← ¬loose(X ).
loose(X )← ¬win(X ).

is not stratified but its completion is consistent.
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The Semantics of Negation

the stable model semantics

Intuition: Guess a model and verify that it can be reconstructed from
the program (“stability”).

Example

win:- not(loose).
loose :- not(win).

Guess M = {win}: first rule becomes

win.

while the second rule is not applicable (since its body is false).
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The Semantics of Negation

the Gelfond-Lifschitz transformation
For a program P and an interpretation I, the GL transform PI is defined
by

1 Removing all (true) negations not(b), where b 6∈ I from the bodies
of the rules.

2 Remove all (“blocked”) rules that still contain negations after the
previous step.

The result is a positive program.

Example

win:- not(loose).
loose :- not(win).

P{win} contains just the clause

win.
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The Semantics of Negation

stable model definition

Definition
M is a stable model of P iff M is the (unique) minimal model of PM .

Example

win:- not(loose).
loose :- not(win).

Has two stable models: {win} and {loose}.
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The Semantics of Negation

graph colorability with stable models

% graph defined by node/1, arc/2
%
% a node must have a color
color(N,red) :- node(N),
not(color(N,green)), not(color(N,blue)).

color(N,green) :- node(N),
not(color(N,blue)), not(color(N,red)).

color(N,blue) :- node(N),
not(color(N,red)), not(color(N,green)).

%
% no two adjacent nodes have the same color
:- arc(X,Y), color(X,C), color(Y,C).

Any stable model of the above program represents a solution to this
NP-complete problem.
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The Semantics of Negation

answer set programming

Extension of logic programming based on the stable model
semantics for datalog programs (finite universe).

Without disjunction in the head, NP problems (e.g. satisfiability of
a propositional formula) can be represented.
The stable model semantics can be extended to disjunctive
(datalog) programs, which increases the expressiveness to Σ2P
(NP using an NP (Σ1P) oracle, e.g. deciding whether
∃x · ∀y · φ(x , y) is valid).
Efficient (sic) implementations are available: e.g. the smodels or
the dlv systems.
Applications in configuration (space shuttle), planning,
diagnostics, . . . .
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The Semantics of Negation

sudoku using answer set programming

(author: Kim Bauters)

size(0..8). % like type declaration
1{p(X, Y, Value) : size(Value)}1 :- size(X), size(Y).
% A value may not appear more than once in any row.
:- p(X, Y1, Value), p(X, Y2, Value), size(X;Y1;Y2;Value), Y1!=Y2.
% A value may not appear more than once in any column.
:- p(X1, Y, Value), p(X2, Y, Value), size(X1;X2;Y;Value), X1!=X2.
% A value may not appear more than once in any subgrid.
:- p(X1, Y1, Value), p(X2, Y2, Value), size(X1;X2;Y1;Y2;Value),

(X1 != X2 | Y1 != Y2), X1 / 3 == X2 / 3, Y1 / 3 == Y2 / 3.
hide size(_).

Note: smodels extension (syntax sugar):
2{p,q,r}3 is true in M iff it contains between 2 and 3 elements of
{p,q, r}.
{p(a,X) : q(X)} is shorthand for the set {p(a,X ) | q(X )}.

212 / 259



Abduction

Outline
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Abduction

abduction

Given a theory T and an observation O, find an explanation E such
that

T ∪ E ` O

E.g. given the theory

likes(peter,S) :- student_of(S,peter).
likes(X,Y) :- friend(X,Y).

and the observation likes(peter,paul), possible explanations are
{student_of(paul,peter)} or {friend(peter,paul)}
Another possible explanation is
{(likes(X,Y) :- friendly(Y)), friendly(paul)} but abductive
explanations are usually restricted to ground literals with predicates
that are undefined in the theory (abducibles).
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Abduction

an abduction algorithm

Try to prove observation from theory; when an abducible literal is
encountered that cannot be resolved, add it to the explanation.

abduce(O,E):- % P+E |- O
abduce(O,[],E).

abduce(true,E,E) :- !.
abduce((A,B),E0,E) :- !,
abduce(A,E0,E1),
abduce(B,E1,E).

abduce(A,E0,E):-
clause(A,B),
abduce(B,E0,E).

abduce(A,E,E):- element(A,E).
abduce(A,E,[A|E]):- not(element(A,E)), abducible(A).
abducible(A):- not(clause(A,B)).
% clauses are assumed to be definitions
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Abduction

Example

likes(peter,S) :- student_of(S,peter).
likes(X,Y) :- friend(X,Y).

?-abduce(likes(peter,paul),E)
E = [student_of(paul,peter)];
E = [friend(paul,peter)]
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Abduction

Problems with general clauses:

Example

flies(X) :- bird(X), not(abnormal(X)).
abnormal(X) :- penguin(X).
bird(X) :- penguin(X).
bird(X) :- sparrow(X).

?-abduce(flies(tweety),E)
E = [not(abnormal(tweety)),penguin(tweety)];
E = [not(abnormal(tweety)),sparrow(tweety)];
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Abduction

adding negation as failure

% E explains not(A) if E does not explain A
abduce(not(A),E,E):-
not(abduce(A,E,E)).

..
abducible(A):-
A \= not(X), not(clause(A,B)).

?-abduce(flies(tweety),E)
E = [sparrow(tweety)]

Still problems because abduce(not(A),E,E) assumes E is “complete”.
E.g.

abduce(not(abnormal(X)),[],[])

succeeds and thus, if flies(X):- not(abnormal(X)),bird(X) any
explanation of bird(X) will explain flies(X).
Thus we need a special abduce_not/3 that provides evidence for
accepting not(..).
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Abduction

new interpreter 1/2
abduce(true,E,E) :- !.
abduce((A,B),E0,E) :- !,
abduce(A,E0,E1),
abduce(B,E1,E).

abduce(A,E0,E):-
clause(A,B),
abduce(B,E0,E).

abduce(A,E,E):-
element(A,E).

abduce(A,E,[A|E]):-
not(element(A,E)),
abducible(A),
not(abduce_not(A,E,E)).
% only if E does not explain not(A)

abduce(not(A),E0,E):-
not(element(A,E0)),
abduce_not(A,E0,E).

abducible(A):-
A \= not(X), not(clause(A,B)).
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Abduction

new interpreter 2/2
abduce_not((A,B),E0,E):- % disjunction!
abduce_not(A,E0,E) ; abduce_not(B,E0,E).

abduce_not(A,E0,E):-
setof(B,clause(A,B),L), % abduce_not(B) for each body B
abduce_not_list(L,E0,E).

abduce_not(A,E,E):-
element(not(A),E). % not(A) already assumed

abduce_not(A,E,[not(A)|E]):- % assume not(A) if
not(element(not(A),E)), % not already there, and
abducible(A), % it is abducible, and
not(abduce(A,E,E)). % E does not explain A

abduce_not(not(A),E0,E):-
not(element(not(A),E0)),
abduce(A,E0,E).

abduce_not_list([],E,E).
abduce_not_list([B|Bs],E0,E):-
abduce_not(B,E0,E1), % body cannot be used
abduce_not_list(Bs,E1,E).
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Abduction

Example

flies(X) :- bird(X),not(abnormal(X)).
flies1(X) :- not(abnormal(X)),bird(X).
abnormal(X) :- penguin(X).
abnormal(X) :- dead(X).
bird(X) :- penguin(X).
bird(X) :- sparrow(X).

?- abduce(flies(tweety),E).
E = [not(penguin(tweety)),not(dead(tweety)),

sparrow(tweety)]
?- abduce(flies1(tweety),E).
E = [sparrow(tweety),

not(penguin(tweety)),not(dead(tweety))]
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Abduction

diagnosis using abduction
X

Y

Z

S

Sum

Carry

C1

C2

xor1

and1

and2

xor2

or1

adder(X,Y,Z,Sum,Carry) :-
xor(X,Y,S),xor(Z,S,Sum),
and(X,Y,C1),and(Z,S,C2),
or(C1,C2,Carry).

xor(0,0,0). and(0,0,0). or(0,0,0).
xor(0,1,1). and(0,1,0). or(0,1,1).
xor(1,0,1). and(1,0,0). or(1,0,1).
xor(1,1,0). and(1,1,1). or(1,1,1).

describes normal operation
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Abduction

The fault model of a system describes the behavior of each component
when in a faulty state.
We distinguish 2 such states: s0 (“stuck at 0”) and s1 (“stuck at 1”). A
faulty component is described by a literal fault(NameComponent=State)
Names of components can be nested as in
nameSubSystem-nameComponent

adder(N,X,Y,Z,Sum,Carry):-
xorg(N-xor1,X,Y,S), xorg(N-xor2,Z,S,Sum),
andg(N-and1,X,Y,C1), andg(N-and2,X,S,C2),
org(N-or1,C1,C2,Carry).

xorg(N,X,Y,Z) :- xor(X,Y,Z).
xorg(N,0,0,1) :- fault(N=s1).
xorg(N,0,1,0) :- fault(N=s0).
xorg(N,1,0,0) :- fault(N=s0).
xorg(N,1,1,1) :- fault(N=s1).
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Abduction

xandg(N,X,Y,Z):- and(X,Y,Z).
xandg(N,0,0,1):- fault(N=s1). xandg(N,0,1,1) :- fault(N=s1).
xandg(N,1,0,1):- fault(N=s1). xandg(N,1,1,0) :- fault(N=s0).

org(N,X,Y,Z):- or(X,Y,Z).
org(N,0,0,1):- fault(N=s1). org(N,0,1,0) :- fault(N=s0).
org(N,1,0,0):- fault(N=s0). org(N,1,1,0) :- fault(N=s0).

diagnosis(Observation,Diagnosis):-
abduce(Observation,Diagnosis).

?-diagnosis(adder(a,0,0,1,0,1),D).
D = [fault(a-or1=s1),fault(a-xor2=s0)];
D = [fault(a-and2=s1),fault(a-xor2=s0)];
D = [fault(a-and1=s1),fault(a-xor2=s0)];
D = [fault(a-and2=s1),fault(a-and1=s1), fault(a-xor2=s0)];
D = [fault(a-xor1=s1)];
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Abduction

D = [fault(a-or1=s1),fault(a-and2=s0), fault(a-xor1=s1)];
D = [fault(a-and1=s1),fault(a-xor1=s1)];
D = [fault(a-and2=s0),fault(a-and1=s1), fault(a-xor1=s1)];

Minimal diagnoses are more plausible:

min_diagnosis(O,D) :-
diagnosis(O,D),
not(diagnosis(O,D1),proper_subset(D1,D)).

?-min_diagnosis(adder(a,0,0,1,0,1),D).
D = [fault(a-or1=s1),fault(a-xor2=s0)];
D = [fault(a-and2=s1),fault(a-xor2=s0)];
D = [fault(a-and1=s1),fault(a-xor2=s0)];
D = [fault(a-xor1=s1)];
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Inductive Logic Programming Introduction

Inductive logic programming (ILP)

Problem: Given
B background knowledge (theory, i.e. LP )

E+ positive examples (set of facts),
E− negative examples (set of facts),
Find a theory H (hypothesis) such that

∀p ∈ E+ · B ∪ H |= p
∀n ∈ E− · B ∪ H 6|= n

Of course, we assume that ∀e ∈ E+ ∪ E− · B 6|= e
Difference with abduction: H is a theory instead of a set of facts.
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Inductive Logic Programming Introduction

Relationship with learning

Concept learning tries to find a suitable concept in a description
space where descriptions are related via
generalization/specialization relationships. Examples are at the
“bottom” of the generalization hierarchy.
A concept is suitable if it covers (generalizes) all positive and none
of the negative examples.
Learning capabilities depend on the characteristics of the
description space: too rough makes learning impossible, too fine
leads to trivial concepts (e.g. when the description space supports
disjunction).
A well-known algorithm is Mitchell’s candidate elimination
algorithm where upper and lower bounds of possible solutions are
updated according to input examples.
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Inductive Logic Programming Introduction

ILP as concept learning

ILP as discussed here can be seen as concept learning where the
description space consists of LP’s. The generalization relationship
may be based on subsumption between clauses.
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Inductive Logic Programming Introduction

Example: learning append/3

?- induce_rlgg([
+append([1,2],[3,4],[1,2,3,4]),
+append([a],[],[a]),
+append([],[],[]),
+append([],[1,2,3],[1,2,3]),
+append([2],[3,4],[2,3,4]),
+append([],[3,4],[3,4]),
-append([a],[b],[b]),
-append([c],[b],[c,a]),
-append([1,2],[],[1,3])

], Clauses).
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Inductive Logic Programming Introduction

Example: learning append/3

RLGG of append([1,2],[3,4],[1,2,3,4]) and
append([a],[],[a]) is

append([X|Y],Z,[X|U]) :- [append(Y,Z,U)]
Covered example: append([1,2],[3,4],[1,2,3,4])
Covered example: append([a],[],[a])
Covered example: append([2],[3,4],[2,3,4])
RLGG of append([],[],[]) and append([],[1,2,3],[1,2,3]) is

append([],X,X) :- []
Covered example: append([],[],[])
Covered example: append([],[1,2,3],[1,2,3])
Covered example: append([],[3,4],[3,4])

Clauses = [(append([],X,X) :- []),
(append([X|Y],Z,[X|U]) :- [append(Y,Z,U)])]
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Inductive Logic Programming Generalizing clauses

generalizing clauses: θ-subsumption

Definition
A clause c1 θ-subsumes a clause c2 iff there exists a substitution θ
such that θc1 ⊆ c2 (c1 is “more general” or “more widely applicable”
thant c2).

Here clauses are seen as sets of (positive and negative) literals
(disjunctions).
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Inductive Logic Programming Generalizing clauses

θ-subsumption examples

The clause

element(X,V) :- element(X,Z)

θ-subsumes, using θ = {V→ [Y|Z]},
element(X,[Y|Z]) :- element(X,Z)

(i.e. θ “specializes” element(X,V) :- element(X,Z)).
The clause

a(X) :- b(X).

θ-subsumes (with θ identity)

a(X) :- b(X), c(X).

233 / 259



Inductive Logic Programming Generalizing clauses

θ-subsumption implementation

% (H1:- B1) subsumes (H2 :- B2)
theta_subsumes((H1:- B1),(H2 :- B2)):-
verify((grounded((H2:- B2)), H1=H2,subset(B1,B2))).
% H1=H2 creates substitution, note that H2 has no vars

grounded(Term):-
% instantiate vars in Term to terms of the form
% ’$VAR’(i) where i is different for each distinct
% var, first i=0, last = N-1
numbervars(Term,0,N).

verify(Goal) :- % prove without binding
not(not(call(Goal))).
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Inductive Logic Programming Generalizing clauses

θ-subsumption implementation

Example

?- theta_subsumes( (element(X,V):- []),
(element(X,V):- [element(X,Z)])).

yes.
?- theta_subsumes((element(X,a):- []),

(element(X,V):- [])).
no.
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Inductive Logic Programming Generalizing clauses

θ-subsumption vs. logical consequence

Theorem
If c1 θ-subsumes c2 then c1 |= c2

The reverse is not true:

a(X) :- b(X). % c1
p(X) :- p(X). % c2, tautology.

Here c1 |= c2 but there is no substitution θ such that θc1 ⊆ c2

Theorem
The set of (reduced) clauses form a lattice, i.e. a unique least general
generalization lgg(c1, c2) exists for any two clauses c1 and c2.

(a clause is reduced if it is minimal in the collection of equivalent
clauses)
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Inductive Logic Programming Generalizing clauses

generalizing 2 terms

Consider the terms

element(1,[1]). %a1
element(z,[z,y,x]). %a2
element(X,[X|Y]). % a3

a3 subsumes a1 using {X/1, Y/[]} and
a3 subsumes a2 using {X/z, Y/[y,x]}

Moreover, a3 is the least generalization, i.e. every other term that
θ-subsumes a1 and a2 also θ-subsumes a3.
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Inductive Logic Programming Generalizing clauses

anti_unify

:- op(600,xfx,’<-’). % to record (inverse) substitutions

anti_unify(Term1,Term2,Term):- % use accumulators S1, S2
anti_unify(Term1,Term2,Term,[],S1,[],S2).

anti_unify(Term1,Term2,Term1,S1,S1,S2,S2):-
Term1 == Term2,!.

anti_unify(Term1,Term2,V,S1,S1,S2,S2):-
subs_lookup(S1,S2,Term1,Term2,V), !. % already substituted

anti_unify(Term1,Term2,Term,S10,S1,S20,S2):-
nonvar(Term1), nonvar(Term2),
functor(Term1,F,N), functor(Term2,F,N),!,
functor(Term,F,N), % create F(X1,..,Xn)
anti_unify_args(N,Term1,Term2,Term,S10,S1,S20,S2).

% Create new variable V and substitutions V->Term1, V->Term2
anti_unify(Term1,Term2,
V, S10,[Term1<-V|S10], S20,[Term2<-V|S20]).
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% anti_unify_args(N,T1,T2,T,..):
% anti-unify first N arguments of T1, T2
anti_unify_args(0,Term1,Term2,Term,S1,S1,S2,S2).
anti_unify_args(N,Term1,Term2,Term,S10,S1,S20,S2):-
N>0,N1 is N-1,
arg(N,Term1,Arg1), arg(N,Term2,Arg2), arg(N,Term,ArgN),
anti_unify(Arg1,Arg2,ArgN,S10,S11,S20,S21),
anti_unify_args(N1,Term1,Term2,Term,S11,S1,S21,S2).

% subs_lookup(+subst1,+subst2,+term1,+term2,-var)
% subst1(V) = term1, subst2(V) = term2
subs_lookup([T1<-V|Subs1],[T2<-V|Subs2],Term1,Term2,V):-
T1 == Term1, T2 == Term2,!.

subs_lookup([S1|Subs1],[S2|Subs2],Term1,Term2,V):-
subs_lookup(Subs1,Subs2,Term1,Term2,V).

Example

?- anti_unify(2*2=2+2,2*3=3+3,T,[],S1,[],S2).
T = 2 * _G191 = _G191 + _G191
S1 = [2 <- _G191]
S2 = [3 <- _G191]
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generalizing 2 clauses (1/2)

theta_lgg((H1:-B1),(H2:-B2),(H:-B)):-
anti_unify(H1,H2,H,[],S10,[],S20),
theta_lgg_bodies(B1,B2, [],B, S10,S1, S20,S2).

% theta_lgg_bodies considers each pair of literals
% from both bodies
theta_lgg_bodies([],B2,B,B,S1,S1,S2,S2).
theta_lgg_bodies([Lit|B1],B2, B0,B, S10,S1, S20,S2):-
theta_lgg_literal(Lit,B2, B0,B00, S10,S11, S20,S21),
theta_lgg_bodies(B1,B2, B00,B, S11,S1, S21,S2).
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generalizing 2 clauses (2/2)

% theta_lgg_literal anti-unifies Lit1 with each
% literal in 2nd arg
theta_lgg_literal(Lit1,[], B,B, S1,S1, S2,S2).
theta_lgg_literal(Lit1,[Lit2|B2], B0,B, S10,S1, S20,S2):-
same_predicate(Lit1,Lit2),
anti_unify(Lit1,Lit2,Lit,S10,S11,S20,S21),
theta_lgg_literal(Lit1,B2,[Lit|B0],B,S11,S1,S21,S2).

theta_lgg_literal(Lit1,[Lit2|B2],B0,B,S10,S1,S20,S2):-
not(same_predicate(Lit1,Lit2)),
theta_lgg_literal(Lit1,B2,B0,B,S10,S1,S20,S2).

same_predicate(Lit1,Lit2) :-
functor(Lit1,P,N),
functor(Lit2,P,N).
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theta_lgg example

Example

?- theta_lgg(
(element(c,[b,c]):- [

element(c,[c])
]),

(element(d,[b,c,d]):- [
element(d,[c,d]),
element(d,[d])
]),

C).
C = element(X, [b, c|Y]):- [element(X,[X]), element(X,[c|Y])]
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theta_lgg example

Example

?- theta_lgg(
(reverse([2,1],[3],[1,2,3]):- [

reverse([1],[2,3],[1,2,3])
]),

(reverse([a],[],[a]) :- [
reverse([],[a],[a])
]),

C).
C = reverse([X|Y], Z, [U|V]) :- [reverse(Y, [X|Z], [U|V])]
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a bottom-up induction algorithm

Definition
The relative least general generalization rlgg(e1,e2,M) of two positive
examples relative to a (partial) model M is defined by

rlgg(e1,e2,M) = lgg((e1 : −M∧), (e2 : −M∧))
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a bottom-up induction algorithm: example

append([1,2],[3,4],[1,2,3,4]). append([a],[],[a]).
append([],[],[]). append([2],[3,4],[2,3,4]).

the rlgg on the first 2 examples is determined using

?- theta_lgg(
(append([1,2],[3,4],[1,2,3,4]) :- [

append([1,2],[3,4],[1,2,3,4]),
append([a],[],[a]),
append([],[],[]),
append([2],[3,4],[2,3,4])
]),

(append([a],[],[a]):- [
append([1,2],[3,4],[1,2,3,4]),
append([a],[],[a]),
append([],[],[]),
append([2],[3,4],[2,3,4])
]),

C), write_ln(C).
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example: result
append([X|Y], Z, [X|U]) :- [
append([2], [3, 4], [2, 3, 4]),
append(Y, Z, U),
append([V], Z, [V|Z]),
append([K|L], [3, 4], [K, M, N|O]),
append(L, P, Q),
append([], [], []),
append(R, [], R),
append(S, P, T),
append([A], P, [A|P]),
append(B, [], B),
append([a], [], [a]),
append([C|L], P, [C|Q]),
append([D|Y], [3, 4], [D, E, F|G]),
append(H, Z, I),
append([X|Y], Z, [X|U]),
append([1, 2], [3, 4], [1, 2, 3, 4])
]

too complex!
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constrained clauses

We remove:
ground facts (examples) are redundant
literals involving variables not occurring in the head: i.e. we
restrict to constrained clauses.

The example result then becomes:

append([X|Y], Z, [X|U]) :-
append(Y, Z, U), append([X|Y], Z, [X|U]).

The head is part of the body: it can also be removed if we restrict to
strictly constrained clauses where the variables in the body are a strict
subset of the variables in the head.
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computing the rlgg

% rlgg(E1,E2,M,C): C is RLGG of E1 and E2 relative to M
rlgg(E1,E2,M,(H:- B)):-
anti_unify(E1,E2,H,[],S10,[],S20),
varsin(H,V), % determine variables in head of clause
rlgg_bodies(M,M,[],B,S10,S1,S20,S2,V).

% rlgg_bodies(B0,B1,BR0,BR,S10,S1,S20,S2,V): rlgg all
% literals in B0 with all literals in B1, yielding BR
% containing only vars in V
rlgg_bodies([],B2,B,B,S1,S1,S2,S2,V).
rlgg_bodies([L|B1],B2,B0,B,S10,S1,S20,S2,V):-
rlgg_literal(L,B2,B0,B00,S10,S11,S20,S21,V),
rlgg_bodies(B1,B2,B00,B,S11,S1,S21,S2,V).
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rlgg_literal(L1,[],B,B,S1,S1,S2,S2,V).
rlgg_literal(L1,[L2|B2],B0,B,S10,S1,S20,S2,V):-
same_predicate(L1,L2),
anti_unify(L1,L2,L,S10,S11,S20,S21),
varsin(L,Vars),
var_proper_subset(Vars,V), % no new variables in literal
!,
rlgg_literal(L1,B2,[L|B0],B,S11,S1,S21,S2,V).

rlgg_literal(L1,[L2|B2],B0,B,S10,S1,S20,S2,V):-
rlgg_literal(L1,B2,B0,B,S10,S1,S20,S2,V).
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varsin/2

% varsin(+term,-list) list is list of
% variables occurring in term
varsin(Term,Vars):-
varsin(Term,[],V), sort(V,Vars).

varsin(V,Vars,[V|Vars]):-
var(V).

varsin(Term,V0,V):-
functor(Term,F,N),
varsin_args(N,Term,V0,V).

% varsin_args(N,T,V0,V) add vars in first
% N args of T to V0, yielding V
varsin_args(0,Term,Vars,Vars).
varsin_args(N,Term,V0,V):-
N>0, N1 is N-1,
arg(N,Term,ArgN),
varsin(ArgN,V0,V1),
varsin_args(N1,Term,V1,V).
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var_remove_one/3, var_proper_subset/2

var_remove_one(X,[Y|Ys],Ys) :-
X == Y.

var_remove_one(X,[Y|Ys],[Y|Zs) :-
var_remove_one(X,Ys,Zs).

var_proper_subset([],Ys) :-
Ys \= [].

var_proper_subset([X|Xs],Ys) :-
var_remove_one(X,Ys,Zs),
var_proper_subset(Xs,Zs).
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rlgg
Example

?- rlgg(
append([1,2],[3,4],[1,2,3,4]),
append([a],[],[a]),
[
append([1,2],[3,4],[1,2,3,4]),
append([a],[],[a]),
append([],[],[]),
append([2],[3,4],[2,3,4])
],
(H:- B)).

append([X|Y], Z, [X|U]) :- [
append([2], [3, 4], [2, 3, 4]),
append(Y, Z, U),
append([], [], []),
append([a], [], [a]),
append([1, 2], [3, 4], [1, 2, 3, 4])
]
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main algorithm

construct rlgg of two examples
remove positive examples that are covered by the resulting clause
remove further literals (generalizing the clause) as long as the
clause does not cover any negative examples
based on GOLEM system (Muggleton & Feng, 1990)
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induce_rlgg implementation

induce_rlgg(Exs,Clauses):-
pos_neg(Exs,Poss,Negs),
bg_model(BG), append(Poss,BG,Model),
induce_rlgg(Poss,Negs,Model,Clauses).

% induce_rlgg(+pos_exs,+neg_exs,+model,-clauses)
induce_rlgg(Poss,Negs,Model,Clauses):-
covering(Poss,Negs,Model,[],Clauses).

% pos_neg(+exs,-poss,-negs) split
% positive and negative examples
pos_neg([],[],[]).
pos_neg([+E|Exs],[E|Poss],Negs):-
pos_neg(Exs,Poss,Negs).

pos_neg([-E|Exs],Poss,[E|Negs]):-
pos_neg(Exs,Poss,Negs).
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% covering(+pos_exs, +neg_exs, +model,+old_hypothesis,
% -new_hypothesis): construct new_hypothesis
% covering all of pos_exs and none of the neg_exs
covering(Poss,Negs,Model,Hyp0,NewHyp) :-
construct_hypothesis(Poss,Negs,Model,Hyp), !,
remove_pos(Poss,Model,Hyp,NewPoss),
% cover remaining posexs
covering(NewPoss,Negs,Model,[Hyp|Hyp0],NewHyp).

covering(P,N,M,H0,H) :-
append(H0,P,H). % add uncovered exs to hypothesis

% remove_pos(+old_pos_exs,+model,+clause,-new_pos_ex)
% remove posexs that are covered by clause + model,
% yielding new_pos_ex
remove_pos([],M,H,[]).
remove_pos([P|Ps],Model,Hyp,NewP) :-
covers_ex(Hyp,P,Model), !,
write(’Covered example: ’), write_ln(P),
remove_pos(Ps,Model,Hyp,NewP).

remove_pos([P|Ps],Model,Hyp,[P|NewP]):-
remove_pos(Ps,Model,Hyp,NewP).
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% covers_ex(+clause,+example,+model):
% example is covered by clause
covers_ex((Head:- Body),Example,Model):-
verify(
(Head=Example, forall(element(L,Body),element(L,Model))
)).

% construct_hypothesis(+pos_exs,+neg_exs,+model,-clause)
construct_hypothesis([E1,E2|Es],Negs,Model,Clause):-
write(’RLGG of ’), write(E1),
write(’ and ’), write(E2), write(’ is’),

rlgg(E1,E2,Model,Cl),
reduce(Cl,Negs,Model,Clause), !,
nl,tab(5), write_ln(Clause).

construct_hypothesis([E1,E2|Es],Negs,Model,Clause):-
write_ln(’ too general’),
construct_hypothesis([E2|Es],Negs,Model,Clause).
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% reduce(+old_clause,+neg_exs,+model,-new_clause)
% remove redundant literals from body and ensure
% that no negexs are covered
reduce((H:- B0),Negs,M,(H:-B)):-
% remove literals of M from B0, giving B1
setof0(L, (element(L,B0), not(var_element(L,M))), B1),
% body B consists of literals from B1 that are necessary
% not to cover negative examples
reduce_negs(H,B1,[],B,Negs,M).

% covers_neg(+clause,+negs,+model,-n)
% n negative example from negs covered by clause + model
covers_neg(Clause,Negs,Model,N):- element(N,Negs),
covers_ex(Clause,N,Model).
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% reduce_negs(+H,+In,+B0,-B,+Negs,+Model)
% B is B0 + subsequence of In such that (H:- B) + Model
% does not cover elements of Negs
reduce_negs(H,[L|Rest],B0,B,Negs,Model):-
% try removing L
append(B0,Rest,Body),
not(covers_neg((H:- Body),Negs,Model,N)), !,
reduce_negs(H,Rest,B0,B,Negs,Model).

reduce_negs(H,[L|Rest],B0,B,Negs,Model):-
% L cannot be removed
reduce_negs(H,Rest,[L|B0],B,Negs,Model).

reduce_negs(H,[],Body,Body,Negs,Model):-
not(covers_neg((H:- Body),Negs,Model,N)).

var_element(X,[Y|Ys]):-
X == Y. % syntactic identity

var_element(X,[Y|Ys]):-
var_element(X,Ys).
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further developments

Top-down (specializing) induction: cfr. book, section 9.3
Application examples:

I scientific discovery: e.g. predicting 3-dimensional shape of proteins
from their amino acid sequence

I data mining; this may use a probabilistic semantics
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