A Taste of Function Programming Using Haskell

 DRAFTD. Vermeir

August 29, 2007

9 Introduction

(2) Expressions, Values, Types

- User Defined Types
- Built-in types
(3) Functions
- Defining Functions
- Laziness and Infinite Data Structures
- Case Expressions and Pattern Matching

4 Type Classes and Overloading
5 Monads

- Debuggable Functions
- Stateful Functions
- Monads
- Maybe Monad
- The IO Monad
- Epilogue

What is Haskell?

Haskell is a lazy pure functional programming language.
functional because the evaluation of a program is equivalent to evaluating a function in the pure mathematical sense; also there are no variables, objects, .. Other functional languagues include Lisp, Scheme, Erlang, Clean, ML, OCaml, ...
pure because it does not allow side effects (that affect the "state of the world"). One benefit is referential transparency. This makes Haskell also a declarative language.
lazy (aka 'non-strict') because expressions that are not needed for the result are not evaluated. This allows e.g. to support infinite datastructures.
(1) Introduction
(2) Expressions, Values, Types

- User Defined Types
- Built-in types
(3) Functions
- Defining Functions
- Laziness and Infinite Data Structures
- Case Expressions and Pattern Matching
(4) Type Classes and Overloading

5. Monads

- Debuggable Functions
- Stateful Functions
- Monads
- Maybe Monad
- The IO Monad
(3. Epilogue

Precedence

- f g $5=((\mathrm{f} \mathrm{g}) 5)$
- function application (f g) has higher precedence than any infix operator
$\mathrm{f} 1+\mathrm{g} 3$-- (f 1) +(g 3)
- Infix operators can be (left/right/non) associative and have a precedence between 0 (low) and 9 (high).

prec	left	non	right
9	! !		.
8			^, ^^, **
7	$\begin{aligned} & \text { *, /, 'div', 'mod', } \\ & \text { 'rem', 'quot ' } \end{aligned}$		
6	+, -		
5			:, ++
4		$\begin{aligned} & ==, \quad /=, \quad<,<=, \quad>,>=, \\ & \text { 'elem', 'notElem' } \end{aligned}$	
3			
2			11
1	>>=, >>		
0			\$, \$!, `seq ${ }^{\text {' }}$

Expressions and Values

Computation is done via the evaluation of expressions (syntactic terms) yielding values (abstract entities, answers). All values are "first class".

denotes	
expression	value
5	5
${ }^{\prime} a^{\prime}$	a^{\prime}
$[1,2,3]$	the list $1,2,3$
$\left(' b^{\prime}, 4\right)$	the pair $\left\langle{ }^{\prime} b^{\prime}, 4\right\rangle$
$\prime \backslash x->x+1 '$	the function $x \rightarrow x+1$
e.g. $1 / 0$	\perp

Values and Types

Every value has an associated type. Types are denoted by type expressions. Intuitively, a type describes a set of values. Haskell is statically typed: the compiler will catch type errors.

expression	value	type (expression)
5	5	Integer
$'^{\prime}$	$\prime a^{\prime}$	Char
$[1,2,3]$	the list $1,2,3$	[Integer]
$\left(\prime b^{\prime}, 4\right)$	the pair $\left\langle\zeta^{\prime} b^{\prime}, 4\right\rangle$	(Char, Integer)
$\prime \backslash x \rightarrow x+1^{\prime}$	the function $x \rightarrow x+1$	Integer -> Integer

Declarations

inc : : Integer \rightarrow Integer -- a type declaration inc $n=n+1--a$ function equation

Polymorphic Types

Polymorphic type expressions are universally quantified over types. They describe families of types.

- $\forall \alpha \cdot[\alpha]$ describes all types of the form "list of α " for some type α.
- length computes the length of any (homogeneous) list.

```
length :: [a] -> Integer
length [] = 0 -- pattern matching on argument
length (x:xs) = 1 + length xs -- ':' is 'cons'
```

- Example usage:

```
length [1,2,3] -- 3
length ['a','b','c'] -- 3
length [[1],[2],[3]] -- 3
```


More Polymorphic List Functions

```
head :: [a] -> a
head (x:xs) = x -- error if no match, e.g. for empty list
tail :: [a] -> [a]
tail (x:xs) = xs
```


Type Hierarchy

- A value may have several types, e.g. ['a', 'b']:: [Char] and ['a', ${ }^{\prime}$] : : [a].
- Every well-typed expression is guaranteed to have a unique principal type, i.e. the least general type that, intuitively, contains all instances of the expression. For example, the principal type of head is [a]->a, although e.g. a and [b]->a are also types for head.
- The principal type of a well-typed expression can be inferred automatically.
- \perp is shared by all types

User Defined Types

- data Bool = False | True

The type bool has exactly two values: true and False. Type вool is an example of a (nullary) type constructor, and True and False are (also nullary) (data) constructors.

- -- another sum (disjoint union) type
data Color $=$ Red | Green | Blue | Indigo | Violet

User Defined Polymorphic Types

- A tuple (Cartesian product) type with just one binary (data) constructor with type Pt:: a -> a -> Point a.
data Point $\mathrm{a}=\mathrm{Pt} \mathrm{a} \mathrm{a}$
Note that Point is also polymorphic: Point t is a type for any type t.

```
Pt 2.0 3.0 :: Point Float
Pt 'a' 'b' :: Point Char
Pt True False :: Point Bool
-- Pt 1 'a' is ill-typed
```

- Since the namespaces for type constructors (point) and data constructors (Pt) are separate, one can use the same name for both.
data Point $a=$ Point $a \operatorname{a}$

User Defined Recursive Types

- A tree is either a leaf (with a label of type a) or an internal node with two subtrees.

```
data Tree a = Leaf a | Branch (Tree a) (Tree a)
```

- The types of the (data) constructors:

```
Branch :: Tree a -> Tree a -> Tree a
Leaf :: a -> Tree a
```

- A function to compute the list of leaf contents:

```
fringe :: Tree a -> [a]
fringe (Leaf x) = [x]
fringe (Branch left right) = fringe left ++ fringe right
-- ++ is list concatenation
```


Type Synonyms

A type synonym defines an abbreviation for a type.

```
type String = [Char]
type Person = (Name,Address)
type Name = String
data Address = None | Addr String
type AssocList a b = [(a,b)]
```


Built-in types are not special

(Apart from the syntax). Examples:

- lists:

```
data [a] = [] | a : [a]
```

which yields the following types for the list constructors:

```
[] :: [a]
: :: a-> [a]-> [a].
```

- characters:

```
data Char = 'a' | 'b' | 'c' | ... -- This is not valid
    | 'A' | 'B' | 'C' | ... -- Haskell code!
```


List Comprehension

- The list of all $f(x)$ such that x comes from $x s$:

```
[ f x | x <- xs ] -- 'x <- xs' is the 'generator'
[ (x,y) | x <- xs, y <- ys ] -- 2 generators
[ (x,y) | x <- [1,2], y <- [3,4] ]
    -- [(1, 3), (1,4), (2,3), (2,4)]
```

- Extra conditions (guards) are also possible:

```
quicksort [] = []
quicksort (x:xs) = quicksort [y | y <- xs, y<x ]
    ++ [x]
    ++ quicksort [y | y <- xs, y>=x]
```

(3) Functions

- Defining Functions
- Laziness and Infinite Data Structures
- Case Expressions and Pattern Matching

Type Classes and Overloading
Monads

- Debuggable Functions
- Stateful Functions
- Monads
- Maybe Monad
- The IO Monad
(6) Epilogue

User Defined Functions

- Use "currying" (i.e. consider a function $f: A \times B \rightarrow C$ as a function $f^{\prime}: A \rightarrow(B \rightarrow C)$ where $\left.f(a, b)=f^{\prime}(a)(b)\right)$:
add :: Integer -> Integer -> Integer
$\operatorname{add} \mathrm{x} \mathbf{y}=\mathbf{x}+\mathrm{y}$
- Because of currying, partial application is supported:

```
inc = add 1 -- or (+1)
```

- Example:

```
map ::(a->b) -> [a] -> [b]
map f [] = []
map f (x:xs)=fx:map f xs
    -- precedence: (fx) : (map f xs)
map (add 1) [1,2,3] -- [2,3,4]
```


Anonymous Functions

Using lambda expressions:

```
inc x = x+1
add x y = x+y
is really shorthand for
inc = \x -> x+1
add = \x -> \y -> x+y -- or \x y -> x+y
```


Infix Operators are Functions

Function composition (.)

```
(.) :: (b->c) -> (a->b) -> (a->c)
f . g = \ x -> f (g x) -- high precedence
f . h . g 1 -- f (h.g 1) = (f (h (g 1)))
-- but function application (' ') has higher precedence
-- than any infix operator
bind f . h x -- (bind f) (h ( x) )
```

Function application (\$)
(\$) :: (a->b) -> a -> b
f \$ x = f x -- low precedence
f h \$ g 1 -- (f h) (g 1), not (($(\mathrm{f} h) \mathrm{g}) \mathrm{l})$

Functions are Non-Strict

```
bot = bot -- denotes }
const1 x = 1
const1 bot -- value is 1, not }
```


Lazy Evaluation

An expression is not evaluated until it is needed (and then only the parts that are needed are evaluated).

Haskell Stores Definitions, not Values

$\mathbf{v}=1 / 0$-- define (not compute) v as $1 / 0$

Infinite Data Structures

```
ones = 1 : ones -- an infinite list of 1's
numsFrom n = n : numsFrom (n+1) -- n, n+1, ...
squares = map (^2) (numsFrom 0) -- 0, 1, 4, 9, ...
```

```
Zip
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip xs ys = []
```


Fibonacci Sequence

```
fib = 1 : 1 : [ a + b | (a,b) <- zip fib (tail fib) ]
-- fib = 1 1 2 3 5 8 ..
```


Pattern Matching

```
Using constructors of any type, formal parameters or wild cards.
f :: ([a], Char, (Int, Float), String, Bool) -> Bool
f ([], 'b', (1,2.0), "hi", _) = False -- last one is wild card
f (_, _, (2,4.0), "", True) = True
f (x, _, (2,4.0), "", y) = length x > 0 || y -- formal pars
-- only 1 occurrence of same formal parameter in pattern
```


Semantics

if match
succeeds: bind formal parameter
fails: try next pattern
diverges: (\perp) : return \perp

Pattern Matching with Guards

-- Guards are tested after the corresponding pattern
-- Only one matching pattern is tried
sign 0 | True $=0$-- contrived, don't move to the end $\operatorname{sign} x \mid x>0=1$
| $\mathrm{x}<0=-1$
| otherwise = -1 -- otherwise is True

Common Where Clause

isBright c $\begin{array}{r}\mid r==255=\text { True } \\ \mid \mathrm{g}==255=\text { True } \\ \mid \mathrm{b}==255=\text { True }\end{array}$ | otherwise = False
where $(r, g, b)=$ color2rgb c

take1, take2

```
take1 0 _ = []
take1 _ [] = []
take1 n (x:xs) = x : take1 (n-1) xs
take2 _ [] = []
take2 0 _ = []
take2 n (x:xs) = x : take2 (n-1) xs
```


different results

```
take1 0 bot -- []
take2 0 bot -- \perp
take1 bot [] -- \perp
take2 bot [] -- []
```


Syntax Case Expressions

$$
\left.\left.\left.\begin{array}{l}
\text { case }\left(e_{1}, \ldots, e_{n}\right) \text { of } \\
\left(p_{1,1}, \ldots, p_{1, n}\right) \rightarrow r_{1} \\
\left(p_{2,1}, \ldots,\right. \\
\ldots \\
\left(p_{m, 1}, \ldots,\right.
\end{array}\right) \rightarrow p_{m, n}\right) \rightarrow r_{m}\right) .
$$

where $p_{i, j}$ are patterns.
if .. then .. else
if $\left(e_{1}\right)$ then e_{2} else e_{3}
is short for
case (e_{1}) of
True -> e_{2}
False $->e_{3}$

Pattern Matching is a Case Expression

$$
\begin{aligned}
& \mathbf{f} p_{1,1}, \ldots, p_{1, n}=e_{1} \\
& \mathbf{f} p_{2,1}, \ldots, p_{2, n}=e_{2} \\
& \cdots \\
& \mathbf{f} p_{m, 1}, \ldots, p_{m, n}=e_{m} \\
& \text { is equivalent to } \\
& \mathbf{f} x_{1} x_{2} \ldots x_{n}=\text { case }\left(x_{1} x_{2} \ldots x_{n}\right) \text { of } \\
& \quad\left(p_{1,1}, \ldots, p_{1, n}\right) \rightarrow e_{1} \\
& \left(p_{2,1}, \ldots, p_{2, n}\right) \rightarrow e_{2} \\
& \cdots \\
& \quad\left(p_{m, 1}, \ldots, p_{m, n}\right) \rightarrow e_{m}
\end{aligned}
$$

(1) Introduction
(2) Expressions, Values, Types

- User Defined Types
- Built-in types
(3) Functions
- Defining Functions
- Laziness and Infinite Data Structures
- Case Expressions and Pattern Matching
(4) Type Classes and Overloading
(5) Monads
- Debuggable Functions
- Stateful Functions
- Monads
- Maybe Monad
- The IO Monad

6. Epilogue

Restricted Polymorphism

```
List Membership
-- x 'elem' list iff x appears in list
x `elem` [] = False
x `elem` (y:ys) = x == y || ( x `elem` ys)
```

Type of 'elem'
One would expect: elem:: a -> [a] -> Bool but this would imply (==) :: a $->$ a -> Bool but == may not be defined on some types!
Thus elem:: a -> [a] -> Bool only for a where (==) : : a -> a -> Bool is defined.

Type Classes

Class Eq

-- A type 'a' is an instance of the class Eq iff
-- there is an appropriate overloaded operation == defined on it class Eq a where

$$
\text { (==) :: a } \rightarrow \text { a } \rightarrow \text { Bool }
$$

Context with Type Expressions

```
-- (Eq a) is the context
(==) :: (Eq a) => a -> a -> Bool
elem :: (Eq a) => a -> [a] -> Bool
```


Instances of Type Classes

```
class Eq a where
    (==), (/=) :: a -> a -> Bool
    x /= y = not (x==y) -- default method
```


Integer is an instance of Eq

instance Eq Integer where

```
    x == y = x `integerEq` y -- integerEq is primitive
```


Tree may be an instance of Eq

```
instance (Eq a) => Eq (Tree a) where -- context!
    Leaf a == Leaf b = a == b
    (Branch l1 r1) == (Branch 12 r2) = (11 == 12 ) && (r1 == r2)
    _ == _ = False
```


Class Extension or (Multiple) Inheritance

```
Ord is a Subclass of Eq
class (Eq a) => Ord a where
    (<), (<=), (>=), (>) :: a -> a -> Bool
    max, min :: a -> a -> a
-- example: type of quicksort
quicksort :: (Ord a) => [a] -> [a]
```

C is a Subclass of Ord and Show

```
class (Eq a, Show a) => C a where
```


4. Type Classes and Overloading

(5) Monads

- Debuggable Functions
- Stateful Functions
- Monads
- Maybe Monad
- The IO Monad
(6) Epilogue

Example Problem

```
f,g :: Int -> Int
```


Adding debug info

-- debuggable versions of f, g
$\mathrm{f}^{\prime}, \mathrm{g}^{\prime}$:: Int -> (Int,String)

Debug info for f.g

A Complex Solution

Debug info for $\mathrm{f} . \mathrm{g}$

```
f',g' :: Int -> (Int,String)
gThenF :: Int -> (Int,String)
gThen F x = let (y,s) = g' x
    (z,t) = f' y in (z,s++t)
```

This quickly becomes complicated (e.g. with 3 functions)!

Introducing bind

Debug info for f.g
$\mathrm{f}^{\prime}, \mathrm{g}^{\prime}$: : Int -> (Int,String)
We would like a function bind such that bind $\mathrm{f}^{\prime} . \mathrm{g}^{\prime}$ is debuggable.
bind requirements
bind f^{\prime} must accept output from g^{\prime} as input
bind f^{\prime} : : (Int, String) \rightarrow (Int, String)
and thus
bind :: ((Int -> (Int,String)) -> (Int,String) -> (Int,String)

Solution using bind

bind \mathbf{f}^{\prime}


```
bind :: ((Int -> (Int,String)) -> (Int,String) -> (Int,String)
bind f' (gx,gs) = let (fx,fs) = f' gx in (fx,gs++fs)
```

For 3 functions: bind h^{\prime}. bind f^{\prime}. g^{\prime} etc.
We write $\mathrm{g}^{\prime} \gg=\mathrm{f}^{\prime}$ (low precedence) for bind f^{\prime}. g^{\prime}.

Combining normal functions with debuggable ones

We want a function unit such that unit . h becomes debuggable for any "normal" h :: Int -> Int.

Requirements for unit

```
h :: Int -> Int
unit . h :: Int -> (Int, String)
-- and thus
unit :: Int -> (Int, String)
```

```
Solution for unit
unit :: Int -> (Int, String)
unit x = (x, "")
lift :: (Int -> Int) -> Int -> (Int,String)
lift f = unit . f
```


Theorem

unit >>= $f^{\prime}=f^{\prime}$

Proof.

$$
\begin{aligned}
& \text { unit } \gg=\mathbf{f}^{\prime} \\
&= \text { bind } \mathbf{f}^{\prime} \text {.unit } \\
&= \lambda x \rightarrow \text { bind } \mathbf{f}^{\prime}(\text { unit } x) \\
&=\lambda x \rightarrow \text { bind } \mathbf{f}^{\prime}\left(x,,^{\prime \prime}\right) \\
&=\lambda x \rightarrow\left(\lambda(u, v) \rightarrow \text { let }(y, s)=\mathbf{f}^{\prime} u \text { in }(y, v++s)\right)(x, " ") \\
&=\lambda x \rightarrow\left(\text { let }(y, s)=\mathbf{f}^{\prime} x \text { in }\left(y,{ }^{\prime \prime \prime}++s\right)\right) \\
&=\lambda x \rightarrow\left(\text { let }(y, s)=\mathbf{f}^{\prime} x \text { in }(y, s)\right) \\
&=\lambda x \rightarrow \mathbf{f}^{\prime} x \\
&=\mathbf{f}^{\prime}
\end{aligned}
$$

Theorem

(f^{\prime} >>= unit) $=f^{\prime}$

Proof.

$$
\begin{aligned}
\mathbf{f}^{\prime} & \gg=\text { unit } \\
& =\text { bind unit } . \mathbf{f}^{\prime} \\
& =\lambda x \rightarrow \text { bind unit }\left(\mathbf{f}^{\prime} x\right) \\
& =\lambda x \rightarrow(\lambda(u, v) \rightarrow \text { let }(y, s)=\text { unit } u \text { in }(y, v++\boldsymbol{s}))\left(\mathbf{f}^{\prime} x\right) \\
& =\lambda x \rightarrow(\lambda(u, v) \rightarrow \text { let }(y, s)=(u, " ") \text { in }(y, v++s))\left(\mathbf{f}^{\prime} x\right) \\
& =\lambda x \rightarrow\left(\lambda(u, v) \rightarrow\left(u, v++^{\prime \prime \prime}\right)\right)\left(\mathbf{f}^{\prime} x\right) \\
& =\lambda x \rightarrow(\lambda(u, v) \rightarrow(u, v))\left(\mathbf{f}^{\prime} x\right) \\
& =\lambda x \rightarrow \mathbf{f}^{\prime} x \\
& =\mathbf{f}^{\prime}
\end{aligned}
$$

Theorem

(lift g >>= lift f) $=$ lift (f.g)

Proof.

$$
\begin{aligned}
& \text { lift } g \gg=\text { lift } f \\
& =\quad \text { bind }(\text { lift } f) \text {.lift } g \\
& =\lambda x \rightarrow \text { bind (lift } f)(\text { lift } g x) \\
& =\lambda x \rightarrow \text { bind (unit. } f)(\text { unit. } g x) \\
& =\lambda x \rightarrow \text { bind (unit. } f)(g x, " ") \\
& =\lambda x \rightarrow(\lambda(u, v) \rightarrow \text { let }(y, s)=\text { unit. } f u \text { in }(y, v++s))\left(g x,{ }^{\prime \prime \prime \prime}\right) \\
& =\lambda x \rightarrow \text { let }(y, s)=\text { unit. } f(g x) \text { in }(y, " "++s) \\
& =\lambda x \rightarrow \text { let }(y, s)=\left(f(g x),{ }^{\prime \prime \prime}\right) \text { in }(y, s) \\
& =\lambda x \rightarrow(f . g x, " ") \\
& =\lambda x \rightarrow \text { unit. }(f . g) x=\text { unit. }(f . g)=\text { lift } f . g
\end{aligned}
$$

Stateful Functions

A function $\mathrm{g}: \mathrm{a}->\mathrm{b}$ that uses and updates a state has type.

```
g :: a -> s -> (b,s)
-- g(input, oldState) = (output, newState)
```

Another way of looking at such functions 'hides' the part involving the state(s).

Hiding the state part

```
g :: a -> s -> (b, s)
g(input) :: oldState -> (output, newState)
```


Combining Stateful Functions

How to run two such functions $£$ and g, where $£$ consumes the result of g and uses the state as it was left by g.

```
gThenF (g;f in C)
g :: a -> s -> (b, s)
gThenF g f a = \s ->
    let (gOut, s') = g a s
    in f gOut s'
```

Becomes complicated when composing many such functions.

Combining Stateful Functions using Bind

bind requirements

bind f.g


```
bind \(f\). g a :: s -> (s, c)
bind \(f\). \(g\) : : a -> s \(->(s, c)\)
-- \(g\) :: a -> ( s -> (b,s) )
bind \(f\) :: (s -> \((b, s))\)-> \(s\)-> \((s, c)\)
-- \(f:: b->(s->(c, s))\)
bind :: (b -> ( s -> (c,s) )) -> ((s -> (b,s)) -> s -> (s,c))
```


Bind Implementation

bind f.g

bind f ga $=\backslash s$->
let $\left(b, s^{\prime}\right)=$ ga s
in f b s'

```
bind :: (b -> ( s -> (c,s) )) -> ((s -> (b,s)) -> s -> (s,c))
bind f ga = \s ->
    let (b, s') = ga s
    in f b s'
```

it works

```
bind f . g a
    = bind f ( g a)
    = \s -> let (b, s') = (g a) s in f b s'
```

```
example
h :: c -> s -> (d,s)
bind h . bind f . g a :: s -> (d,s)
-- we write g >>= f for bind f . g
(g >>= f >>= h) a s
```


Combining normal functions with stateful ones

We want a function unit such that e.g. unit . h becomes stateful for any "normal" h :: a -> a.

Requirements for unit

```
h :: a -> a
unit . h :: a -> s -> (a, s)
-- and thus
unit :: a -> s -> (a, s)
```

Solution for unit

```
unit :: a -> s -> (a, s)
unit xa = \s -> (xa, s)
lift :: (a -> a) -> a -> s -> (a,s)
lift h = unit . h
```


Example Use of Unit


```
g :: a -> s -> (b,s)
h :: b -> b
f :: b -> s -> (c,s)
-- lift h :: b -> s -> (b,s)
(g >> lift h >> f) a s
```


Generalizing the examples

```
type Debuggable a = (a, String)
type State a = s -> (a, s) -- assume s is known
type M a = .. -- in general
```

How to "apply" a function $\mathrm{f}:$: a -> m b to a value of type ma?

Answer: Bind, Unit

```
bind :: (a -> M b) -> (M a -> M b)
f :: a -> M b
g :: a -> M a
-- apply f to (result of) g
bind f . g : : a -> M b
unit :: a -> M a
```

where
bind g. unit \equiv bind unit. $g \equiv g$

Monads

```
data M a = .. -- in general
bind :: (a -> M b) -> (M a -> M b)
unit :: a -> M a
infixl 1 >>= -- infix, right-associative, prec. 1 (low)
(>>=) :: M a -> (a -> M b) -> M b
ma >>= f = bind f ma -- in our examples
return :: a -> M a
return = unit -- in our examples
```


where

```
return a >>= f
ma >>= return = ma
ma >>= (\x m f x >>= h) = (ma >>= f) >>= h
```


The Monad Class

```
infixl 1 >>=, >>
class Monad M where -- approximation of 'real' definition
    (>>=) :: M a m (a m M b) ->> M b
    (>>) :: M a -> M b -> M b
    return :: a -> M a -- inject a value into the monad
    ma >> mb = ma >>= \_ -> mb -- 'ignore (result of) ma'
```


Special Monad Syntax (Informal)

```
do e1; e2 = e1 >> e2
do p <- e1; e2 = e1 >>= \p -> e2 e2 probably uses p
```


The Maybe type

A Maybe value represents a "real" value (Just a) or 'no value' (Nothing).
data Maybe $a=$ Nothing \mid Just a

Code to avoid

```
e :: Maybe a
f :: a -> Maybe a
case e of
    Nothing -> Nothing
    Just x -> f x
```

```
Maybe Monad
instance Monad Maybe where
    Nothing >>= f = Nothing
    (Just x) >>= f=fx
    return = Just
```


Code to avoid

```
e :: Maybe a
f :: a -> Maybe a
case e of
    Nothing -> Nothing
    Just x -> f y
```

.. becomes
e >>= f -- will not call f unless ..

I/O conflicts with lazy evaluation

Side effects (e.g. I/O) update the state of the "world", we want to ensure the order of the I/O operations.

The IO Monad is much like the State Monad
type IO a = World \rightarrow (World, a)

10 a
A value x:: io a represents an action that, when performed, does some I/O before delivering a value of type a

getChar, putChar

Read/write a single character.

```
getChar :: IO Char
putChar :: Char -> IO () -- returns trivial value ()
```

IO bind

```
(>>=) :: IO a -> ( a -> IO b) -> IO b
```

echo :: IO()
echo = getChar >>= putChar -- a = Char, b = ()

echo; echo

(>>=) :: IO a -> (a -> IO b) -> IO b
-- echo : : IO ()
echo >>= echo -- ERROR: 2nd echo should be function () -> IO ()
(>>) :: IO a -> IO b -> IO b -- throw away 'result' first argumen (>>) a1 a2 = a1 >>= (\x -> a2)
echo >> echo -- OK, read '>>' as 'then'

return

```
return :: a -> IO a
```



```
get2Chars
get2Chars :: IO (Char, Char)
get2Chars = getChar >>= \c1 ->
    (getChar >>= (\c2 -> return (c1,c2)))
```

The world behaves as expected
Since >>= is the only function 'touching' the world, the 'world' is never duplicated or thrown away and getChar and putchar can be implemented by performing the operation right away.
(1) Introduction
(2) Expressions, Values, Types

- User Defined Types
- Built-in types
(3) Functions
- Defining Functions
- Laziness and Infinite Data Structures
- Case Expressions and Pattern Matching

4. Type Classes and Overloading
5. Monads

- Debuggable Functions
- Stateful Functions
- Monads
- Maybe Monad
- The IO Monad

Not Covered

modules, named fields, arrays, finite maps, strict fields, kinds, comonads, arrows, monad transformers, parsing monads, type theory

References

- See website.
- Most of the material on these slides comes from "A Gentle Introduction to Haskell 98" by Hudak et al.
- The Monad introduction is based on
http://sigfpe.blogspot.com/2006/08/ you-could-have-invented-monads-and.html
- S. Peyton Jones, "Tackling the Awkward Squad: monadic I/O, concurrency, exception and foreign-language calls in Haskell", 2005.

Acknowledgements

Dries Harnie pointed out errors in earlier versions.

