A Taste of Function Programming Using Haskell
DRAFT

D. Vermeir

August 29, 2007

1/60

0 Introduction

2/60

What is Haskell?

Haskell is a lazy pure functional programming language.

functional

pure

lazy

because the evaluation of a program is equivalent to
evaluating a function in the pure mathematical sense;
also there are no variables, objects, .. Other functional
languagues include Lisp, Scheme, Erlang, Clean, ML,
OCaml, ...

because it does not allow side effects (that affect the
“state of the world”). One benefit is referential
transparency. This makes Haskell also a declarative
language.

(aka ’non-strict’) because expressions that are not
needed for the result are not evaluated. This allows e.g.
to support infinite datastructures.

Expressions, Values, Types

e Expressions, Values, Types
@ User Defined Types
@ Built-in types

4/60

Expressions, Values, Types

Precedence

@ £f g 5= ((f g) 5)
@ function application (£ g) has higher precedence than any infix

operator

£f1+g3—-— (f1) + (g 3)

@ Infix operators can be (left/right/non) associative and have a

precedence between 0 (low) and 9 (high).

prec left non right
9 1" .
8 ALAN kk
7 *, /, ‘div', ‘mod‘,
‘rem‘, ‘quot’
6 | + -
5 4
4 ==, /=, <, <=, > >=
‘elem', ‘notElem"
3 &&
2 i
1 >>=, >>
0 $, 8!, ‘seq’

/60

Expressions and Values

Computation is done via the evaluation of expressions
(syntactic terms) yielding values (abstract entities, answers).
All values are “first class”.

denotes
expression value
5 5
"a’ 'a
[1,2,3] the list 1,2, 3
('b’, 4) the pair ('b', 4)
"\x -> x+1’ | the function x — x + 1
e.g.1/0 1

/60

Values and Types

Every value has an associated type. Types are denoted
by type expressions. Intuitively, a type describes a set of
values. Haskell is statically typed: the compiler will catch

type errors.

expression value type (expression)
5 5 Integer

"a’ 'a Char

[1,2,3] the list 1,2, 3 [Integer]

('b’, 4) the pair </bl, 4> (Char, Integer)

"\x —-> x+1’ | the function x — X + 1 | Integer -> Integer

/60

Expressions, Values, Types

Declarations
inc :: Integer —> Integer -- a type declaration
incn=n+ 1 -- a function equation

8/60

Polymorphic Types

@ Va - [a] describes all types of the form “list of «” for some type a.

Polymorphic type expressions are universally quantified
over types. They describe families of types.

length computes the length of any (homogeneous) list.
length :: [a] —-> Integer

length [] = 0 -- pattern matching on argument
length (x:xs) = 1 + length xs —- ’:’ is ’‘cons’
Example usage:

length [1,2,3] -- 3

length ['a’,’'b’,’c’'] —— 3

length [[1],[2],[3]] —— 3

/60

More Polymorphic List Functions

head :: [a] -> a

head (x:xs) = x —— error if no match, e.g. for empty list
tail :: [a] -> [a]

tail (x:xs) = xs

10/60

Type Hierarchy

@ A value may have several types, e.9. ["a’,’b’1:: [Char] and
[a’,’b’]::[al.

@ Every well-typed expression is guaranteed to have a unique
principal type, i.e. the least general type that, intuitively, contains
all instances of the expression. For example, the principal type of
head iS [a]->a, although e.g. a and [b]->a are also types for head.

@ The principal type of a well-typed expression can be inferred
automatically.

@ | is shared by all types

11/60

User Defined Types
User Defined Types

@ data Bool = False | True

The type Boo1 has exactly two values: True and False. Type Bool
is an example of a (nullary) type constructor, and True and False
are (also nullary) (data) constructors.

@ —- another sum (disjoint union) type
data Color = Red | Green | Blue | Indigo | Violet

12/60

User Defined Types
User Defined Polymorphic Types

@ A tuple (Cartesian product) type with just one binary (data)
constructor with type pt:: a -> a -> Point a.

data Point a = Pt a a

Note that point is also polymorphic: point t is a type for any type

t.

Pt 2.0 3.0 :: Point Float
Pt 'a’ 'b’ :: Point Char

Pt True False :: Point Bool

-— Pt 1 ’a’ is ill-typed

@ Since the namespaces for type constructors (point) and data
constructors (pt) are separate, one can use the same name for
both.

data Point a = Point a a

13/60

User Defined Types
User Defined Recursive Types

@ Atree is either a leaf (with a label of type a) or an internal node
with two subtrees.

data Tree a = Leaf a | Branch (Tree a) (Tree a)

@ The types of the (data) constructors:
Branch :: Tree a -> Tree a -> Tree a
Leaf :: a -> Tree a

@ A function to compute the list of leaf contents:

fringe :: Tree a —-> [a]

fringe (Leaf x) = [x]

fringe (Branch left right) = fringe left ++ fringe right
—-— ++ is list concatenation

14/60

et vl e
Type Synonyms

A type synonym defines an abbreviation for a type.

type String = [Char]

type Person = (Name,Address)

type Name = String

data Address = None | Addr String

type Assoclist a b = [(a,b)]

15/60

Buitin types
Built-in types are not special

(Apart from the syntax). Examples:
@ lists:
data [a] =[] | a : [a]
which yields the following types for the list constructors:
[1 :: [al]
: a—>[a]l->[a].
@ characters:

data Char = 'a’ | 'b’" | 'e’ | ... == This is not valid
| 'A’ | 'B’ | 'C’ | ... —— Haskell code!
|

rq’ I ror I r37 I

16/60

Expressions, Values, Types Built-in types

List Comprehension

@ The list of all f(x) such that x comes from xs:

[£x | x <- xs] —— 'x <- xs’ is the ’generator’

[(x,y) | x <- xs, y <— ys] -- 2 generators

[(x,¥) | x <= [1,2], yv <= [3,4]]
-—= [(1,3),(1,4),(2,3),(2,4)]

@ Extra conditions (guards) are also possible:

quicksort [] = []
quicksort (x:xs) = quicksort [y | y <— xs, y<x]
++ [x]
++ quicksort [y | y <- xs, y>=x]

17/60

Functions

e Functions
@ Defining Functions
@ Laziness and Infinite Data Structures
@ Case Expressions and Pattern Matching

18/60

Defining Functions
User Defined Functions

@ Use “currying” (i.e. consider a function f : A x B — C as a function
f': A— (B — C) where f(a, b) = f'(a)(b)):

add :: Integer -> Integer -> Integer
add x y = x +y

@ Because of currying, partial application is supported:

inc = add 1 -- or (+1)

@ Example:
map :: (a->b) -> [a] —> [b]
map £ []1 = []
map £ (x:xs) = £ x : map f xs
—-— precedence: (f x) : (map f xs)

map (add 1) [1,2,3] —- [2,3,4]

19/60

Defining Functions
Anonymous Functions

Using lambda expressions:

inc x = x+1
add x y = x+y

is really shorthand for

\x —> x+1
\x —> \y —> x+y —— or \x y —> x+ty

inc
add

20/60

il i sz
Infix Operators are Functions

Function composition (.)

(.) :: (b=>c) —> (a—->b) —> (a->c)
f . g=\x->f (g x) —— high precedence
f.h.gl-—-f(hgl)=(f((gl)))

—— but function application (’ ’) has higher precedence
—— than any infix operator
bind £ . h x —— (bind £f) (h (x))

Function application ($)

($) (a->b) > a -> b
f $§ x = £f x —— low precedence
fh$gl - (fh) (g 1), not (((f h) g) 1)

21/60

Laziness and Infinite Data Structures
Functions are Non-Strict

bot = bot -- denotes |
constl x = 1
constl bot —-- value is 1, not |

Lazy Evaluation

An expression is not evaluated until it is needed (and then only the
parts that are needed are evaluated).

Haskell Stores Definitions, not Values

v = 1/0 —- define (not compute) v as 1/0

22/60

Laziness and Infinite Data Structures
Infinite Data Structures

ones = 1 : ones —— an infinite list of 1’s
numsFrom n = n : numsFrom (n+l) -- n, n+l,
squares = map (*2) (numsFrom 0) -— 0, 1, 4, 9,
Zip

zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip xs ys = []

Fibonacci Sequence

fib=1:1: [a+b | (a,b) <- zip fib (tail fib)]
-— fib=112 358 ..

23/60

Case Expressions and Pattern Matching
Pattern Matching

Using constructors of any type, formal parameters or wild cards.

£ :: ([a], Char, (Int, Float), String, Bool) —-> Bool

£ ([]I ,b,I (112-0)1 "hi"I _) = False —- last one is wild card
£ ((, _, (2,4.0), "", True) = True

f (x, _, (2,4.0), "", y) = length x > 0 || y —— formal pars

—— only 1 occurrence of same formal parameter in pattern

Semantics
if match
succeeds: bind formal parameter
fails: try next pattern
diverges: (L): return L

24/60

Pattern Matching with Guards

—— Guards are tested after the corresponding pattern
—— Only one matching pattern is tried

sign 0 | True = 0 —— contrived, don’t move to the end
sign x | x >0 =1

| x <0 =-1

| otherwise = -1 —-- otherwise is True

Common Where Clause

isBright ¢ | r == 255 = True
| g == 255 = True
| b == 255 = True

| otherwise = False
where (r,g,b) = color2rgb c

25/60

take1, take2

takel 0 _ = []
takel _ [] = []
takel n (x:xs) = x : takel (n-1) xs

take2 _ [] = []
take2 _ =11
take2 (x:xs) = x : take2 (n-1) xs

8 o

different results

takel 0 bot —-- []
take2 0 bot —- |

takel bot [] —- L
take2 bot [] —— []

26/60

Syntax Case Expressions

case (€1, .. , €p) of
(P14, -+ , P1,n) —> N
(132,11 LI IJZ,n) =>n

(Pmi, -+ 4+ Pmn) —> Im

where p; ; are patterns.

if .. then .. else
if (ey) then e else e;

is short for

case (ey) of
True -> €

False —> &3
v

27/60

Pattern Matching is a Case Expression

£ P, oo, Pin= 6

£ F&,1I R l’2,n = €

£f Pmi1, -, Pmn = €m

is equivalent to

f Xy X2 .. Xp = case (X4 X2 .. Xp) of

(P11, -« 4, P1,a) —> €
(Fb,1l LI Fb,n) -> &

(Pma1, -- + Pmn) —> €m

28/60

Type Classes and Overloading

° Type Classes and Overloading

29/60

Restricted Polymorphism

List Membership

—— x ‘elem' list iff x appears in list
x ‘elem' [] = False

x ‘elem’ (y:ys) =x ==y || (x ‘elem' ys)

Type of ‘elem:

One would expect: elem:: a -> [a] —> Bool but this would imply
(==):: a —> a —> Bool but == may not be defined on some types!
Thus elem:: a —-> [a] —> Bool Only for a where

(==):: a —=> a —> Bool is defined.

30/60

Type Classes

Class Eq

—-— A type ’a’ is an instance of the class Eq iff
—— there is an appropriate overloaded operation == defined on it
class Eq a where

(==) :: a => a -> Bool

Context with Type Expressions

—-— (Eq a) is the context
(==) :: (Eq a) => a —> a —> Bool
elem :: (Eq a) => a —> [a] -> Bool

31/60

Instances of Type Classes

class Eg a where
(==), (/=) :: a -> a —> Bool
X /= y = not (x==y) —-- default method

Integer is an instance of Eq

instance Eq Integer where
X == = x ‘integerEq‘' y —- integerEq is primitive

Tree may be an instance of Eq

instance (Eq a) => Eq (Tree a) where —-- context!
Leaf a == Leaf b = a ==
(Branch 11 rl) == (Branch 12 r2) = (11 == 12) && (rl == r2)

== _ = False

32/60

Type Classes and Overloading

Class Extension or (Multiple) Inheritance

Ord is a Subclass of Eq

class (Eq a) => Ord a where

(<), (<=), (>=), (>) :: a —> a —-> Bool
max, min :: a -> a -> a

—-—- example: type of quicksort

quicksort :: (Ord a) => [a] —> [a]

C is a Subclass of Ord and Show

class (Eq a, Show a) => C a where

33/60

© Monads
@ Debuggable Functions
@ Stateful Functions
@ Monads
@ Maybe Monad
@ The IO Monad

34/60

Example Problem

f,9 :: Int -> Int

Adding debug info

—— debuggable versions of £, g
£’,g’" :: Int -> (Int,String)

Debug info for £.g

n_o>»n

++

" .o

N

35/60

Debuggable Functions
A Complex Solution

4| S

fe—
x%gy f’ .

Debug info for £.g
£f’,g’ :: Int -> (Int,String)
gThenF :: Int -> (Int,String)

gThen F x = let (y,s) = g’ x
(z,t) £’ y in (z,s++t)

This quickly becomes complicated (e.g. with 3 functions)!

36/60

Debuggable Functions
Introducing bina

Debug info for £.g

£’,g’ :: Int -> (Int,String)

We would like a function bind such that bind £ . g’ is debuggable.

bind requirements

bind £’ must accept output from g’ as input

bind £’ :: (Int,String) -> (Int,String)

and thus

bind :: ((Int —> (Int,String)) -> (Int,String) —-> (Int,String)

37/60

el e
Solution using bina

bind f’

I | s
— »

f’
X~ 8 y .

bind :: ((Int -> (Int,String)) -> (Int,String) -> (Int, String)
bind f’ (gx,gs) = let (fx,fs) = £’ gx in (fx,gs++£fs)

For 3 functions: bind h’ . bind £’ . g’ efc.
We write g’ >>= £’ (low precedence) for bind £’ . g’.

38/60

Debuggable Functions
Combining normal functions with debuggable ones

We want a function unit such that unit . nh becomes debuggable for
any “‘normal’n :: Int -> Int.

Requirements for unit

h :: Int -> Int

unit . h :: Int -> (Int, String)
—— and thus

unit :: Int -> (Int, String)

Solution for unit

unit :: Int -> (Int, String)
unit x = (x, "")
1lift :: (Int -> Int) -> Int -> (Int,String)

lift £ = unit . £

39/60

Theorem

unit >>= f’ = £’

Proof.

unit >>=f

bind ' .unit

Ax — bind f'(unit x)

= Ax — bind f(x,"")

= M — (Mu,v)— let(y,s)=Fuin (y,v++s))(x,"")
= M —(let(y,s)=Fxin(y,”” ++5s))

= M —(let(y,s)=Ffxin(y,s))

= M —fx

= f

40/60

Theorem

(£’ >>= unit) = £/

Proof.

f >>= unit

bind unit .f
Ax — bind unit (f'x)
AX — (Mu,v) — let (y,s) =unituin (y,v ++s))(fx)

Ax = (Mu,v) — let (y,s) = (u,"") in (y, v ++8))(f'x)
AX — (AMu, v) — (u, v ++""))(fx)

A = (A(u, v) = (U, v))(F'x)

Mx — f'x

f/

41/60

Theorem
(lift g >>= 1lift f) — 1lift (f.g)

Proof.

lift g >>=lift f
= bind (lift f).lift g
Ax — bind (lift f)(lift g x)
Ax — bind (unit.f)(unit.g x)
Ax — bind (unit.f)(gx,"")
AX — (A(u,v) — let (y,s) =unit.fuin (y,v++8))(gx,"")
Ax — let (y,s) = unit.f (gx) in (y,"" ++5)
Ax — let(y,s) = (f(gx),”") in (y,s)
Ax — (f.gx,"")
= X — unit.(f.g) x = unit.(f.g) = lift f.g

42/6(

Stateful Functions
Stateful Functions

A function g: a -> b that uses and updates a state has type.

g :: a->s -> (b,s)
—-— g(input, oldState) = (output, newState)

Another way of looking at such functions ’hides’ the part involving the
state(s).

Hiding the state part

g(input) :: oldState -> (output, newState)

43/60

Stateful Functions
Combining Stateful Functions

How to run two such functions £ and g, where £ consumes the result of
g and uses the state as it was left by q.

gThenF (g;fin C)

g :: a->|s —> (b, s)
f :: b->|s -> (¢, s)
gThenF :: [(a -> s —> (b,s)) | -> | (b —> s —> (c,s)) | —>

a->|[s -> (c, s)

gThenF g £ a = \s —>
let (gOut, s’') = g a s
in £ gOut s’

Becomes complicated when composing many such functions.

44/60

Combining Stateful Functions using Bind

bind requirements

bindf.g

a b C
=2 ¢ f
S’ S”
bind £ . ga :: s -> (s, c)

bind £ . g :: a -=> s => (s,c)

--g::a-> (s -> (bs))

bind £ :: (s —> (b,s)) -> s —> (s,c)

— f ::b-> (s —-> (¢c,s5))

bind :: (b > (s —> (¢,s))) —> ((s => (b,s)) -> s => (s,c))

45/60

iz il Pl s
Bind Implementation

bindf.g

a b c
— 1 g f
S S’ Saa
bind :: (b => (s => (c¢,s))) => ((s => (b,s)) -> s —> (s,c))

bind £ ga = \s ->
let (b, s’') = ga s
in £ b s’

46/60

bind :: (b > (s => (¢,s8))) —> ((s —> (b,s)) -> s —> (s,c))
bind £ ga = \s ->

let (b, s’) = ga s

in £ b s’

it works

bind £ . g a
= bind £ (g a)
= \s —> let (b, s8') = (g a) s in £ b s’

example

h :: ¢c->s -> (d,s)
bind h . bind £ . ga :: s => (d,s)
-— we write g >>= f for bind £ . g
(g >>= £ >>=h) a s

47/60

iz il Pl s
Combining normal functions with stateful ones

We want a function unit such that e.g. unit . nh becomes stateful for
any “‘normal’n :: a -> a.

Requirements for unit

h :: a-—> a

unit . h :: a -> s => (a, s)
—— and thus

unit :: a -> s -> (a, s)

Solution for unit

unit :: a -> s -> (a, s)
unit xa = \s -> (xa, s)

lift :: (a -=> a) —> a -> s => (a,s)
lift h = unit . h

48/60

iz il Pl s
Example Use of Unit

unit.h
a b b’ c
R F——=
—= g =
S S S’ s’
g :: a->s -> (b,s)
h :: b ->b
f :: b->s -> (¢, >s)

-— 1lift h :: b -=> s —> (b,s)
(g >> 1lift h >> f) a s

49/60

sz
Generalizing the examples

type Debuggable a = (a, String)
type State a = s -> (a, s) ——- assume s is known
type M a = .. ——- in general

How to “apply” a function £:: a -> M b to a value of typem a?

Answer: Bind, Unit

bind :: (a -=> Mb) -> (M a -> M b)
f :: a->MDb
g ::a->Ma

—-— apply f to (result of) g
bind £f . g :: a ->Mb
unit :: a -=> M a
where
bind g .unit = bind unit.g =g

50/60

Monads
data M a = .. —-- in general
bind :: (a -=>MDb) -> (Ma -> M Db)
unit :: a -=> M a
infixl 1 >>= -- infix, right-associative, prec. 1 (low)
(>>=) :: Ma —> (a->MDb) ->MDb
ma >>= £ = bind £ ma —— in our examples
return :: a -=> M a
return = unit -- in our examples
where
return a >>= f = f a

ma >>= return ma

ma >>= (\x -=> £ x >=h) = (ma >>= f) >>=h

51/60

The Monad Class

infixl 1 >>=, >>

class Monad M where —-- approximation of ’'real’ definition
(>>=) :: Ma —> (a->MDb) ->MDb
(>>) :: Ma->Mb->Mb
return :: a -> M a —-- inject a value into the monad
ma > mb = ma >>= _ -> mb —-- ‘ignore (result of) ma’

Special Monad Syntax (Informal)

do el; e2 = el >> e2 imperative style
dop<—el; e2 = el >>=\p —> e2 e2 probably uses p

52/60

The Maybe type

A Maybe value represents a “real” value (Just a) or 'no value’
(Nothing).

data Maybe a = Nothing | Just a

Code to avoid

e :: Maybe a
f :: a -> Maybe a
case e of
Nothing —> Nothing
Just x —> £ x

53/60

Maybe Monad
Maybe Monad

instance Monad Maybe where
Nothing >>= £ = Nothing
(Just x) >>= £ = £ x
return = Just

Code to avoid

e :: Maybe a
f :: a -> Maybe a
case e of
Nothing —-> Nothing
Just x > f y

.. becomes

e >= f —— will not call f unless

54/60

U2 § 12
I/0O conflicts with lazy evaluation

Side effects (e.g. I/0) update the state of the “world”, we want to
ensure the order of the 1/0O operations.

The 10 Monad is much like the State Monad

type IO a = World -> (World, a)

IO a

A value x:: 10 arepresents an action that, when performed, does
some |/O before delivering a value of type a
a

—

IO a
World World
—_— —

55/60

getChar, putChar
Read/write a single character.

getChar IO Char
putChar Char -> IO () —— returns trivial value ()
.
10 bind
(>>=) I0a -> (a->1I0Db) -> IO0ODb
echo I0()
echo = getChar >>= putChar -- a = Char, b = ()
Char ()
getChar: :I0 Chax putChar::I0 () (e
Wﬂzj World _E}rld
echo :: IO ()

56/60

echo; echo

(>>=) :: I0a -> (a ->I0Ob) —>I0Db

—— echo :: IO ()

echo >>= echo -- ERROR: 2nd echo should be function () -> IO ()
(>>) :: I0 a => I0 b —> IO b —— throw away ’'result’ first argumehn

(>>) al a2 = al >>= (\x —> a2)

echo >> echo —-- OK, read ’">>’ as ’then’
return
return :: a -> IO a
a a
—_—l— — — — — — ———
return a
World World
—_— - - - - - — B E—

(return a):: IO a

57/60

get2Chars
get2Chars :: IO (Char, Char)

get2Chars = getChar >>= \cl ->
(getChar >>= (\c2 -> return (cl,c2)))

The world behaves as expected

Since >>= is the only function 'touching’ the world, the 'world’ is never
duplicated or thrown away and getchar and putchar can be
implemented by performing the operation right away.

58/60

Epilogue

e Epilogue

59/60

Not Covered

modules, named fields, arrays, finite maps, strict fields, kinds,
comonads, arrows, monad transformers, parsing monads, type theory

References

@ See website.

@ Most of the material on these slides comes from “A Gentle
Introduction to Haskell 98 by Hudak et al.

@ The Monad introduction is based on
http://sigfpe.blogspot.com/2006/08/
you—-could-have-invented-monads—and.html

@ S. Peyton Jones, “Tackling the Awkward Squad: monadic /O,
concurrency, exception and foreign-language calls in Haskell”,
2005.

Acknowledgements
Dries Harnie pointed out errors in earlier versions. 60

http://sigfpe.blogspot.com/2006/08/you-could-have-invented-monads-and.html
http://sigfpe.blogspot.com/2006/08/you-could-have-invented-monads-and.html

	Introduction
	Expressions, Values, Types
	User Defined Types
	Built-in types

	Functions
	Defining Functions
	Laziness and Infinite Data Structures
	Case Expressions and Pattern Matching

	Type Classes and Overloading
	Monads
	Debuggable Functions
	Stateful Functions
	Monads
	Maybe Monad
	The IO Monad

	Epilogue

