
A Taste of Function Programming Using Haskell
DRAFT

D. Vermeir

August 29, 2007

1 / 60

Introduction

1 Introduction
2 Expressions, Values, Types

User Defined Types
Built-in types

3 Functions
Defining Functions
Laziness and Infinite Data Structures
Case Expressions and Pattern Matching

4 Type Classes and Overloading
5 Monads

Debuggable Functions
Stateful Functions
Monads
Maybe Monad
The IO Monad

6 Epilogue

2 / 60

Introduction

What is Haskell?

Haskell is a lazy pure functional programming language.

functional because the evaluation of a program is equivalent to
evaluating a function in the pure mathematical sense;
also there are no variables, objects, .. Other functional
languagues include Lisp, Scheme, Erlang, Clean, ML,
OCaml, . . .

pure because it does not allow side effects (that affect the
“state of the world”). One benefit is referential
transparency. This makes Haskell also a declarative
language.

lazy (aka ’non-strict’) because expressions that are not
needed for the result are not evaluated. This allows e.g.
to support infinite datastructures.

3 / 60

Expressions, Values, Types

1 Introduction
2 Expressions, Values, Types

User Defined Types
Built-in types

3 Functions
Defining Functions
Laziness and Infinite Data Structures
Case Expressions and Pattern Matching

4 Type Classes and Overloading
5 Monads

Debuggable Functions
Stateful Functions
Monads
Maybe Monad
The IO Monad

6 Epilogue

4 / 60

Expressions, Values, Types

Precedence

f g 5 = ((f g) 5)

function application (f g) has higher precedence than any infix
operator

f 1 + g 3 -- (f 1) + (g 3)

Infix operators can be (left/right/non) associative and have a
precedence between 0 (low) and 9 (high).

prec left non right
9 !! .
8 ^, ^^, **
7 *, /, ‘div‘, ‘mod‘,

‘rem‘, ‘quot‘
6 +, -
5 :, ++
4 ==, /=, <, <=, >, >=,

‘elem‘, ‘notElem‘
3 &&
2 ||
1 >>=, >>
0 $, $!, ‘seq‘

5 / 60

Expressions, Values, Types

Expressions and Values

Computation is done via the evaluation of expressions
(syntactic terms) yielding values (abstract entities, answers).
All values are “first class”.

denotes
expression value
5 5
’a’ ′a′

[1,2,3] the list 1, 2, 3
(’b’, 4) the pair 〈′b′, 4〉
’\x -> x+1’ the function x → x + 1
e.g. 1/0 ⊥

6 / 60

Expressions, Values, Types

Values and Types

Every value has an associated type. Types are denoted
by type expressions. Intuitively, a type describes a set of
values. Haskell is statically typed: the compiler will catch
type errors.

expression value type (expression)
5 5 Integer

’a’ ′a′ Char

[1,2,3] the list 1, 2, 3 [Integer]

(’b’, 4) the pair 〈′b′, 4〉 (Char,Integer)

’\x -> x+1’ the function x → x + 1 Integer -> Integer

7 / 60

Expressions, Values, Types

Declarations

inc :: Integer -> Integer -- a type declaration
inc n = n + 1 -- a function equation

8 / 60

Expressions, Values, Types

Polymorphic Types

Polymorphic type expressions are universally quantified
over types. They describe families of types.

∀α · [α] describes all types of the form “list of α” for some type α.
length computes the length of any (homogeneous) list.

length :: [a] -> Integer
length [] = 0 -- pattern matching on argument
length (x:xs) = 1 + length xs -- ’:’ is ’cons’

Example usage:

length [1,2,3] -- 3
length [’a’,’b’,’c’] -- 3
length [[1],[2],[3]] -- 3

9 / 60

Expressions, Values, Types

More Polymorphic List Functions

head :: [a] -> a
head (x:xs) = x -- error if no match, e.g. for empty list

tail :: [a] -> [a]
tail (x:xs) = xs

10 / 60

Expressions, Values, Types

Type Hierarchy

A value may have several types, e.g. [’a’,’b’]::[Char] and
[’a’,’b’]::[a].
Every well-typed expression is guaranteed to have a unique
principal type, i.e. the least general type that, intuitively, contains
all instances of the expression. For example, the principal type of
head is [a]->a, although e.g. a and [b]->a are also types for head.
The principal type of a well-typed expression can be inferred
automatically.
⊥ is shared by all types

11 / 60

Expressions, Values, Types User Defined Types

User Defined Types

data Bool = False | True

The type Bool has exactly two values: True and False. Type Bool

is an example of a (nullary) type constructor, and True and False

are (also nullary) (data) constructors.

-- another sum (disjoint union) type
data Color = Red | Green | Blue | Indigo | Violet

12 / 60

Expressions, Values, Types User Defined Types

User Defined Polymorphic Types

A tuple (Cartesian product) type with just one binary (data)
constructor with type Pt:: a -> a -> Point a.

data Point a = Pt a a

Note that Point is also polymorphic: Point t is a type for any type
t.

Pt 2.0 3.0 :: Point Float
Pt ’a’ ’b’ :: Point Char
Pt True False :: Point Bool
-- Pt 1 ’a’ is ill-typed

Since the namespaces for type constructors (Point) and data
constructors (Pt) are separate, one can use the same name for
both.

data Point a = Point a a

13 / 60

Expressions, Values, Types User Defined Types

User Defined Recursive Types

A tree is either a leaf (with a label of type a) or an internal node
with two subtrees.

data Tree a = Leaf a | Branch (Tree a) (Tree a)

The types of the (data) constructors:

Branch :: Tree a -> Tree a -> Tree a
Leaf :: a -> Tree a

A function to compute the list of leaf contents:

fringe :: Tree a -> [a]
fringe (Leaf x) = [x]
fringe (Branch left right) = fringe left ++ fringe right
-- ++ is list concatenation

14 / 60

Expressions, Values, Types User Defined Types

Type Synonyms

A type synonym defines an abbreviation for a type.

type String = [Char]
type Person = (Name,Address)
type Name = String
data Address = None | Addr String

type AssocList a b = [(a,b)]

15 / 60

Expressions, Values, Types Built-in types

Built-in types are not special

(Apart from the syntax). Examples:
lists:

data [a] = [] | a : [a]

which yields the following types for the list constructors:

[] :: [a]
: :: a->[a]->[a].

characters:

data Char = ’a’ | ’b’ | ’c’ | ... -- This is not valid
| ’A’ | ’B’ | ’C’ | ... -- Haskell code!
| ’1’ | ’2’ | ’3’ | ...
...

16 / 60

Expressions, Values, Types Built-in types

List Comprehension

The list of all f (x) such that x comes from xs:

[f x | x <- xs] -- ’x <- xs’ is the ’generator’
[(x,y) | x <- xs, y <- ys] -- 2 generators
[(x,y) | x <- [1,2], y <- [3,4]]
-- [(1,3),(1,4),(2,3),(2,4)]

Extra conditions (guards) are also possible:

quicksort [] = []
quicksort (x:xs) = quicksort [y | y <- xs, y<x]

++ [x]
++ quicksort [y | y <- xs, y>=x]

17 / 60

Functions

1 Introduction
2 Expressions, Values, Types

User Defined Types
Built-in types

3 Functions
Defining Functions
Laziness and Infinite Data Structures
Case Expressions and Pattern Matching

4 Type Classes and Overloading
5 Monads

Debuggable Functions
Stateful Functions
Monads
Maybe Monad
The IO Monad

6 Epilogue

18 / 60

Functions Defining Functions

User Defined Functions

Use “currying” (i.e. consider a function f : A×B → C as a function
f ′ : A → (B → C) where f (a, b) = f ′(a)(b)):

add :: Integer -> Integer -> Integer
add x y = x + y

Because of currying, partial application is supported:

inc = add 1 -- or (+1)

Example:

map :: (a->b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs
-- precedence: (f x) : (map f xs)

map (add 1) [1,2,3] -- [2,3,4]

19 / 60

Functions Defining Functions

Anonymous Functions

Using lambda expressions:

inc x = x+1
add x y = x+y

is really shorthand for

inc = \x -> x+1
add = \x -> \y -> x+y -- or \x y -> x+y

20 / 60

Functions Defining Functions

Infix Operators are Functions

Function composition (.)

(.) :: (b->c) -> (a->b) -> (a->c)
f . g = \ x -> f (g x) -- high precedence
f . h . g 1 -- f (h.g 1) = (f (h (g 1)))
-- but function application (’ ’) has higher precedence
-- than any infix operator
bind f . h x -- (bind f) (h (x))

Function application ($)

($) :: (a->b) -> a -> b
f $ x = f x -- low precedence
f h $ g 1 -- (f h) (g 1), not (((f h) g) 1)

21 / 60

Functions Laziness and Infinite Data Structures

Functions are Non-Strict

bot = bot -- denotes ⊥
const1 x = 1
const1 bot -- value is 1, not ⊥

Lazy Evaluation
An expression is not evaluated until it is needed (and then only the
parts that are needed are evaluated).

Haskell Stores Definitions, not Values

v = 1/0 -- define (not compute) v as 1/0

22 / 60

Functions Laziness and Infinite Data Structures

Infinite Data Structures

ones = 1 : ones -- an infinite list of 1’s
numsFrom n = n : numsFrom (n+1) -- n, n+1, ...
squares = map (^2) (numsFrom 0) -- 0, 1, 4, 9, ...

Zip

zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip xs ys = []

Fibonacci Sequence

fib = 1 : 1 : [a + b | (a,b) <- zip fib (tail fib)]
-- fib = 1 1 2 3 5 8 ..

23 / 60

Functions Case Expressions and Pattern Matching

Pattern Matching

Using constructors of any type, formal parameters or wild cards.

f :: ([a], Char, (Int, Float), String, Bool) -> Bool
f ([], ’b’, (1,2.0), "hi", _) = False -- last one is wild card
f (_, _, (2,4.0), "", True) = True
f (x, _, (2,4.0), "", y) = length x > 0 || y -- formal pars
-- only 1 occurrence of same formal parameter in pattern

Semantics
if match

succeeds: bind formal parameter
fails: try next pattern

diverges: (⊥): return ⊥

24 / 60

Functions Case Expressions and Pattern Matching

Pattern Matching with Guards

-- Guards are tested after the corresponding pattern
-- Only one matching pattern is tried
sign 0 | True = 0 -- contrived, don’t move to the end
sign x | x > 0 = 1

| x < 0 = -1
| otherwise = -1 -- otherwise is True

Common Where Clause

isBright c | r == 255 = True
| g == 255 = True
| b == 255 = True
| otherwise = False

where (r,g,b) = color2rgb c

25 / 60

Functions Case Expressions and Pattern Matching

take1, take2

take1 0 _ = []
take1 _ [] = []
take1 n (x:xs) = x : take1 (n-1) xs

take2 _ [] = []
take2 0 _ = []
take2 n (x:xs) = x : take2 (n-1) xs

different results

take1 0 bot -- []
take2 0 bot -- ⊥
take1 bot [] -- ⊥
take2 bot [] -- []

26 / 60

Functions Case Expressions and Pattern Matching

Syntax Case Expressions
case (e1, .. , en) of
(p1,1, .. , p1,n) -> r1

(p2,1, .. , p2,n) -> r2

...

(pm,1, .. , pm,n) -> rm

where pi,j are patterns.

if .. then .. else
if (e1) then e2 else e3

is short for
case (e1) of
True -> e2

False -> e3

27 / 60

Functions Case Expressions and Pattern Matching

Pattern Matching is a Case Expression

f p1,1, .. , p1,n = e1

f p2,1, .. , p2,n = e2

...

f pm,1, .. , pm,n = em

is equivalent to
f x1 x2 .. xn = case (x1 x2 .. xn) of
(p1,1, .. , p1,n) -> e1

(p2,1, .. , p2,n) -> e2

...

(pm,1, .. , pm,n) -> em

28 / 60

Type Classes and Overloading

1 Introduction
2 Expressions, Values, Types

User Defined Types
Built-in types

3 Functions
Defining Functions
Laziness and Infinite Data Structures
Case Expressions and Pattern Matching

4 Type Classes and Overloading
5 Monads

Debuggable Functions
Stateful Functions
Monads
Maybe Monad
The IO Monad

6 Epilogue

29 / 60

Type Classes and Overloading

Restricted Polymorphism

List Membership

-- x ‘elem‘ list iff x appears in list
x ‘elem‘ [] = False
x ‘elem‘ (y:ys) = x == y || (x ‘elem‘ ys)

Type of ‘elem‘
One would expect: elem:: a -> [a] -> Bool but this would imply
(==):: a -> a -> Bool but == may not be defined on some types!
Thus elem:: a -> [a] -> Bool only for a where
(==):: a -> a -> Bool is defined.

30 / 60

Type Classes and Overloading

Type Classes

Class Eq

-- A type ’a’ is an instance of the class Eq iff
-- there is an appropriate overloaded operation == defined on it
class Eq a where
(==) :: a -> a -> Bool

Context with Type Expressions

-- (Eq a) is the context
(==) :: (Eq a) => a -> a -> Bool
elem :: (Eq a) => a -> [a] -> Bool

31 / 60

Type Classes and Overloading

Instances of Type Classes

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x==y) -- default method

Integer is an instance of Eq

instance Eq Integer where
x == y = x ‘integerEq‘ y -- integerEq is primitive

Tree may be an instance of Eq

instance (Eq a) => Eq (Tree a) where -- context!
Leaf a == Leaf b = a == b
(Branch l1 r1) == (Branch l2 r2) = (l1 == l2) && (r1 == r2)
_ == _ = False

32 / 60

Type Classes and Overloading

Class Extension or (Multiple) Inheritance

Ord is a Subclass of Eq

class (Eq a) => Ord a where
(<), (<=), (>=), (>) :: a -> a -> Bool
max, min :: a -> a -> a

-- example: type of quicksort
quicksort :: (Ord a) => [a] -> [a]

C is a Subclass of Ord and Show

class (Eq a, Show a) => C a where
...

33 / 60

Monads

1 Introduction
2 Expressions, Values, Types

User Defined Types
Built-in types

3 Functions
Defining Functions
Laziness and Infinite Data Structures
Case Expressions and Pattern Matching

4 Type Classes and Overloading
5 Monads

Debuggable Functions
Stateful Functions
Monads
Maybe Monad
The IO Monad

6 Epilogue

34 / 60

Monads Debuggable Functions

Example Problem

f,g :: Int -> Int

Adding debug info

-- debuggable versions of f, g
f’,g’ :: Int -> (Int,String)

Debug info for f.g

x

"g’."
"g’.f’."

f’g’

++
"f’."

35 / 60

Monads Debuggable Functions

A Complex Solution

x f’g’

++

y

s t

z

s++t

Debug info for f.g

f’,g’ :: Int -> (Int,String)

gThenF :: Int -> (Int,String)
gThen F x = let (y,s) = g’ x

(z,t) = f’ y in (z,s++t)

This quickly becomes complicated (e.g. with 3 functions)!

36 / 60

Monads Debuggable Functions

Introducing bind

Debug info for f.g

f’,g’ :: Int -> (Int,String)

We would like a function bind such that bind f’ . g’ is debuggable.

bind requirements
bind f’ must accept output from g’ as input

bind f’ :: (Int,String) -> (Int,String)

and thus

bind :: ((Int -> (Int,String)) -> (Int,String) -> (Int,String)

37 / 60

Monads Debuggable Functions

Solution using bind

x f’g’

++

y

s t

z

s++t

bind f’

bind :: ((Int -> (Int,String)) -> (Int,String) -> (Int,String)
bind f’ (gx,gs) = let (fx,fs) = f’ gx in (fx,gs++fs)

For 3 functions: bind h’ . bind f’ . g’ etc.
We write g’ >>= f’ (low precedence) for bind f’ . g’.

38 / 60

Monads Debuggable Functions

Combining normal functions with debuggable ones
We want a function unit such that unit . h becomes debuggable for
any “normal” h :: Int -> Int.

Requirements for unit

h :: Int -> Int
unit . h :: Int -> (Int, String)
-- and thus
unit :: Int -> (Int, String)

Solution for unit

unit :: Int -> (Int, String)
unit x = (x, "")

lift :: (Int -> Int) -> Int -> (Int,String)
lift f = unit . f

39 / 60

Monads Debuggable Functions

Theorem
unit >>= f’ = f’

Proof.

unit >>= f′

= bind f′.unit
= λx → bind f′(unit x)

= λx → bind f′(x , ””)

= λx → (λ(u, v) → let (y , s) = f′u in (y , v ++s))(x , ””)

= λx → (let (y , s) = f′x in (y , ”” ++s))

= λx → (let (y , s) = f′x in (y , s))

= λx → f′x
= f′

40 / 60

Monads Debuggable Functions

Theorem
(f’ >>= unit) = f’

Proof.

f′ >>= unit
= bind unit .f′

= λx → bind unit (f′x)

= λx → (λ(u, v) → let (y , s) = unit u in (y , v ++s))(f′x)

= λx → (λ(u, v) → let (y , s) = (u, ””) in (y , v ++s))(f′x)

= λx → (λ(u, v) → (u, v ++””))(f′x)

= λx → (λ(u, v) → (u, v))(f′x)

= λx → f′x
= f′

41 / 60

Monads Debuggable Functions

Theorem
(lift g >>= lift f) = lift (f.g)

Proof.

lift g >>= lift f
= bind (lift f).lift g
= λx → bind (lift f)(lift g x)

= λx → bind (unit.f)(unit.g x)

= λx → bind (unit.f)(gx , ””)

= λx → (λ(u, v) → let (y , s) = unit.f u in (y , v ++s))(gx , ””)

= λx → let (y , s) = unit.f (gx) in (y , ”” ++s)

= λx → let (y , s) = (f (gx), ””) in (y , s)

= λx → (f .g x , ””)

= λx → unit.(f .g) x = unit.(f .g) = lift f .g

42 / 60

Monads Stateful Functions

Stateful Functions

A function g: a -> b that uses and updates a state has type.

g :: a -> s -> (b,s)
-- g(input, oldState) = (output, newState)

Another way of looking at such functions ’hides’ the part involving the
state(s).

Hiding the state part
g :: a -> s -> (b, s)

g(input) :: oldState -> (output, newState)

43 / 60

Monads Stateful Functions

Combining Stateful Functions

How to run two such functions f and g, where f consumes the result of
g and uses the state as it was left by g.

gThenF (g;f in C)
g :: a -> s -> (b, s)

f :: b -> s -> (c, s)

gThenF :: (a -> s -> (b,s)) -> (b -> s -> (c,s)) ->

a -> s -> (c, s)

gThenF g f a = \s ->
let (gOut, s’) = g a s
in f gOut s’

Becomes complicated when composing many such functions.

44 / 60

Monads Stateful Functions

Combining Stateful Functions using Bind

bind requirements

fg

bind f . g

s

a c

s’’s’

b

bind f . g a :: s -> (s, c)
bind f . g :: a -> s -> (s,c)
-- g :: a -> (s -> (b,s))
bind f :: (s -> (b,s)) -> s -> (s,c)
-- f :: b -> (s -> (c,s))
bind :: (b -> (s -> (c,s))) -> ((s -> (b,s)) -> s -> (s,c))

45 / 60

Monads Stateful Functions

Bind Implementation

fg

bind f . g

s

a c

s’’s’

b

bind :: (b -> (s -> (c,s))) -> ((s -> (b,s)) -> s -> (s,c))
bind f ga = \s ->

let (b, s’) = ga s
in f b s’

46 / 60

Monads Stateful Functions

bind :: (b -> (s -> (c,s))) -> ((s -> (b,s)) -> s -> (s,c))
bind f ga = \s ->

let (b, s’) = ga s
in f b s’

it works

bind f . g a
= bind f (g a)
= \s -> let (b, s’) = (g a) s in f b s’

example

h :: c -> s -> (d,s)
bind h . bind f . g a :: s -> (d,s)
-- we write g >>= f for bind f . g
(g >>= f >>= h) a s

47 / 60

Monads Stateful Functions

Combining normal functions with stateful ones
We want a function unit such that e.g. unit . h becomes stateful for
any “normal” h :: a -> a.

Requirements for unit

h :: a -> a
unit . h :: a -> s -> (a, s)
-- and thus
unit :: a -> s -> (a, s)

Solution for unit

unit :: a -> s -> (a, s)
unit xa = \s -> (xa, s)

lift :: (a -> a) -> a -> s -> (a,s)
lift h = unit . h

48 / 60

Monads Stateful Functions

Example Use of Unit

g
s

a

s’

b
unit.h

f
s’’

b’

s’

c
h

g :: a -> s -> (b,s)
h :: b -> b
f :: b -> s -> (c,s)
-- lift h :: b -> s -> (b,s)
(g >> lift h >> f) a s

49 / 60

Monads Monads

Generalizing the examples

type Debuggable a = (a, String)
type State a = s -> (a, s) -- assume s is known
type M a = .. -- in general

How to “apply” a function f:: a -> M b to a value of type M a?

Answer: Bind, Unit

bind :: (a -> M b) -> (M a -> M b)
f :: a -> M b
g :: a -> M a
-- apply f to (result of) g
bind f . g :: a -> M b
unit :: a -> M a

where
bind g .unit ≡ bind unit.g ≡ g

50 / 60

Monads Monads

Monads

data M a = .. -- in general
bind :: (a -> M b) -> (M a -> M b)
unit :: a -> M a

infixl 1 >>= -- infix, right-associative, prec. 1 (low)
(>>=) :: M a -> (a -> M b) -> M b
ma >>= f = bind f ma -- in our examples

return :: a -> M a
return = unit -- in our examples

where
return a >>= f = f a

ma >>= return = ma

ma >>= (\x -> f x >>= h) = (ma >>= f) >>= h

51 / 60

Monads Monads

The Monad Class

infixl 1 >>=, >>
class Monad M where -- approximation of ’real’ definition
(>>=) :: M a -> (a -> M b) -> M b
(>>) :: M a -> M b -> M b
return :: a -> M a -- inject a value into the monad

ma >> mb = ma >>= _ -> mb -- ’ignore (result of) ma’

Special Monad Syntax (Informal)
do e1; e2 = e1 >> e2 imperative style
do p <- e1; e2 = e1 >>= \p -> e2 e2 probably uses p

52 / 60

Monads Maybe Monad

The Maybe type
A Maybe value represents a “real” value (Just a) or ’no value’
(Nothing).

data Maybe a = Nothing | Just a

Code to avoid

e :: Maybe a
f :: a -> Maybe a
case e of
Nothing -> Nothing
Just x -> f x

53 / 60

Monads Maybe Monad

Maybe Monad

instance Monad Maybe where
Nothing >>= f = Nothing
(Just x) >>= f = f x
return = Just

Code to avoid

e :: Maybe a
f :: a -> Maybe a
case e of
Nothing -> Nothing
Just x -> f y

.. becomes

e >>= f -- will not call f unless ..

54 / 60

Monads The IO Monad

I/O conflicts with lazy evaluation

Side effects (e.g. I/O) update the state of the “world”, we want to
ensure the order of the I/O operations.

The IO Monad is much like the State Monad

type IO a = World -> (World, a)

IO a
A value x:: IO a represents an action that, when performed, does
some I/O before delivering a value of type a

World

a

World
IO a

55 / 60

Monads The IO Monad

getChar, putChar
Read/write a single character.

getChar :: IO Char
putChar :: Char -> IO () -- returns trivial value ()

IO bind

(>>=) :: IO a -> (a -> IO b) -> IO b

echo :: IO()
echo = getChar >>= putChar -- a = Char, b = ()

World

echo :: IO ()

getChar::IO Char

()

putChar::IO ()

Char

World World

56 / 60

Monads The IO Monad

echo; echo

(>>=) :: IO a -> (a -> IO b) -> IO b
-- echo :: IO ()
echo >>= echo -- ERROR: 2nd echo should be function () -> IO ()

(>>) :: IO a -> IO b -> IO b -- throw away ’result’ first argument
(>>) a1 a2 = a1 >>= (\x -> a2)

echo >> echo -- OK, read ’>>’ as ’then’

return

return :: a -> IO a

World

a

World

a

return a

(return a):: IO a

57 / 60

Monads The IO Monad

get2Chars

get2Chars :: IO (Char, Char)

get2Chars = getChar >>= \c1 ->
(getChar >>= (\c2 -> return (c1,c2)))

The world behaves as expected
Since >>= is the only function ’touching’ the world, the ’world’ is never
duplicated or thrown away and getChar and putChar can be
implemented by performing the operation right away.

58 / 60

Epilogue

1 Introduction
2 Expressions, Values, Types

User Defined Types
Built-in types

3 Functions
Defining Functions
Laziness and Infinite Data Structures
Case Expressions and Pattern Matching

4 Type Classes and Overloading
5 Monads

Debuggable Functions
Stateful Functions
Monads
Maybe Monad
The IO Monad

6 Epilogue

59 / 60

Epilogue

Not Covered
modules, named fields, arrays, finite maps, strict fields, kinds,
comonads, arrows, monad transformers, parsing monads, type theory
. . .

References
See website.
Most of the material on these slides comes from “A Gentle
Introduction to Haskell 98” by Hudak et al.
The Monad introduction is based on
http://sigfpe.blogspot.com/2006/08/
you-could-have-invented-monads-and.html

S. Peyton Jones, “Tackling the Awkward Squad: monadic I/O,
concurrency, exception and foreign-language calls in Haskell”,
2005.

Acknowledgements
Dries Harnie pointed out errors in earlier versions. 60 / 60

http://sigfpe.blogspot.com/2006/08/you-could-have-invented-monads-and.html
http://sigfpe.blogspot.com/2006/08/you-could-have-invented-monads-and.html

	Introduction
	Expressions, Values, Types
	User Defined Types
	Built-in types

	Functions
	Defining Functions
	Laziness and Infinite Data Structures
	Case Expressions and Pattern Matching

	Type Classes and Overloading
	Monads
	Debuggable Functions
	Stateful Functions
	Monads
	Maybe Monad
	The IO Monad

	Epilogue

