A Taste of Erlang
DRAFT

D. Vermeir

December 2, 2009

Introduction

2/1

What is Erlang?

Haskell is a declarative functional programming
language with support for concurrency, distribution,
fault-tolerance

declarative E.g. variables are as in Prolog, "assign/unify once’.
functional No state

concurrency Communicating processes (millions of them).

distribution Processes can run on different machines

fault tolerance Using supervisors, erronuous processes can be
automatically restarted, using a user-defined strategy.

Sequential Erlang

4/1

Modules, Functions, Matching, Guards

-module (examplel) .
—-export ([factorial/1]) .

% factorial/l is interface of this module
factorial (N) when is_integer(N), N >0 —-> factorial(N,1).

% internal factorial/2 uses accumulator

factorial (1, Accumulator) -> Accumulator.

factorial (N, Accumulator) when N>1 ->
factorial (N-1, Accumulator*N).

@ Variable names start with upper case, atoms much as in Datalog

@ Function definition has clauses, matching of expressions causes
variables to be bound

@ First matching clause is executed, subject to guards.
@ Last expression after -> is returned.

Lists, List Comprehension

-module (example2) .
—export ([gsort/1]) .

gsort ([1) -> [].
gsort ([Pivot| Rest]) ->

gsort ([X || X <— Rest, X < Pivot])
++ Pivot
++ gsort ([X || X <— Rest, X >= Pivot]).

@ Prolog syntax

@ List comprehension: [X || X <- OtherList, ExtraConditions]

Tuples, Records

-module (binary_tree) .
—export ([member/2]) .

% member (Thing, Tree) : does Thing appear in Tree

member (_, empty) —-> false.
member (X, { _, X, _ }) -> true.
member (X, {Left, Y, _ }) when X < Y -> member (X, Left).

member (X, {_, ¥, Right }) when Y < X -> member (X, Right).

@ Tuple (vector) {a, b, ¢, d}
@ There are also records, but these are mapped internally to tuples

Higher Order Functions

-module (example3) .
—export ([foldl/3]) .

% foldl (Function, InitialValue, List) applies Function
% accross the list, starting with InitialValue, i.e.
$ foldl(F, Vv, [A,B,C]) = F(C, F(B, F(A, V)))
foldl(_, Accumulator, []) —> Accumulator.
foldl (F, Accumulator, [X | Rest]) —>

NewAccumulator = F (X, Accumulator),

foldl (F, NewAccumulator, Rest).

@ The first argument of £o141/3 is a function, making it a higher
order function

@ Anonymous functions may be defined using fun (args) ->.. end,
as shown below

-module (exampled) .
% Return the sum of a list of numbers
sum (Numbers) ->
example3:foldl (fun (N, Total) -> N + Total end, 0, Numbers).

rent and Distributed Erlang

9/1

Concurrent and Distributed Erlang

Communicating Processes (1/2)

-module (seql) .
—export ([make_sequence/0, get_next/l, reset/1l]).

make_sequence —> spawn(fun() -> loop(0) end).

loop(N) —> % tail recursion, constant space
receive % From is PID of sender process to reply to
{ From, get_next } —> From ! { self(), N }, loop(N+1);
reset —> loop (0)
end.

@ spawn Starts new process executing its argument function and
returns its PID (Process IDentifier).

@ receive gets request from the mailbox, blocks if none of the
available messages matches any of the patterns

@ pID!data Sends data to mailbox of process with PID.

@ self () returns own PID

@ register(some_atom, Pid) May be used to associate an atom
with a process (‘well known name’).

Communicating Processes (2/2)

-module (seql) .

—-export ([make_sequence/0, get_next/l, reset/1l]).
% client interface

get_next (SequenceProcess) —>

SequenceProcess ! { self(), get_next },
receive

{ SequenceProcess, N } —> N
end.

reset (SequenceProcess) —-> SequenceProcess ! reset.

Client Fragment

SequenceProcess = seql:make_sequence(),
seql:get_next (SequenceProcess), % 0
seql :get_next (SequenceProcess), % 1
seql:reset (SequenceProcess) .

Abstracting Protocols: a Server Behaviour

-module (server) .
-export ([start/1, , call/2, cast/2]).
start (Module) -> spawn(fun() -> loop (Module,
loop (Module, State) ->
receive
{ call, { Client, Id }, Params } ->
{ Reply, NewState } =
Client ! { Id, Reply },
loop (Module, NewState);
{ cast, Params } —>
NewState = (Params, State),

loop (Module, NewState)

()) end).

(Params, State),

end.
call (Server, Params) -—>
MsgId = make_ref (), % create unique ID
Server ! { call, { self(), MsgId } , Params },
receive
{ MsgId, Reply } —-> Reply
end.

cast (Server, Params) ->
Server ! { cast, Params }. oy

Server Behaviour Callbacks

-module (server) .
—-export ([start/1, , call/2, cast/2]).
start (Module) -> spawn(fun() -> loop(Module, Module:init()) end).
loop (Module, State) ->
receive
{ call, { Client, Id }, Params } —->
{ Reply, NewState } = Module:handle call (Params, State),
Client ! { Id, Reply },
loop (Module, NewState);
{ cast, Params } —>
NewState = Module:handle cast (Params, State),
loop (Module, NewState)
end.

The Callback Module Should Implement

% init -> InitialState
% handle call (Params, NewState) —-> { Reply, NewState }
% handle cast (Params, NewState) -> NewState

Concurrent and Distributed Erlang

Using a Behaviour: forget concurrency

-module (seq2) .

—-export ([make_sequence/0, get_next/l, reset/1l]).
—-export ([init/0, handle_call/2, handle_cast/2]).
% seq2 API

make_sequence () —> server:start (seq2).

get_next (SegServer) -> server:call (SegServer, get_next).

reset_next (SeqServer) -> server:cast (SeqServer, reset).
% server callbacks

init() -> O.

handle_call (get_next, N) -> { N, N+1 }.
handle_call(reset, _) —> 0.

% unit test: return 'OK’ or throw exception
test () —>

0 = init (),
{ 6, 7} = handle_call(get_next, 6),
0 = handle_cast (reset, 101),

ok.

Example Standard (OTP) Behaviours

Generic Server

gen_server generalizes request/response pattern from client/server,
RPC. Adds timeouts, delegation by server to another process,
monitoring of server by client (immediately notified of server failure).

v

Generic Finite State Machine
gen_£sm Clients signal events to the fsm, possibly waiting for reply

Generic Event Handler

gen_event dispatches received events to dynamically managed event
handlers. Several specialisations are available.

Concurrent and Distributed Erlang

Parallellism
% Calls = [{ Server, Params } ..]
multicalll (Calls) —>

Ids = [send_call(Call) || Call <- Calls],

collect_replies(Ids).

send_call ({ Server, Params }) —>
Id = make_ref(), % generates unique ID
Server ! { call, { self(), Id}, Params },
Id.

collect_replies(Ids) —->
[receive { Id, Result } -> Result end || Id <- Ids].

@ Each request is identified with a unique ID

@ multicalll stuffs server’'s mailbox with requests.

@ collect_replies Will wait for each reply in turn

= multicalll blocks until answers have been obtained

More Parallellism using Worker Processes

multicall2 (Calls) -> % Calls = [{ Server, Params } ..]
Parent = self(),
Pids = [worker (Parent, Call) || Call <- Calls],

% do something else
wait_all (Pids) .

worker (Parent, {Server, Params }) —-> ¢ new worker process
spawn (fun() ->
Result = server:call (Server, Params),
Parent ! { self(), Result }
end).

wait_all (Pids) —>
[receive { Pid, Result } -> Result end || Pid <- Pids].

@ Process creation is cheap (less than 1microsecond)

@ Processes are small (less than 1KBytes), you can have millions
running at the same time.

@ Processes can run on different machines (distribution)

Fault Tolerance in Erlang

18/1

Fault Tolerance in Erlang

Timeouts and signals

@ Timeouts can be handled by a receive clause.

@ A run-time error or a call to exit (Reason) cause an abnormal exit
of the process.

@ Processes can be linked using 1ink (Pid) and then receive signal
with pid and reason if Pid exits. By default, normal exit signals are
ignored, abnormal exit signals cause an abnormal exit.

process(..) —>
process_flag(trap_exit, true), $% turns signals into messages

link (From), % link to process with PID ’'From’
receive
’
{'EXIT’, From, Reason} —-> % process with PID ’'From’ exited
handle_exit (From, Reason),

after 5000 -> % timeout of 5 secs reached
end

Supervisors

@ As supervisor spawns a set of children and links to them.
@ It can use a strategy to restart failed children.
@ Children can themselves be supervisors: tree structure.

@ Linking is bidirectional, so 'orphaned’ child processes may Kkill
themselves if the supervisor dies.

20/1

Epilogue

21/1

Epilogue

References
@ http://www.erlang.org/ (Erlang official site)
@ http://www.trapexit.org/ (Erlang community)

@ Most of the material on these slides comes from “Erlang for
Concurrent Programming” by Jim Larson, CACM March 2009.

22/

1

http://www.erlang.org/
http://www.trapexit.org/

