
An introduction to compilers
DRAFT

D. Vermeir
Dept. of Computer Science

Vrij Universiteit Brussel, VUB
dvermeir@vub.ac.be

SREVINU

ITEIT

EJI
R

V

BRUSS
E

L

ECNIV
RE TENE

B
R

A
S

AI

T
N

EI
C

S

February 4, 2009

Contents

1 Introduction 6

1.1 Compilers and languages . 6

1.2 Applications of compilers . 7

1.3 Overview of the compilation process 9

1.3.1 Micro . 9

1.3.2 x86 code . 10

1.3.3 Lexical analysis . 12

1.3.4 Syntax analysis . 13

1.3.5 Semantic analysis . 14

1.3.6 Intermediate code generation 15

1.3.7 Optimization . 16

1.3.8 Code generation . 17

2 Lexical analysis 18

2.1 Introduction . 18

2.2 Regular expressions . 24

2.3 Finite state automata . 26

2.3.1 Deterministic finite automata 26

2.3.2 Nondeterministic finite automata 28

2.4 Regular expressions vs finite state automata 31

2.5 A scanner generator . 32

1

VUB-DINF/2009/2 2

3 Parsing 35

3.1 Context-free grammars . 35

3.2 Top-down parsing . 38

3.2.1 Introduction . 38

3.2.2 Eliminating left recursion in a grammar 41

3.2.3 Avoiding backtracking: LL(1) grammars 43

3.2.4 Predictive parsers . 44

3.2.5 Construction of first and follow 48

3.3 Bottom-up parsing . 50

3.3.1 Shift-reduce parsers . 50

3.3.2 LR(1) parsing . 54

3.3.3 LALR parsers and yacc/bison 62

4 Checking static semantics 65

4.1 Attribute grammars and syntax-directed translation 65

4.2 Symbol tables . 68

4.2.1 String pool . 69

4.2.2 Symbol tables and scope rules 69

4.3 Type checking . 71

5 Intermediate code generation 74

5.1 Postfix notation . 75

5.2 Abstract syntax trees . 76

5.3 Three-address code . 78

5.4 Translating assignment statements 79

5.5 Translating boolean expressions 81

5.6 Translating control flow statements 85

5.7 Translating procedure calls . 86

5.8 Translating array references . 88

VUB-DINF/2009/2 3

6 Optimization of intermediate code 92

6.1 Introduction . 92

6.2 Local optimization of basic blocks 94

6.2.1 DAG representation of basic blocks 95

6.2.2 Code simplification . 99

6.2.3 Array and pointer assignments 100

6.2.4 Algebraic identities . 101

6.3 Global flow graph information 101

6.3.1 Reaching definitions . 103

6.3.2 Reaching definitions using datalog 105

6.3.3 Available expressions . 106

6.3.4 Available expressions using datalog 109

6.3.5 Live variable analysis . 110

6.3.6 Definition-use chaining 112

6.3.7 Application: uninitialized variables 113

6.4 Global optimization . 113

6.4.1 Elimination of global common subexpressions 113

6.4.2 Copy propagation . 114

6.4.3 Constant folding and elimination of useless variables . . . 116

6.4.4 Loops . 116

6.4.5 Moving loop invariants 120

6.4.6 Loop induction variables 123

6.5 Aliasing: pointers and procedure calls 126

6.5.1 Pointers . 128

6.5.2 Procedures . 128

7 Code generation 130

7.1 Run-time storage management 131

7.1.1 Global data . 131

7.1.2 Stack-based local data 132

7.2 Instruction selection . 134

VUB-DINF/2009/2 4

7.3 Register allocation . 136

7.4 Peephole optimization . 137

A A Short Introduction to x86 Assembler Programming under Linux 139

A.1 Architecture . 139

A.2 Instructions . 140

A.2.1 Operands . 140

A.2.2 Addressing Modes . 140

A.2.3 Moving Data . 141

A.2.4 Integer Arithmetic . 142

A.2.5 Logical Operations . 142

A.2.6 Control Flow Instructions 142

A.3 Assembler Directives . 143

A.4 Calling a function . 144

A.5 System calls . 144

A.6 Example . 146

B Mc: the Micro-x86 Compiler 149

B.1 Lexical analyzer . 149

B.2 Symbol table management . 151

B.3 Parser . 152

B.4 Driver script . 155

B.5 Makefile . 156

B.6 Example . 157

B.6.1 Source program . 157

B.6.2 Assembly language program 157

C Minic parser and type checker 159

C.1 Lexical analyzer . 159

C.2 String pool management . 161

C.3 Symbol table management . 163

VUB-DINF/2009/2 5

C.4 Types library . 166

C.5 Type checking routines . 172

C.6 Parser with semantic actions . 175

C.7 Utilities . 178

C.8 Driver script . 179

C.9 Makefile . 180

Index 181

Bibliography 186

Chapter 1

Introduction

1.1 Compilers and languages

A compiler is a program that translates a source language text into an equivalent
target language text.

E.g. for a C compiler, the source language is C while the target language may be
Sparc assembly language.

Of course, one expects a compiler to do a faithful translation, i.e. the meaning of
the translated text should be the same as the meaning of the source text.

One would not be pleased to see the C program in Figure 1.1

1 #include <stdio.h>
2
3 int
4 main(int,char**)
5 {
6 int x = 34;
7 x = x*24;
8 printf("%d\n",x);
9 }

Figure 1.1: A source text in the C language

translated to an assembler program that, when executed, printed “Goodbye world”
on the standard output.

So we want the translation performed by a compiler to be semantics preserving.
This implies that the compiler is able to “understand” (compute the semantics of)

6

VUB-DINF/2009/2 7

the source text. The compiler must also “understand” the target language in order
to be able to generate a semantically equivalent target text.

Thus, in order to develop a compiler, we need a precise definition of both the
source and the target language. This means that both source and target language
must be formal.

A language has two aspects: a syntax and a semantics. The syntax prescribes
which texts are grammatically correct and the semantics specifies how to derive
the meaning from a syntactically correct text. For the C language, the syntax
specifies e.g. that

“the body of a function must be enclosed between matching braces (“{}”)”.

The semantics says that the meaning of the second statement in Figure 1.1 is that

“the value of the variable x is multiplied by 24 and the result becomes
the new value of the variable x”

It turns out that there exist excellent formalisms and tools to describe the syntax
of a formal language. For the description of the semantics, the situation is less
clear in that existing semantics specification formalisms are not nearly as simple
and easy to use as syntax specifications.

1.2 Applications of compilers

Traditionally, a compiler is thought of as translating a so-called “high level lan-
guage” such as C1 or Modula2 into assembly language. Since assembly language
cannot be directly executed, a further translation between assembly language and
(relocatable) machine language is necessary. Such programs are usually called
assemblers but it is clear that an assembler is just a special (easier) case of a com-
piler.

Sometimes, a compiler translates between high level languages. E.g. the first C++
implementations used a compiler called “cfront” which translated C++ code to C
code. Such a compiler is often called a “cross-compiler”.

On the other hand, a compiler need not target a real assembly (or machine) lan-
guage. E.g. Java compilers generate code for a virtual machine called the “Java

1If you want to call C a high-level language

VUB-DINF/2009/2 8

Virtual Machine” (JVM). The JVM interpreter then interprets JVM instructions
without any further translation.

In general, an interpreter needs to understand only the source language. Instead
of translating the source text, an interpreter immediately executes the instructions
in the source text. Many languages are usually “interpreted”, either directly, or
after a compilation to some virtual machine code: Lisp, Smalltalk, Prolog, SQL
are among those. The advantages of using an interpreter are that is easy to port
a language to a new machine: all one has to do is to implement the virtual ma-
chine on the new hardware. Also, since instructions are evaluated and examined
at run-time, it becomes possible to implement very flexible languages. E.g. for an
interpreter it is not a problem to support variables that have a dynamic type, some-
thing which is hard to do in a traditional compiler. Interpreters can even construct
“programs” at run time and interpret those without difficulties, a capability that is
available e.g. for Lisp or Prolog.

Finally, compilers (and interpreters) have wider applications than just translating
programming languages. Conceivably any large and complex application might
define its own “command language” which can be translated to a virtual machine
associated with the application. Using compiler generating tools, defining and
implementing such a language need not be difficult. Hence SQL can be regarded
as such a language associated with a database management system. Other so-
called “little languages” provide a convenient interface to specialized libraries.
E.g. the language (n)awk is a language that is very convenient to do powerful
pattern matching and extraction operations on large text files.

VUB-DINF/2009/2 9

1.3 Overview of the compilation process

In this section we will illustrate the main phases of the compilation process through
a simple compiler for a toy programming language. The source for an implemen-
tation of this compiler can be found in Appendix B and on the web site of the
course.

program : declaration list statement list
;

declaration list : declaration ; declaration list
| ε
;

declaration : declare var
;

statement list : statement ; statement list
| ε
;

statement : assignment
| read statement
| write statement
;

assignment : var = expression
;

read statement : read var
;

write statement : write expression
;

expression : term
| term + term
| term − term
;

term : NUMBER
| var
| (expression)
;

var : NAME
;

Figure 1.2: The syntax of the Micro language

1.3.1 Micro

The source language “Micro” is very simple. It is based on the toy language
described in [FL91].

VUB-DINF/2009/2 10

The syntax of Micro is described by the rules in Figure 1.2. We will see in Chap-
ter 3 that such rules can be formalized into what is called a grammar.

Note that NUMBER and NAME have not been further defined. The idea is, of
course, that NUMBER represents a sequence of digits and that NAME represents
a string of letters and digits, starting with a letter.

A simple Micro program is shown in Figure 1.3

{
declare xyz;
xyz = (33+3)-35;
write xyz;
}

Figure 1.3: A Micro program

The semantics of Micro should be clear2: a Micro program consists of a sequence
of read/write or assignment statements. There are integer-valued variables (which
need to be declared before they are used) and expressions are restricted to addition
and substraction.

1.3.2 x86 code

The target language will be code for the x86 processor family. Figure 1.4 shows
part of the output of the compiler for the program of Figure 1.3. The full output
can be found in Section B.6.2, page 157.

X86 processors have a number of registers, some of which are special purpose,
such as the esp register which always points to the top of the stack (which grows
downwards). More information on x86 assembler programming can be found in
the Appendix, Section A, page 139.

line 1 The code is divided into data and text sections where the latter contains the
actual instructions.

line 2 This defines a data area of 4 bytes wide which can be referenced using the
name xyz. This definition is the translation of a Micro declaration.

2The output of the program in Figure 1.3 is, of course, 1.

VUB-DINF/2009/2 11

1 .section .data
2 .lcomm xyz, 4
3 .section .text

...
44 .globl main
45 .type main, @function
46 main:
47 pushl %ebp
48 movl %esp, %ebp
49 pushl $33
50 pushl $3
51 popl %eax
52 addl %eax, (%esp)
53 pushl $35
54 popl %eax
55 subl %eax, (%esp)
56 popl xyz
57 pushl xyz
58 call print
59 movl %ebp, %esp
60 popl %ebp
61 ret

...

Figure 1.4: X86 assembly code generated for the program in Figure 1.3

line 44 This defines main as a globally available name. It will be used to refer
to the single function (line 45) that contains the instructions corresponding
to the Micro program. The function starts at line 46 where the location
corresponding to the label ’main’ is defined.

line 47 Together with line 48, this starts off the function according to the C call-
ing conventions: the current top of stack contains the return address. This
address has been pushed on the stack by the (function) call instruction.
It will eventually be used (and popped) by a subsequent ret (return from
function call) instruction. Parameters are passed by pushing them on the
stack just before the call instruction. Line 47 saves the caller’s “base
pointer” in the ebp register by pushing it on the stack before setting (line 48)
the current top of the stack as a new base pointer ebp. When returning from
the function call, the orginal stack is restored by copying the saved value
from ebp to esp (line 59) and popping the saved base pointer (line 60).

line 49 The evaluation of the subexpression 33 + 3 is initiated by pushing both
constants (indicates by the use of a ’$’ prefix) on the stack (lines 49, 50)

VUB-DINF/2009/2 12

line 51 Once both operands are on the top of the stack, the operation (corresponding
to the 33 + 3 expression) is executed by popping the second argument to the
eax register (line 51) which is then added to the first argument on the top of
the stack (line 52). The net result is that the two arguments of the operation
are replaced on the top of the stack by the (single) result of the operation.

line 53 To substract 35 from the result, this second argument of the substraction is
pushed on the stack (line 53), after which the substraction is executed on
the two operands on the stack, replacing them on the top of the stack by the
result (lines 54,55).

line 56 The result of evaluating the expression is assigned to the variable xyz by
popping it from the stack to the appropriate address.

line 57 In order to print the value at address xyz, it is first pushed on the stack as
a parameter for a subsequent call (line 58) to a print function (the code of
which can be found in Section B.6.2).

1.3.3 Lexical analysis

The raw input to a compiler consists of a string of bytes or characters. Some
of those characters, e.g. the “{” character in Micro, may have a meaning by
themselves. Other characters only have meaning as part of a larger unit. E.g. the
“y” in the example program from Figure 1.3, is just a part of the NAME “xyz”.
Still others, such as “ ”, “\n” serve as separators to distinguish one meaningful
string from another.

The first job of a compiler is then to group sequences of raw characters into mean-
ingful tokens. The lexical analyzer module is responsible for this. Conceptually,
the lexical analyzer (often called scanner) transforms a sequence of characters
into a sequence of tokens. In addition, a lexical analyzer will typically access
the symbol table to store and/or retrieve information on certain source language
concepts such as variables, functions, types.

For the example program from Figure 1.3, the lexical analyzer will transform the
character sequence

{ declare xyz; xyz = (33+3)-35; write xyz; }

into the token sequence shown in Figure 1.5.

Note that some tokens have “properties”, e.g. a 〈NUMBER〉 token has a value
property while a 〈NAME〉 token has a symbol table reference as a property.

VUB-DINF/2009/2 13

〈LBRACE〉
〈DECLARE symbol table ref=0〉
〈NAME symbol table ref=3〉
〈SEMICOLON〉
〈NAME symbol table ref=3〉
〈ASSIGN〉
〈LPAREN〉
〈NUMBER value=33〉
〈PLUS〉
〈NUMBER value=3〉
〈RPAREN〉
〈MINUS〉
〈NUMBER value=35〉
〈SEMICOLON〉
〈WRITE symbol table ref=2〉
〈NAME symbol table ref=3〉
〈SEMICOLON〉
〈RBRACE〉

Figure 1.5: Result of lexical analysis of program in Figure 1.3

After the scanner finishes, the symbol table in the example could look like

0 “declare” DECLARE
1 “read” READ
2 “write” WRITE
3 “xyz” NAME

where the third column indicates the type of symbol.

Clearly, the main difficulty in writing a lexical analyzer will be to decide, while
reading characters one by one, when a token of which type is finished. We will
see in Chapter 2 that regular expressions and finite automata provide a powerful
and convenient method to automate this job.

1.3.4 Syntax analysis

Once lexical analysis is finished, the parser takes over to check whether the se-
quence of tokens is grammatically correct, according to the rules that define the
syntax of the source language.

Looking at the grammar rules for Micro (Figure 1.2), it seems clear that a program
is syntactically correct if the structure of the tokens matches the structure of a
〈program〉 as defined by these rules.

VUB-DINF/2009/2 14

Such matching can conveniently be represented as a parse tree. The parse tree
corresponding to the token sequence of Figure 1.5 is shown in Figure 1.6.

<program>

<statement> <statement_list>

<statement>

<RBRACE}

<SEMICOLON>

<SEMICOLON><LBRACE>

<statement_list>

<assignment>

<expression>

<term> <term>

<expression>

<term>

(xyz)

<term>

(33) (3)

(35)

<NAME> <ASSIGN>

<MINUS>

<LPAREN> <RPAREN> <NUMBER>

<NUMBER>

<PLUS>

<NUMBER>

<statement> <SEMICOLON>

<write_statement>

<expression>

<term>

<var>

(xyz)

<NAME>

<WRITE>

<declaration>

(xyz)

<DECLARE> <NAME>

<statement_list>

<>

Figure 1.6: Parse tree of program in Figure 1.3

Note that in the parse tree, a node and its children correspond to a rule in the
syntax specification of Micro: the parent node corresponds to the left hand side
of the rule while the children correspond to the right hand side. Furthermore, the
yield3 of the parse tree is exactly the sequence of tokens that resulted from the
lexical analysis of the source text.

Hence the job of the parser is to construct a parse tree that fits, according to the
syntax specification, the token sequence that was generated by the lexical ana-
lyzer.

In Chapter 3, we’ll see how context-free grammars can be used to specify the
syntax of a programming language and how it is possible to automatically generate
parser programs from such a context-free grammar.

1.3.5 Semantic analysis

Having established that the source text is syntactically correct, the compiler may
now perform additional checks such as determining the type of expressions and

3The yield of a tree is the sequence of leafs of the tree in lexicographical (left-to-right) order

VUB-DINF/2009/2 15

checking that all statements are correct with respect to the typing rules, that vari-
ables have been properly declared before they are used, that functions are called
with the proper number of parameters etc.

This phase is carried out using information from the parse tree and the symbol ta-
ble. In our example, very little needs to be checked, due to the extreme simplicity
of the language. The only check that is performed verifies that a variable has been
declared before it is used.

1.3.6 Intermediate code generation

In this phase, the compiler translates the source text into an simple intermediate
language. There are several possible choices for an intermediate language. but
in this example we will use the popular “three-address code” format. Essentially,
three-address code consists of assignments where the right-hand side must be a
single variable or constant or the result of a binary or unary operation. Hence
an assignment involves at most three variables (addresses), which explains the
name. In addition, three-address code supports primitive control flow statements
such as goto, branch-if-positive etc. Finally, retrieval from and storing into a one-
dimensional array is also possible.

The translation process is syntax-directed. This means that

• Nodes in the parse tree have a set of attributes that contain information
pertaining to that node. The set of attributes of a node depends on the
kind of syntactical concept it represents. E.g. in Micro, an attribute of an
〈expression〉 could be the sequence of x86 instructions that leave the result
of the evaluation of the expression on the top of the stack. Similarly, both
〈var〉 and 〈expression〉 nodes have a name attribute holding the name of the
variable containing the current value of the 〈var〉 or 〈expression〉
We use n.a to refer to the value of the attribute a for the node n.

• A number of semantic rules are associated with each syntactic rule of the
grammar. These semantic rules determine the values of the attributes of the
nodes in the parse tree (a parent node and its children) that correspond to
such a syntactic rule. E.g. in Micro, there is a semantic rule that says that
the code associated with an 〈assignment〉 in the rule

assignment : var = expression

VUB-DINF/2009/2 16

consists of the code associated with 〈expression〉 followed by a three-address
code statement of the form

var.name = expression.name

More formally, such a semantic rule might be written as

assignment.code = expression.code ‖ “var.name = expression.name”

• The translation of the source text then consists of the value of a particular
attribute for the root of the parse tree.

Thus intermediate code generation can be performed by computing, using the
semantic rules, the attribute values of all nodes in the parse tree. The result is then
the value of a specific (e.g. “code”) attribute of the root of the parse tree.

For the example program from Figure 1.3, we could obtain the three-address code
in Figure 1.7.

T0 = 33 +3
T1 = T0 - 35
XYZ = T1
WRITE XYZ

Figure 1.7: three-address code corresponding to the program of Figure 1.3

Note the introduction of several temporary variables, due to the restrictions in-
herent in three-address code. The last statement before the WRITE may seem
wasteful but this sort of inefficiency is easily taken care of by the next optimiza-
tion phase.

1.3.7 Optimization

In this phase, the compiler tries several optimization methods to replace fragments
of the intermediate code text with equivalent but faster (and usually also shorter)
fragments.

Techniques that can be employed include common subexpression elimination,
loop invariant motion, constant folding etc. Most of these techniques need ex-
tra information such as a flow graph, live variable status etc.

In our example, the compiler could perform constant folding and code reordering
resulting in the optimized code of Figure 1.8.

VUB-DINF/2009/2 17

XYZ = 1
WRITE XYZ

Figure 1.8: Optimized three-address code corresponding to the program of Fig-
ure 1.3

1.3.8 Code generation

The final phase of the compilation consists of the generation of target code from
the intermediate code. When the target code corresponds to a register machine, a
major problem is the efficient allocation of scarce but fast registers to variables.
This problem may be compared with the paging strategy employed by virtual
memory management systems. The goal is in both cases to minimize traffic be-
tween fast (the registers for a compiler, the page frames for an operating system)
and slow (the addresses of variables for a compiler, the pages on disk for an op-
erating system) memory. A significant difference between the two problems is
that a compiler has more (but not perfect) knowledge about future references to
variables, so more optimization opportunities exist.

Chapter 2

Lexical analysis

2.1 Introduction

As seen in Chapter 1, the lexical analyzer must transform a sequence of “raw”
characters into a sequence of tokens. Often a token has a structure as in Figure 2.1.

1 #ifndef LEX_H
2 #define LEX_H
3 // %M%(%I%) %U% %E%
4
5 typedef enum { NAME, NUMBER, LBRACE, RBRACE, LPAREN, RPAREN, ASSIGN,
6 SEMICOLON, PLUS, MINUS, ERROR } TOKENT;
7
8 typedef struct
9 {

10 TOKENT type;
11 union {
12 int value; /* type == NUMBER */
13 char *name; /* type == NAME */
14 } info;
15 } TOKEN;
16
17 extern TOKEN *lex();
18 #endif LEX_H

Figure 2.1: A declaration for TOKEN and lex()

Actually, the above declaration is not realistic. Usually, more “complex” tokens
such as NAMEs will refer to a symbol table entry rather than simply their string
representation.

18

VUB-DINF/2009/2 19

Clearly, we can split up the scanner using a function lex() as in Figure 2.1 which
returns the next token from the source text.

It is not impossible1 to write such a function by hand. A simple implementation
of a hand-made scanner for Micro (see Chapter 1 for a definition of “Micro”) is
shown below.

1 // %M%(%I%) %U% %E%
2
3 #include <stdio.h> /* for getchar() and friends */
4 #include <ctype.h> /* for isalpha(), isdigit() and friends */
5 #include <stdlib.h> /* for atoi() */
6 #include <string.h> /* for strdup() */
7
8 #include "lex.h"
9

10 static int state = 0;
11
12 #define MAXBUF 256
13 static char buf[MAXBUF];
14 static char* pbuf;
15
16 static char* token_name[] =
17 {
18 "NAME", "NUMBER", "LBRACE", "RBRACE",
19 "LPAREN", "RPAREN", "ASSIGN", "SEMICOLON",
20 "PLUS", "MINUS", "ERROR"
21 };
22
23 static TOKEN token;
24 /*
25 * This code is not robust: no checking on buffer overflow, ...
26 * Nor is it complete: keywords are not checked but lumped into
27 * the ’NAME’ token type, no installation in symbol table, ...
28 */
29 TOKEN*
30 lex()
31 {
32 char c;
33
34 while (1)
35 switch(state)
36 {
37 case 0: /* stands for one of 1,4,6,8,10,13,15,17,19,21,23 */
38 pbuf = buf;
39 c = getchar();
40 if (isspace(c))
41 state = 11;

1Some people actually enjoy this.

VUB-DINF/2009/2 20

42 else if (isdigit(c))
43 {
44 *pbuf++ = c; state = 2;
45 }
46 else if (isalpha(c))
47 {
48 *pbuf++ = c; state = 24;
49 }
50 else switch(c)
51 {
52 case ’{’: state = 5; break;
53 case ’}’: state = 7; break;
54 case ’(’: state = 9; break;
55 case ’)’: state = 14; break;
56 case ’+’: state = 16; break;
57 case ’-’: state = 18; break;
58 case ’=’: state = 20; break;
59 case ’;’: state = 22; break;
60 default:
61 state = 99; break;
62 }
63 break;
64 case 2:
65 c = getchar();
66 if (isdigit(c))
67 *pbuf++ = c;
68 else
69 state = 3;
70 break;
71 case 3:
72 token.info.value= atoi(buf);
73 token.type = NUMBER;
74 ungetc(c,stdin);
75 state = 0; return &token;
76 break;
77 case 5:
78 token.type = LBRACE;
79 state = 0; return &token;
80 break;
81 case 7:
82 token.type = RBRACE;
83 state = 0; return &token;
84 break;
85 case 9:
86 token.type = LPAREN;
87 state = 0; return &token;
88 break;
89 case 11:
90 c = getchar();

VUB-DINF/2009/2 21

91 if (isspace(c))
92 ;
93 else
94 state = 12;
95 break;
96 case 12:
97 ungetc(c,stdin);
98 state = 0;
99 break;

100 case 14:
101 token.type = RPAREN;
102 state = 0; return &token;
103 break;
104 case 16:
105 token.type = PLUS;
106 state = 0; return &token;
107 break;
108 case 18:
109 token.type = MINUS;
110 state = 0; return &token;
111 break;
112 case 20:
113 token.type = ASSIGN;
114 state = 0; return &token;
115 break;
116 case 22:
117 token.type = SEMICOLON;
118 state = 0; return &token;
119 break;
120 case 24:
121 c = getchar();
122 if (isalpha(c)||isdigit(c))
123 *pbuf++ = c;
124 else
125 state = 25;
126 break;
127 case 25:
128 *pbuf = (char)0;
129 token.info.name = strdup(buf);
130 token.type = NAME;
131 ungetc(c,stdin);
132 state = 0; return &token;
133 break;
134 case 99:
135 if (c==EOF)
136 return 0;
137 fprintf(stderr,"Illegal character: \’%c\’\n",c);
138 token.type = ERROR;
139 state = 0; return &token;

VUB-DINF/2009/2 22

140 break;
141 default:
142 break; /* Cannot happen */
143 }
144 }
145
146 int
147 main()
148 {
149 TOKEN *t;
150
151 while ((t=lex()))
152 {
153 printf("%s",token_name[t->type]);
154 switch (t->type)
155 {
156 case NAME:
157 printf(": %s\n",t->info.name);
158 break;
159 case NUMBER:
160 printf(": %d\n",t->info.value);
161 break;
162 default:
163 printf("\n");
164 break;
165 }
166 }
167 return 0;
168 }

The control flow in the above lex() procedure can be represented by a combination
of so-called transition diagrams which are shown in Figure 2.2.

There is a transition diagram for each token type and another one for white space
(blank, tab, newline). The code for lex() simply implements those diagrams. The
only complications are

• When starting a new token (i.e., upon entry to lex()), we use a “special”
state 0 to represent the fact that we didn’t decide yet which diagram to
follow. The choice here is made on the basis of the next input character.

• In Figure 2.2, bold circles represent states where we are sure which token
has been recognized. Sometimes (e.g. for the LBRACE token type) we
know this immediately after scanning the last character making up the to-
ken. However, for other types, like NUMBER, we only know the full extent
of the token after reading an extra character that will not belong to the to-

VUB-DINF/2009/2 23

digit not(digit)

digit

letter

letter | digit

not(letter | digit)

*

*

1 2 3

*spnl

spnl

not(spnl)

} (

)

+ − =

;

16

21 22

15 17

10 11 12 13

18

14

19 20

9876
{

54

23 24 25

Figure 2.2: The transition diagram for lex()

ken. In such a case we must push the extra character back onto the input
before returning. Such states have been marked with a * in Figure 2.2.

• If we read a character that doesn’t fit any transition diagram, we return a
special ERROR token type.

Clearly, writing a scanner by hand seems to be easy, once you have a set of tran-
sition diagrams such as the ones in Figure 2.2. It is however also boring, and
error-prone, especially if there are a large number of states.

Fortunately, the generation of such code can be automated. We will describe how
a specification of the various token types can be automatically converted in code
that implements a scanner for such token types.

First we will design a suitable formalism to specify token types.

VUB-DINF/2009/2 24

2.2 Regular expressions

In Micro, a NUMBER token represents a digit followed by 0 or more digits. A
NAME consists of a letter followed by 0 or more alphanumeric characters. A
LBRACE token consists of exactly one “{” character, etc.

Such specifications are easily formalized using regular expressions. Before defin-
ing regular expressions we should recall the notion of alphabet (a finite set of
abstract symbols, e.g. ASCII characters), and (formal) language (a set of strings
containing symbols from some alphabet).

The length of a string w, denoted |w| is defined as the number of symbols occur-
ring in w. The prefix of length l of a string w, denoted pref l(w) is defined as the
longest string x such that |x| ≤ l and w = xy for some string y. The empty string
(of length 0) is denoted ε. The product L1.L2 of two languages is the language

L1.L2 = {xy | x ∈ L1 ∧ y ∈ L2}

The closure L∗ of a language L is defined by

L∗ = ∪i∈NL
i

(where, of course, L0 = {ε} and Li+1 = L.Li).

Definition 1 The following table, where r and s denote arbitrary regular expres-
sions, recursively defines all regular expressions over a given alphabet Σ, together
with the language Lx each expression x represents.

Regular expression Language
∅ ∅
ε {ε}
a {a}
(r + s) Lr ∪ Ls
(rs) Lr · Ls
(r∗) L∗r

In the table, r and s denote arbitrary regular expressions, and a ∈ Σ is an arbi-
trary symbol from Σ.

A language L for which there exists a regular r expression such that Lr = L is
called a regular language.

VUB-DINF/2009/2 25

We assume that the operators +, concatenation and ∗ have increasing precedence,
allowing us to drop many parentheses without risking confusion. Thus, ((0(1∗)) + 0)
may be written as 01∗ + 0.

From Figure 2.2 we can deduce regular expressions for each token type, as shown
in Figure 2.1. We assume that

Σ = {a, . . . , z, A, . . . , Z, 0, . . . , 9,SP,NL, (,),+,=, {, }, ; ,−}

Token type or abbreviation Regular expression
letter a+ . . .+ z + A+ . . .+ Z
digit 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
NUMBER digit(digit)∗

NAME letter(letter + digit)∗

space (SP + NL)(SP + NL)∗

LBRACE {
.. ..

Table 2.1: Regular expressions describing Micro tokens

A full specification, such as the one in Section B.1, page 149, then consists of a
set of (extended) regular expressions, plus C code for each expression. The idea
is that the generated scanner will

• Process input characters, trying to find a longest string that matches any of
the regular expressions2.

• Execute the code associated with the selected regular expression. This code
can, e.g. install something in the symbol table, return a token type or what-
ever.

In the next section we will see how a regular expression can be converted to a so-
called deterministic finite automaton that can be regarded as an abstract machine
to recognize strings described by regular expressions. Automatic translation of
such an automaton to actual code will turn out to be straightforward.

2If two expressions match the same longest string, the one that was declared first is chosen.

VUB-DINF/2009/2 26

2.3 Finite state automata

2.3.1 Deterministic finite automata

Definition 2 A deterministic finite automaton (DFA) is a tuple

(Q,Σ, δ, q0, F)

where

• Q is a finite set of states,

• Σ is a finite input alphabet

• δ : Q× Σ→ Q is a (total) transition function

• q0 ∈ Q is the initial state

• F ⊆ Q is the set of final states

Definition 3 Let M = (Q,Σ, δ, q0, F) be a DFA. A configuration of M is a pair
(q, w) ∈ Q× Σ∗. For a configuration (q, aw) (where a ∈ Σ), we write

(q, aw) `M (q′, w)

just when δ(q, a) = q′ 3. The reflexive and transitive closure of the binary relation
`M is denoted as `∗M . A sequence

c0 `M c1 `M . . . `M cn

is called a computation of n ≥ 0 steps by M .

The language accepted by M is defined by

L(M) = {w | ∃q ∈ F · (q0, w) `∗M (q, ε)}

We will often write δ∗(q, w) to denote the unique q′ ∈ Q such that (q, w) `∗M
(q′, ε).

3We will drop the subscript M in `M if M is clear from the context.

VUB-DINF/2009/2 27

Example 1 Assuming an alphabet Σ = {l, d, o} (where “l” stands for “letter”,
“d” stands for “digit” and “o” stands for “other”), a DFA recognizing Micro
NAMEs can be defined as follows:

M = ({q0, qe, q1}, {l, d, o}, δ, q0, {q1})

where δ is defined by

δ(q0, l) = q1

δ(q0, d) = qe

δ(q0, o) = qe

δ(q1, l) = q1

δ(q1, d) = q1

δ(q1, o) = qe

δ(qe, l) = qe

δ(qe, d) = qe

δ(qe, o) = qe

M is shown in Figure 2.3 (the initial state has a small incoming arrow, final states
are in bold):

q0 q1

qe

l

l

do

o

d

l

d

o

Figure 2.3: A DFA for NAME

Clearly, a DFA can be efficiently implemented, e.g. by encoding the states as
numbers and using an array to represent the transition function. This is illustrated
in Figure 2.4. The next state array can be automatically generated from the
DFA description.

What is not clear is how to translate regular expressions to DFA’s. To show how
this can be done, we need the more general concept of a nondeterministic finite
automaton (NFA).

VUB-DINF/2009/2 28

1 typedef int STATE;
2 typedef char SYMBOL;
3 typedef enum {false,true} BOOL;
4
5 STATE next_state[SYMBOL][STATE];
6 BOOL final[STATE];
7
8 BOOL
9 dfa(SYMBOL *input,STATE q)

10 {
11 SYMBOl c;
12
13 while (c=*input++)
14 q = next_state[c,q];
15 return final[q];
16 }

Figure 2.4: DFA implementation

2.3.2 Nondeterministic finite automata

A nondeterministic finite automaton is much like a deterministic one except that
we now allow several possibilities for a transition on the same symbol from a
given state. The idea is that the automaton can arbitrarily (nondeterministically)
choose one of the possibilities. In addition, we will also allow ε-moves where the
automaton makes a state transition (labeled by ε) without reading an input symbol.

Definition 4 A nondeterministic finite automaton (NFA) is a tuple

(Q,Σ, δ, q0, F)

where

• Q is a finite set of states,

• Σ is a finite input alphabet

• δ : Q× (Σ ∪ {ε})→ 2Q is a (total) transition function 4

• q0 ∈ Q is the initial state

• F ⊆ Q is the set of final states

VUB-DINF/2009/2 29

ba

q2

q1q0
a

b

Figure 2.5: M1

It should be noted that ∅ ∈ 2Q and thus Definition 4 sanctions the possibility of
there not being any transition from a state q on a given symbol a.

Example 2 Consider M1 = ({q0, q1, q2}, δ1, q0, {q0}) as depicted in Figure 2.5.
The table below defines δ1:

q ∈ Q σ ∈ Σ δ1(q, σ)
q0 a {q1}
q0 b ∅
q1 a ∅
q1 b {q0, q2}
q2 a {q0}
q2 b ∅

The following definition formalizes our intuition about the behavior of nondeter-
ministic finite automata.

Definition 5 Let M = (Q,Σ, δ, q0, F) be a NFA. A configuration of M is a pair
(q, w) ∈ Q× Σ∗. For a configuration (q, aw) (where a ∈ Σ ∪ {ε}), we write

(q, aw) `M (q′, w)

just when q′ ∈ δ(q, a) 5. The reflexive and transitive closure of the binary relation
`M is denoted as `∗M . The language accepted by M is defined by

L(M) = {w | ∃q ∈ F · (q0, w) `∗M (q, ε)}
4For any set X , we use 2X to denote its power set, i.e. the set of all subsets of X .
5We will drop the subscript M in `M if M is clear from the context.

VUB-DINF/2009/2 30

Example 3 The following sequence shows how M1 from Example 2 can accept
the string abaab:

(q0, abaab) `M1 (q1, baab)

`M1 (q2, aab)

`M1 (q0, ab)

`M1 (q1, b)

`M1 (q0, ε)

L(M1) = {w0w1 . . . wn | n ∈ N ∧ ∀0 ≤ i ≤ n · wi ∈ {ab, aba}}

Although nondeterministic finite automata are more general than deterministic
ones, it turns out that they are not more powerful in the sense that any NFA can
be simulated by a DFA.

Theorem 1 Let M be a NFA. There exists a DFA M ′ such that L(M ′) = L(M).

Proof: (sketch) Let M = (Q,Σ, δ, q0, F) be a NFA. We will construct a DFA M ′

that simulates M . This is achieved by letting M ′ be “in all possible states” that
M could be in (after reading the same symbols). Note that “all possible states” is
always an element of 2Q, which is finite since Q is.

To deal with ε-moves, we note that, if M is in a state q, it could also be in any
state q′ to which there is an ε-transition from q. This motivates the definition of
the ε-closure Cε(S) of a set of states S:

Cε(S) = {p ∈ Q | ∃q ∈ S · (q, ε) `∗M (p, ε)} (2.1)

Now we define
M ′ = (2Q,Σ, δ′, s0, F

′)

where

• δ′ is defined by

∀s ∈ 2Q, a ∈ Σ · δ′(s, a) = ∪q∈sCε(δ(q, a)) (2.2)

• s0 = Cε(q0), i.e. M ′ starts in all possible states where M could go to from
q0 without reading any input.

• F ′ = {s ∈ 2Q | s ∩ F 6= ∅}, i.e. if M could end up in a final state, then M ′

will do so.

It can then be shown that L(M ′) = L(M). 2

VUB-DINF/2009/2 31

2.4 Regular expressions vs finite state automata

In this section we show how a regular expression can be translated to a nondeter-
ministic finite automata that defines the same language. Using Theorem 1, we can
then translate regular expressions to DFA’s and hence to a program that accepts
exactly the strings conforming to the regular expression.

Theorem 2 Let r be a regular expression. Then there exists a NFA Mr such that
L(Mr) = Lr.

Proof:
We show by induction on the number of operators used in a regular expression r
that Lr is accepted by an NFA

Mr = (Q,Σ, δ, q0, {qf})

(where Σ is the alphabet of Lr) which has exactly one final state qf satisfying

∀a ∈ Σ ∪ {ε} · δ(qf , a) = ∅ (2.3)

Base case

Assume that r does not contain any operator. Then r is one of ∅, ε or a ∈ Σ.

We then define M∅, Mε and Ma as shown in Figure 2.6.

aMa

Mε

M∅

Figure 2.6: M∅,Mε and Ma

Induction step

More complex regular expressions must be of one of the forms r1 + r2, r1r2 or r∗1.
In each case, we can construct a NFA Mr1+r2 , Mr1r2 or Mr∗1

, based on Mr1 and
Mr2 , as shown in Figure 2.7.

VUB-DINF/2009/2 32

Mr1∗

Mr1r2

Mr1+r2

Mr1

Mr2

ε

ε ε

ε

q0 qf

q0 qfε ε ε

ε

ε

ε

ε
Mr1

q0 qf

Mr2Mr1

Figure 2.7: Mr1+r2 ,Mr1r2 and Mr∗1

It can then be shown that

L(Mr1+r2) = L(Mr1) ∪ L(Mr2)

L(Mr1r2) = L(Mr1) L(Mr2)

L(Mr∗1
) = L(Mr1)

∗

2

2.5 A scanner generator

We can now be more specific on the design and operation of a scanner generator
such as lex(1) or flex(1L), which was sketched on page 25.

First we introduce the concept of a “dead” state in a DFA.

Definition 6 Let M = (Q,Σ, δ, q0, F) be a DFA. A state q ∈ Q is called dead if
there does not exist a string w ∈ Σ∗ such that (q, w) `∗M (qf , ε) for some qf ∈ F .

VUB-DINF/2009/2 33

Example 4 The state qe in Example 1 is dead.

It is easy to determine the set of dead states for a DFA, e.g. using a marking
algorithm which initially marks all states as “dead” and then recursively works
backwards from the final states, unmarking any states reached.

The generator takes as input a set of regular expressions,R = {r1, . . . , rn} each of
which is associated with some code cri to be executed when a token corresponding
to ri is recognized.

The generator will convert the regular expression

r1 + r2 + . . .+ rn

to a DFA M = (Q,Σ, δ, q0, F), as shown in Section 2.4, with one addition: when
constructing M , it will remember which final state of the DFA corresponds with
which regular expression. This can easily be done by remembering the final states
in the NFA’s corresponding to each of the ri while constructing the combined DFA
M . It may be that a final state in the DFA corresponds to several patterns (regular
expressions). In this case, we select the one that was defined first.

Thus we have a mapping
pattern : F → R

which associates the first (in the order of definition) pattern to which a certain final
state corresponds. We also compute the set of dead states of M .

The code in Figure 2.8 illustrates the operation of the generated scanner.

The scanner reads input characters, remembering the last final state seen and the
associated regular expression, until it hits a dead state from where it is impossible
to reach a final state. It then backs up to the last final state and executes the code
associated with that pattern. Clearly, this will find the longest possible token on
the input.

VUB-DINF/2009/2 34

1 typedef int STATE;
2 typedef char SYMBOL;
3 typedef enum {false,true} BOOL;
4
5 typedef struct { /* what we need to know about a user defined pattern */
6 TOKEN* (*code)(); /* user-defined action */
7 BOOL do_return; /* whether action returns from lex() or not */
8 } PATTERN;
9

10 static STATE next_state[SYMBOL][STATE];
11 static BOOL dead[STATE];
12 static BOOL final[STATE];
13 static PATTERN* pattern[STATE]; /* first regexp for this final state */
14 static SYMBOL *last_input = 0; /* input pointer at last final state */
15 static STATE last_state, q = 0; /* assuming 0 is initial state */
16 static SYMBOL *input; /* source text */
17
18 TOKEN*
19 lex()
20 {
21 SYMBOl c;
22 PATTERN *last_pattern = 0;
23
24 while (c=*input++) {
25 q = next_state[c,q];
26 if (final[q]) {
27 last_pattern = pattern[q];
28 last_input = input;
29 last_state = q;
30 }
31 if (dead[q]) {
32 if (last_pattern) {
33 input = last_input;
34 q = 0;
35 if (last_pattern->do_return)
36 return pattern->code();
37 else
38 pattern->code();
39 }
40 else /* error */
41 ;
42 }
43 }
44
45 return (TOKEN*)0;
46 }

Figure 2.8: A generated scanner

Chapter 3

Parsing

3.1 Context-free grammars

As mentioned in Section 1.3.1, page 9, the rules (or railroad diagrams) used to
specify the syntax of a programming language can be formalized using the concept
of context-free grammar.

Definition 7 A context-free grammar (cfg) is a tuple

G = (V,Σ, P, S)

where

• V is a finite set of nonterminal symbols

• Σ is a finite set of terminal symbols, disjoint from V : Σ ∩ V = ∅.

• P is a finite set of productions of the form A → α where A ∈ V and
α ∈ (V ∪ Σ)∗

• S ∈ V is a nonterminal start symbol

Note that terminal symbols correspond to token types as delivered by the lexical
analyzer.

Example 5 The following context-free grammar defines the syntax of simple
arithmetic expressions:

G0 = ({E}, {+,×, (,), id}, P, E)

35

VUB-DINF/2009/2 36

where P consists of

E → E + E

E → E × E
E → (E)

E → id

We shall often use a shorter notation for a set of productions where several right-
hand sides for the same nonterminal are written together, separated by “|”. Using
this notation, the set of rules of G0 can be written as

E → E + E | E × E | (E) | id

Definition 8 LetG = (V,Σ, P, S) be a context-free grammar. For strings x, y ∈ (V ∪ Σ)∗,
we say that x derives y in one step, denoted x =⇒G y iff x = x1Ax2, y = x1αx2

and A→ α ∈ P . Thus =⇒G is a binary relation on (V ∪ Σ)∗. The relation=⇒∗G
is the reflexive and transitive closure of =⇒G. The language L(G) generated by
G is defined by

L(G) = {w ∈ Σ∗ | S =⇒∗G w}
A language is called context-free if it is generated by some context-free grammar.
A derivation in G of wn from w0 is any sequence of the form

w0 =⇒G w1 =⇒G . . . =⇒G wn

where n ≥ 0 (we say that the derivation has n steps) and ∀1 ≤ i ≤ n · wi ∈ (V ∪ Σ)∗

We write v =⇒n
G w (n ≥ 0) when w can be derived from v in n steps.

Thus a context-free grammar specifies precisely which sequences of tokens are
valid sentences (programs) in the language.

Example 6 Consider the grammarG0 from Example 5. The following is a deriva-
tion in G where at each step, the symbol to be rewritten is underlined.

S =⇒G0 E × E
=⇒G0 (E)× E
=⇒G0 (E + E)× E
=⇒G0 (E + id)× E
=⇒G0 (E + id)× id

=⇒G0 (id + id)× id

VUB-DINF/2009/2 37

A derivation in a context-free grammar is conveniently represented by a parse
tree.

Definition 9 Let G = (V,Σ, P, S) be a context-free grammar. A parse tree cor-
responding to G is a labeled tree where each node is labeled by a symbol from
V ∪Σ in such a way that, if A is the label of a node and A1A2 . . . An (n > 0) are
the labels of its children (in left-to-right order), then

A→ A1A1 . . . An

is a rule in P . Note that a rule A→ ε gives rise to a leaf node labeled ε.

As mentioned in Section 1.3.4, it is the job of the parser to convert a string of
tokens into a parse tree that has precisely this string as yield. The idea is that the
parse tree describes the syntactical structure of the source text.

However, sometimes, there are several parse trees possible for a single string of
tokens, as can be seen in Figure 3.1.

E

E

S

E

E

idid

id

S

+E E

E
×E

id id

id

×

+

Figure 3.1: Parse trees in the ambiguous context-free grammar from Example 5

Note that the two parse trees intuitively correspond to two evaluation strategies
for the expression. Clearly, we do not want a source language that is specified
using an ambiguous grammar (that is, a grammar where a legal string of tokens
may have different parse trees).

Example 7 Fortunately, we can fix the grammar from Example 5 to avoid such
ambiguities.

G1 = ({E, T, F}, {+,×, (,), id}, P ′, E)

VUB-DINF/2009/2 38

where P ′ consists of

E → E + T | T
T → T × F | F
F → (E) | id

is an unambiguous grammar generating the same language as the grammar from
Example 5.

Still, there are context-free languages such as {aibjck | i = j ∨ j = k} for which
only ambiguous grammars can be given. Such languages are called inherently
ambiguous. Worse still, checking whether an arbitrary context-free grammar al-
lows ambiguity is an unsolvable problem[HU69].

3.2 Top-down parsing

3.2.1 Introduction

When using a top-down (also called predictive) parsing method, the parser tries
to find a leftmost derivation (and associated parse tree) of the source text. A left-
most derivation is a derivation where, during each step, the leftmost nonterminal
symbol is rewritten.

Definition 10 Let G = (V,Σ, P, S) be a context-free grammar. For strings x, y ∈
(V ∪ Σ)∗, we say that x derives y in a leftmost fashion and in one step, denoted

x
L

=⇒G y

iff x = x1Ax2, y = x1αx2, A → α is a rule in P and x1 ∈ Σ∗ (i.e. the leftmost
occurrence of a nonterminal symbol is rewritten).

The relation
L

=⇒∗G is the reflexive and transitive closure of L
=⇒G. A derivation

y0
L

=⇒G y1
L

=⇒G . . .
L

=⇒G yn

is called a leftmost derivation. If y0 = S (the start symbol) then we call each yi
in such a derivation a left sentential form.

Is is not hard to see that restricting to leftmost derivations does not alter the lan-
guage of a context-free grammar.

VUB-DINF/2009/2 39

S
c

d

c a d

A

a b

Sc a d

c a d

Try S → cAd

Match c: OK.
Try A→ ab for A.

S
c

A d

Match a: OK.

a b

Try next predicted symbol b in tree.

No match: BACKTRACK.
Try next rule A→ a for A.

S
c

d

c a d

A

Match a: OK.
Try next predicted symbol d in tree.

S
c

d

c a d

A
a

S
c

d

c a d

A
a

Match d: OK.
Parse succeeded.

Figure 3.2: A simple top-down parse

Theorem 3 Let G = (V,Σ, P, S) be a context-free grammar. If A ∈ V ∪ Σ then

A =⇒∗G w ∈ Σ∗ iff A
L

=⇒∗G w ∈ Σ∗

Example 8 Consider the trivial grammar

G = ({S,A}, {a, b, c, d}, P, S)

where P contains the rules

S → cAd

A → ab | a

VUB-DINF/2009/2 40

Let w = cad be the source text. Figure 3.2 shows how a top-down parse could
proceed.

The reasoning in Example 8 can be encoded as shown below.
1 typedef enum {false,true} BOOL;
2
3 TOKEN* input; /* output array from scanner */
4 TOKEN* token; /* current token from input */
5
6 BOOL
7 parse_S() { /* Parse something derived from S */
8 /* Try rule S --> c A d */
9 if (*token==’c’) {

10 ++token;
11 if (parse_A()) {
12 if (*token==’d’) {
13 ++token;
14 return true;
15 }
16 }
17 }
18 return false;
19 }
20
21 BOOL
22 parse_A() { /* Parse stuff derived from A */
23 TOKEN* save; /* for backtracking */
24
25 save = token;
26
27 /* Try rule A --> a b */
28 if (*token==’a’) {
29 ++token;
30 if (*token==’b’) {
31 ++token;
32 return true;
33 }
34 }
35
36 token = save; /* didn’t work: backtrack */
37
38 /* Try rule A --> a */
39 if (*token==’a’) {
40 ++token;
41 return true;
42 }
43
44 token = save; /* didn’t work: backtrack */

VUB-DINF/2009/2 41

45
46 /* no more rules: give up */
47 return false;
48 }

Note that the above strategy may need recursive functions. E.g. if the grammar
contains a rule such as

E → (E)

the code for parse E() will contain a call to parse E().

The method illustrated above has two important drawbacks:

• It cannot be applied if the grammar G is left-recursive, i.e. A
L

=⇒∗G Ax for
some x ∈ (V ∪ Σ)∗.

Indeed, even for a “natural” rule such as

E → E + E

it is clear that the parse E() function would start by calling itself (in an
infinite recursion), before reading any input.

We will see that it is possible to eliminate left recursion from a grammar
without changing the generated language.

• Using backtracking is both expensive and difficult. It is difficult because it
usually does not suffice to simply restore the input pointer: all actions taken
by the compiler since the backtrack point (e.g. symbol table updates) must
also be undone.

The solution will be to apply top-down parsing only for a certain class of
restricted grammars for which it can be shown that backtracking will never
be necessary.

3.2.2 Eliminating left recursion in a grammar

First we look at the elimination of immediate left recursion where we have rules
of the form

A→ Aα | β
where β does not start with A.

The idea is to reorganize the rules in such a way that derivations are simulated as
shown in Figure 3.3

This leads to the following algorithm to remove immediate left recursion.

VUB-DINF/2009/2 42

A
A

A α

α

β ε

A

A′

A′β

α

α

With left recursion Without left recursion

Figure 3.3: Eliminating immediate left recursion

Algorithm 1 [Removing immediate left recursion for a nonterminal A from
a grammar G = (V,Σ, P, S)]
Let

A→ Aα1 | . . . | Aαm | β1 | . . . | βn

be all the rules with A as the left hand side. Note that m > 0 and n ≥ 0 and
∀0 ≤ i ≤ n · βi 6∈ A(V ∪ Σ)∗

1. If n = 0, no terminal string can ever be derived from A, so we may as well
remove all A-rules.

2. Otherwise, define a new nonterminal A′, and replace the A rules by

A → β1A
′ | . . . | βnA′

A′ → α1A
′ | . . . | αmA′ | ε

2

Example 9 Consider the grammar G1 from Example 7. Applying Algorithm 1
results in the grammar G2 = ({E,E ′, T, T ′, F}, {+,×, (,), id}, PG2 , E) where
PG2 contains

E → TE ′

E ′ → +TE ′ | ε
T → FT ′

T ′ → ×FT ′ | ε
F → (E) | id

It is also possible (see e.g. [ASU86], page 177) to eliminate general (also indirect)
left recursion from a grammar.

VUB-DINF/2009/2 43

3.2.3 Avoiding backtracking: LL(1) grammars

When inspecting Example 8, it appears that in order to avoid backtracking, one
should be able to predict with certainty, given the nonterminal X of the current
function parse X() and the next input token a, which production X → x was used
as a first step to derive a string of tokens that starts with the input token a from X .

The problem is graphically represented in Figure 3.4

a

S

X

x

Figure 3.4: The prediction problem

The following definition defines exactly the class of context-free grammars for
which this is possible.

Definition 11 An LL(1) grammar is a context-free grammar G = (V,Σ, P, S)
such that if

S
L

=⇒∗G w1Xx3
L

=⇒G w1x2x3

L

=⇒∗G w1aw4

and

S
L

=⇒∗G w1Xx̂3
L

=⇒G w1x̂2x̂3

L

=⇒∗G w1aŵ4

where a ∈ Σ, X ∈ V , w1 ∈ Σ∗, w4 ∈ Σ∗, ŵ4 ∈ Σ∗ then

x2 = x̂2

A language L is called an LL(1) language if there exists a LL(1) grammar G such
that L(G) = L.

VUB-DINF/2009/2 44

Intuitively, Definition 11 just says that if there are two possible choices for a pro-
duction, these choices are identical.

Thus for LL(1) grammars1, we know for sure that we can write functions as we
did in Example 8, without having to backtrack. In the next section, we will see
how to automatically generate parsers based on the same principle but without the
overhead of (possibly recursive) function calls.

3.2.4 Predictive parsers

Predictive parsers use a stack (representing strings in (V ∪ Σ)∗) and a parse table
as shown in Figure 3.5.

w a

input
+ b $

Z

X

Y

stack

PREDICTIVE
PARSER

parse table$

V × Σ→ P ∪ {error}

Figure 3.5: A predictive parser

The figure shows the parser simulating a leftmost derivation

S
L

=⇒G . . .
L

=⇒G wZY X︸ ︷︷ ︸
depicted position of parser

L
=⇒G . . .

L
=⇒G wa+ b

Note that the string consisting of the input read so far, followed by the contents
of the stack (from the top down) constitutes a left sentential form. End markers
(depicted as $ symbols) are used to mark both the bottom of the stack and the end
of the input.

1It is possible to define LL(k) grammars and languages by replacing a in Definition 11 by a
terminal string of (up to) k symbols.

VUB-DINF/2009/2 45

The parse table M represents the production to be chosen: when the parser has X
on the top of the stack and a as the next input symbol, M [X, a] determines which
production was used as a first step to derive a string starting with a from X .

Algorithm 2 [Operation of an LL(1) parser]
The operation of the parser is shown in Figure 3.6. 2

Intuitively, a predictive parser simulates a leftmost derivation of its input, using
the stack to store the part of the left sentential form that has not yet been processed
(this part includes all nonterminals of the left sentential form). It is not difficult
to see that if a predictive parser successfully processes an input string, then this
string is indeed in the language generated by the grammar consisting of all the
rules in the parse table.

To see the reverse, we need to know just how the parse table is constructed.

First we need some auxiliary concepts:

Definition 12 Let G = (V,Σ, P, S) be a context-free grammar.

• The function first : (V ∪ Σ)∗ → 2(Σ∪{ε}) is defined by

first(α) = {a | α =⇒∗G aw ∈ Σ∗} ∪Xα

where

Xα =

{
{ε} if α =⇒∗G ε
∅ otherwise

• The function follow : V → 2(Σ∪{$}) is defined by

follow(A) = {a ∈ Σ | S =⇒∗G αAaβ} ∪ Yα

where

Yα =

{
{$} if S =⇒∗G αA
∅ otherwise

Intuitively, first(α) contains the set of terminal symbols that can appear at the
start of a (terminal) string derived from α, including ε if α can derive the empty
string.

On the other hand, follow(A) consists of those terminal symbols that may follow
a string derived from A in a terminal string from L(G).

The construction of the LL(1) parse table can then be done using the following
algorithm.

VUB-DINF/2009/2 46

1 PRODUCTION* parse_table[NONTERMINAL,TOKEN];
2 SYMBOL End, S; /* marker and start symbol */
3 SYMBOL* stack;
4 SYMBOL* top_of_stack;
5
6 TOKEN *input;
7
8 BOOL
9 parse() { /* LL(1) predictive parser */

10 SYMBOL X;
11 push(End); push(S);
12
13 while (*top_of_stack!=End) {
14 X = *top_of_stack;
15 if (is_terminal(X)) {
16 if (X==*input) { /* predicted outcome */
17 ++input; /* advance input */
18 pop(); /* pop X from stack */
19 }
20 else
21 error("Expected %s, got %s", X, *input);
22 }
23 else { /* X is nonterminal */
24 PRODUCTION* p = parse_table[X,*input];
25 if (p) {
26 pop(); /* pop X from stack */
27 for (i=length_rhs(p)-1;(i>=0);--i)
28 push(p->rhs[i]); /* push symbols of rhs, last first */
29 }
30 else
31 error("Unexpected %s", *input);
32 }
33 }
34 if (*input==End)
35 return true;
36 else
37 error("Redundant input: %s", *input);
38 }

Figure 3.6: Predictive parser operation

Algorithm 3 [Construction of LL(1) parse table]
Let G = (V,Σ, P, S) be a context-free grammar.

1. Initialize the table: ∀A ∈ V, b ∈ Σ ·M [A, b] = ∅

2. For each production A→ α from P

VUB-DINF/2009/2 47

(a) For each b ∈ first(α) ∩ Σ, add A→ α to M [A, b].

(b) If ε ∈ first(α) then

i. For each c ∈ follow(A) ∩ Σ, add A→ α to M [A, c].
ii. If $ ∈ follow(A) then add A→ α to M [A, $].

3. If each entry in M contains at most a single production then return success,
else return failure.

2

It can be shown that, if the parse table for a grammar G was successfully con-
structed using Algorithm 3, then the parser of Algorithm 2 accepts exactly the
strings of L(G). Also, if Algorithm 3 fails, then G is not an LL(1) grammar.

Example 10 Consider grammar G2 from Example 9. The first and follow func-
tions are computed in Examples 11 and 12. The results are summarized below.

E E ′ T T ′ F
first (, id +, ε (, id ×, ε (, id
follow $,) $,) +, $,) $,),+ ×, $,),+

Applying Algorithm 3 yields the following LL(1) parse table.

E E ′ T T ′ F

id E → TE ′ T → FT ′ F → id
+ E ′ → +TE ′ T ′ → ε
× T ′ → ×FT ′
(E → TE ′ T → FT ′ F → (E)
) E ′ → ε T ′ → ε
$ E ′ → ε T ′ → ε

The operation of a predictive parser using the above table is illustrated below for

VUB-DINF/2009/2 48

the input string id + id× id.

stack input rule
$E id + id× id$
$E ′T id + id× id$ E → TE ′

$E ′T ′F id + id× id$ T → FT ′

$E ′T ′id id + id× id$ F → id
$E ′T ′ +id× id$
$E ′ +id× id$ T ′ → ε
$E ′T+ +id× id$ E ′ → +TE ′

$E ′T id× id$
$E ′T ′F id× id$ T → FT ′

$E ′T ′id id× id$ F → id
$E ′T ′ ×id$
$E ′T ′F× ×id$ T ′ → ×FT ′
$E ′T ′F id$
$E ′T ′id id$ F → id
$E ′T ′ $
$E ′ $ T ′ → ε
$ $ E ′ → ε

3.2.5 Construction of first and follow

Algorithm 4 [Construction of first]
LetG = (V,Σ, P, S) be a context-free grammar. We construct an arrayF : V ∪ Σ→ 2(Σ∪{ε})

and then show a function to compute first(α) for arbitrary α ∈ (V ∪ Σ)∗.

1. F is constructed via a fixpoint computation:

(a) for each X ∈ V , initialize F [X]← {a | X → aα, a ∈ Σ}
(b) for each a ∈ Σ, initialize F [a]← {a}

2. repeat the following steps

(a) F ′ ← F

(b) for each rule X → ε, add ε to F [X].

(c) for each rule X → Y1 . . . Yk (k > 0) do

i. for each 1 ≤ i ≤ k such that Y1 . . . Yi−1 ∈ V ∗ and ∀1 ≤ j < i · ε ∈ F [Yj]
do F [X]← F [X] ∪ (F [Yi] \ {ε})

ii. if ∀1 ≤ j ≤ k · ε ∈ F [Yi] then F [X]← F [X] ∪ {ε}

VUB-DINF/2009/2 49

until F ′ = F

Define

first(X1 . . . Xn) =

{ ⋃
1≤j≤(k+1)(F [Xj] \ {ε}) if k(X1 . . . Xn) < n⋃
1≤j≤n F [Xj] ∪ {ε}) if k(X1 . . . Xn) = n

where k(X1 . . . Xn) is the largest index k such that X1 . . . Xk =⇒∗G ε, i.e.

k(X1 . . . Xn) = max{1 ≤ i ≤ n | ∀1 ≤ j ≤ i · ε ∈ F [Xj}

2

Example 11 Consider grammar G2 from Example 9.

The construction of F is illustrated in the following table.

E E ′ T T ′ F
+ × (, id initialization
ε rule E ′ → ε

(, id rule T → FT ′

ε rule T ′ → ε
(, id rule E → TE ′

(, id +, ε (, id ×, ε (, id

Algorithm 5 [Construction of follow]
Let G = (V,Σ, P, S) be a context-free grammar. The follow set of all symbols in
V can be computed as follows:

1. follow(S)← $

2. Apply the following rules until nothing can be added to follow(A) for any
A ∈ V .

(a) If there is a production A→ αBβ in P then

follow(B)← follow(B) ∪ (first(β) \ {ε})

(b) If there is a production A → αB or a production A → αBβ where
ε ∈ first(β) then follow(B)← follow(B) ∪ follow(A).

2

VUB-DINF/2009/2 50

Example 12 Consider again grammar G2 from Example 9.

The construction of follow is illustrated in the following table.

E E ′ T T ′ F
$ initialization

+ rule E → TE ′

) rule F → (E)
× rule T → FT ′

$,) rule E → TE ′

$,) rule E → TE ′

$,),+ rule T → FT ′

$,),+ rule T → FT ′

$,) $,) +, $,) $,),+ ×, $,),+

3.3 Bottom-up parsing

3.3.1 Shift-reduce parsers

As described in Section 3.2, a top-down parser simulates a leftmost derivation in a
top-down fashion. This simulation predicts the next production to be used, based
on the nonterminal to be rewritten and the next input symbol.

A bottom-up parser simulates a rightmost derivation in a bottom-up fashion, where
a rightmost derivation is defined as follows.

Definition 13 LetG = (V,Σ, P, S) be a context-free grammar. For strings x, y ∈ (V ∪ Σ)∗,
we say that x derives y in a rightmost fashion and in one step, denoted

x
R

=⇒G y

iff x = x1Ax2, y = x1αx2, A → α is a rule in P and x2 ∈ Σ∗ (i.e. the rightmost
occurrence of a nonterminal symbol is rewritten).

The relation
R

=⇒∗G is the reflexive and transitive closure of R
=⇒G. A derivation

x0
R

=⇒G x1
R

=⇒G . . .
R

=⇒G xn

is called a rightmost derivation. If x0 = S (the start symbol) then we call each xi
in such a derivation a right sentential form.

VUB-DINF/2009/2 51

A phrase of a right sentential form is a sequence of symbols that have been de-
rived from a single nonterminal symbol occurrence (in an earlier right sentential
form of the derivation). A simple phrase is a phrase that contains no smaller
phrase. The handle of a right sentential form is its leftmost simple phrase (which
is unique). A prefix of a right sentential form that does not extend past its handle
is called a viable prefix of G.

Example 13 Consider the grammar

G3 = ({S,E, T, F}, {+,×, (,), id}, PG3 , S)

where PG3 consists of

S → E

E → E + T | T
T → T × F | F
F → (E) | id

G3 is simply G1 from Example 7, augmented by a new start symbol whose only
use is at the left hand side of a single production that has the old start symbol as
its right hand side.

The following table shows a rightmost derivation of id+id×id; where the handle
in each right sentential form is underlined.

S
E
E + T
E + T × F
E + T × id
E + F × id
E + id× id
T + id× id
F + id× id
id + id× id

When doing a bottom-up parse, the parser will use a stack to store the right senten-
tial form up to the handle, using shift operations to push symbols from the input
onto the stack. When the handle is completely on the stack, it will be popped and
replaced by the left hand side of the production, using a reduce operation.

VUB-DINF/2009/2 52

Example 14 The table below illustrates the operation of a shift-reduce parser to
simulate the rightmost derivation from Example 13. Note that the parsing has to
be read from the bottom to the top of the figure and that both the stack and the
input contain the end marker “$”.

derivation stack input operation
S $S $ accept
E $E $ reduce S → E
E + T $E + T $ reduce E → E + T
E + T × F $E + T × F $ reduce T → T × F

$E + T × id $ reduce F → id
$E + T× id$ shift

E + T × id $E + T ×id$ shift
E + F × id $E + F ×id$ reduce T → F

$E + id ×id$ reduce F → id
$E+ id× id$ shift

E + id× id $E +id× id$ shift
T + id× id $T +id× id$ reduce E → T
F + id× id $F +id× id$ reduce T → F

$id +id× id$ reduce F → id
id + id× id $ id + id× id$ shift

Clearly, the main problem when designing a shift-reduce parser is to decide when
to shift and when to reduce. Specifically, the parser should reduce only when the
handle is on the top of the stack. Put in another way, the stack should always
contain a viable prefix.

We will see in Section 3.3.2 that the language of all viable prefixes of a context-
free grammarG is regular, and thus there exists a DFAMG = (Q, V ∪ Σ, δ, q0, F)
accepting exactly the viable prefixes of G. The operation of a shift-reduce parser
is outlined in Figure 3.72.

However, rather than checking each time the contents of the stack (and the next
input symbol) vs. the DFAMG, it is more efficient to store the states together with
the symbols on the stack in such a way that for each prefix xX of (the contents
of) the stack, we store the state δ∗(q0, xX) together with X on the stack.

In this way, we can simply check δMG
(q, a) where q ∈ Q is the state on the top of

the stack and a is the current input symbol, to find out whether shifting the input
would still yield a viable prefix on the stack. Similarly, upon a reduce(A → α)

2We assume, without losing generality, that the start symbol of G does not occur on the right
hand side of any production

VUB-DINF/2009/2 53

1 while (true) {
2 if ((the top of the stack contains the start symbol) &&
3 (the current input symbol is the endmarker ’$’))
4 accept;
5 else if (the contents of the stack concatenated with the next
6 input symbol is a viable prefix)
7 shift the input onto the top of the stack;
8 else
9 if (there is an appropriate producion)

10 reduce by this production;
11 else
12 error;
13 }

Figure 3.7: Naive shift-reduce parsing procedure

operation, both A and δ(q, A) are pushed where q is the state on the top of the
stack after popping α.

In practice, a shift-reduce parser is driven by two tables:

• An action table that associates a pair consisting of a state q ∈ Q and a
symbol a ∈ Σ (the input symbol) with an action of one of the following
types:

– accept , indicating that the parse finished successfully

– shift(q′), where q ∈ Q is a final state of MG. This action tells the
parser to push both the input symbol and q on top of the stack. In this
case δMG

(q, a) = q′.

– reduce(A → α) where A → α is a production from G. This in-
structs the parser to pop α (and associated states) from the top of
the stack, then pushing A and the state q′ given by q′ = goto(q′′, A)
where q′′ is the state left on the top of the stack after popping α. Here
goto(q′′, A) = δMG

(q′′, A).

– error, indicating that δMG
(q, a) yields a dead state.

• A goto table:
goto : Q× V → Q

which is used during a reduce operation.

The architecture of a shift-reduce parser is shown in Figure 3.8.

Using the action and goto tables, we can refine the shift-reduce parsing algorithm
as follows.

VUB-DINF/2009/2 54

input
$

$

E

+

T

×

+ idid

q0

q1

q2

q3

q4 goto: V ×Q→ Q

stack

SHIFT-REDUCE
PARSER

id×

action : Q× Σ→ ACTION

Figure 3.8: A shift-reduce parser

Algorithm 6 [Shift-reduce parsing]
See Figure 3.9 on page 55. 2

3.3.2 LR(1) parsing

Definition 14 Let G = (V,Σ, P, S ′) be a context-free grammar such that S ′ → S
is the only production for S ′ and S ′ does not appear on the right hand side of any
production.

• An LR(1) item is a pair [A→ α •β, a] where A→ αβ is a production from
P , • is a new symbol and a ∈ Σ ∪ {$} is a terminal or end marker symbol.
We use itemsG to denote the set of all items of G.

• The LR(1) viable prefix NFA of G is

NG = (itemsG, V ∪ Σ, δ, [S ′ → •S], itemsG)

where δ is defined by

[A→ αX • β, a] ∈ δ([A→ α •Xβ, a], X) for all X ∈ V ∪ Σ
[X → •γ, b] ∈ δ([A→ α •Xβ, a], ε) if X → γ is in P and b ∈ first(βa)

VUB-DINF/2009/2 55

1 TOKEN* input; /* array of input tokens */
2 STATE* states; /* (top of) stack of states */
3 SYMBOL* symbols; /* (top of) stack of symbols */
4
5 BOOL
6 parse() {
7 while (true)
8 switch (action[*states,*input]) {
9 case shift(s):

10 *++symbols = *input++; /* push symbol */
11 *++states = s; /* push state */
12 break;
13 case reduce(X->x):
14 symbols -= length(x); /* pop rsh */
15 states -= length(x); /* also for states */
16 STATE s = goto[*states,X];
17 *++states = s; *++symbols = X;
18 break;
19 case accept:
20 return true;
21 case error:
22 return false;
23 }
24 }

Figure 3.9: Shift-reduce parser algorithm

Note that all states in NG are final. This does not mean that NG accepts any string
since there may be no transitions possible on certain inputs from certain states.

Intuitively, an item [A → α • β, a] can be regarded as describing the state where
the parser has α on the top of the stack and next expects to process the result of a
derivation from β, followed by an input symbol a.

To see that L(NG) accepts all viable prefixes. Consider a (partial)3 rightmost
derivation

S = X0
R

=⇒G x0X1y0

R

=⇒∗G x0x1X2y1

R

=⇒∗G x0 . . . xn−1Xnyn
R

=⇒G x0 . . . xn−1xnyn

where yi ∈ Σ∗ for all 0 ≤ i ≤ n, as depicted in Figure 3.10 where we show only
the steps involving the ancestors of the left hand side (Xn) of the last step (note
that none of the xi changes after being produced because we consider a rightmost
derivation).

3By a partial rightmost derivation we mean a rightmost derivation that can be extended to a
successful full rightmost derivation.

VUB-DINF/2009/2 56

X0

x0

x1

Xn

xn−1

xn

Xn−1

X2

X1
b0 = $

b1

bn−2

bn−1

bn

Figure 3.10: A (partial) rightmost derivation

NG can accept any viable prefix of the right sentential form x0 . . . xn−1xnyn, i.e.
any prefix of x0 . . . xn−1xn as follows:

[S ′ → •X0, $] the initial state
[X0 → •x0X1z0, b0] using an ε-move, b0 ∈ first(ε$) = {$}
[X0 → x0 •X1z0, b0] reading x0

[X1 → •x1X2z1, b1] using an ε-move, b1 ∈ first(z0b0)
[X1 → x1 •X2z1, b1] reading x1

. . .
[Xn−1 → •xn−1Xnzn−1, bn−1]
[Xn−1 → xn−1 •Xnzn−1, bn−1] reading xn−1

[Xn → •xn, bn] using an ε-move, bn ∈ first(zn−1bn−1)
. . . any prefix of xn can be read

Note that all bi exist since each zi derives a terminal string.

To see the reverse, it suffices to note that each accepting sequence in MG is of
the form sketched above and thus, a partial rightmost derivation like the one in
Figure 3.10 can be inferred from it.

VUB-DINF/2009/2 57

Theorem 4 Let G = (V,Σ, P, S ′) be a context-free grammar and let NG be its
viable prefix NFA. Then L(NG) contains exactly the viable prefixes of G.

Because of Theorem 1, we can convert NG to an equivalent DFA MG that can be
used to build the action and goto tables of a shift-reduce parser as follows.

Algorithm 7 [Construction of LR(1) tables]
Let

MG = (2itemsG , V ∪ Σ, δ, Cε([S ′ → •S, $]), 2itemsG \ {∅})

be the DFA corresponding to the viable prefix automaton NG of G.

• Add an action accept to action[s, $] whenever [S ′ → S•, $] ∈ s.

• Add an action shift(s′) to action[s, a] whenever δ(s, a) = s′.

• Add an action reduce(A → α) to action[s, a] whenever s contains an item
[A→ α•, a] where A 6= S ′.

• For any X ∈ V , s a state of MG, define goto(s,X) = δ(s,X).

After the above rules have been exhaustively applied, add error to all entries in
action that remain empty.

The algorithm succeeds if action[s, a] contains exactly one action for each reach-
able s ∈ 2itemsG , a ∈ Σ. 2

Note that it follows from Theorem 4 and Algorithm 7 that the resulting parser will
announce an error at the latest possible moment, that is only when shifting would
result in a stack that does not represent a viable prefix.

If Algorithm 7 does not succeed, there exists either a shift-reduce conflict,
when an entry in the action table contains both a shift and a reduce operation, or
a reduce-reduce conflict, when an entry in the action table contains two or more
reduce actions.

Example 15 Consider G3 from Example 13. The DFA accepting the viable pre-
fixes of G is shown in Figures 3.11 and 3.12 Note that [A→ α, abc] is used as
shorthand for {[A→ α, a], [A→ α, b], [A→ α, c]

Theorem 5 Let G = (V,Σ, P, S ′) be a context-free grammar such that Algo-
rithm 7 succeeds. Then Algorithm 6 accepts exactly L(G).

VUB-DINF/2009/2 58

State Items State Items
0 S′ → •S $ 11 E → E + T• +$

S → •E $ T → T • ×F ×+ $
E → •E + T +$ 12 F → (E•) ×+ $
E → •T +$ E → E •+T)+
T → •T × F ×+ $ 13 F → (E)• ×+ $
T → •F ×+ $ 14 T → F•)×+
F → •id ×+ $ 15 F → (E)•) +×
F → •(E) ×+ $ 16 F → (E•)) +×

1 S → E• $ E → E •+T)+
E → E •+T +$ 17 E → E + •T)+

2 S′ → S• $ T → •T × F) +×
3 E → E + •T +$ T → •F) +×

T → •T × F ×+ $ F → •id) +×
T → •F ×+ $ F → •(E)) +×
F → •id ×+ $ 18 F → (•E)) +×
F → •(E) ×+ $ E → •E + T)+

4 T → F• ×+ $ E → •T)+
5 F → id• ×+ $ T → •T × F) +×
6 F → (•E) ×+ $ T → •F) +×

E → •E + T)+ F → •id) +×
E → •T)+ F → •(E)) +×
T → •T × F)×+ 19 E → T•)+
T → •F)×+ T → T • ×F) +×
F → •id)×+ 20 E → E + T•)+
F → •(E))×+ T → T • ×F) +×

7 E → T• +$ 21 T → T × •F) +×
T → T • ×F ×+ $ F → •id) +×

8 T → T × •F ×+ $ F → •(E)) +×
F → •id ×+ $ 22 T → T × F•) +×
F → •(E) ×+ $

9 T → T × F• ×+ $
10 F → id•)×+

Figure 3.11: States of the viable prefix DFA of G3

Example 16 The action and goto tables of the LR(1) parser for G3 are shown in
Figure 3.13. The rules of G3 have been numbered as follows:

1 S → E 5 T → F
2 E → E + T 6 F → id
3 E → T 7 F → (E)
4 T → T × F

A parse of
id + id× id

VUB-DINF/2009/2 59

δMG3
S E T F id () + ×

0 2 1 7 4 5 6
1 3
2
3 11 4 5 6
4
5
6 19 14 10 18
7 8
8 9 5 6
9

10
11 8
12 13 17
13
14
15
16 17
17 20 14 10 18
18 19 14 10 18
19 21
20 21
21 22 10
22

Figure 3.12: Transition function of the viable prefix DFA of G3

is shown below (states on the stack are between “[]”).

stack input operation
$[0] id + id× id$ shift
$[0]id[5] +id× id$ reduce F → id
$[0]F [4] +id× id$ reduce T → F
$[0]T [7] +id× id$ reduce E → T
$[0]E[1] +id× id$ shift
$[0]E[1] + [3] id× id$ shift
$[0]E[1] + [3]id[5] ×id$ reduce F → id
$[0]E[1] + [3]F [4] ×id$ reduce T → F
$[0]E[1] + [3]T [11] ×id$ shift
$[0]E[1] + [3]T [11]× [8] id$ shift
$[0]E[1] + [3]T [11]× [8]id[5] $ reduce F → id
$[0]E[1] + [3]T [11]× [8]F [9] $ reduce T → T × F
$[0]E[1] + [3]T [11] $ reduce E → E + T
$[0]E[1] $ reduce S → E
$[0]S[2] $ accept

It will turn out that Algorithm 7 succeeds exactly for so-called LR(1) grammars.

VUB-DINF/2009/2 60

goto action
state S E T F id () + × $

0 2 1 7 4 s5 s6
1 s3 r1
2 a
3 11 4 s5 s6
4 r5 r5 r5
5 r6 r6 r6
6 19 14 s10 s18
7 r3 s8 r3
8 9 s5 s6
9 r4 r4 r4

10 r6 r6 r6
11 r2 s8 r2
12 s13 s17
13 r7 r7 r7
14 r5 r5 r5
15 r7 r7 r7
16 s17
17 20 14 s10 s18
18 19 14 s10 s18
19 r3 r3 s21
20 r2 r2 s21
21 22 s10
22 r4 r4 r4

Figure 3.13: LR(1) tables for G3

VUB-DINF/2009/2 61

Definition 15 An LR(1) grammar is a context-free grammar G = (V,Σ, δ, P, S)
such that S does not appear at the right hand side of any production. Moreover, if

S
R

=⇒∗G x1Xw3
R

=⇒G x1x2w3

and

S
R

=⇒∗G x̂1X̂ŵ3
R

=⇒G x̂1x̂2ŵ3

and
pref l+1(x1x2w3) = pref l+1(x̂1x̂2ŵ3)

where X ∈ V , w3ŵ3 ∈ Σ∗, l = |x1x2|, then

x1 = x̂1 ∧ X̂ = X

A language L is called LR(1) if there exists an LR(1) context-free grammarG such
that L(G) = L.

Intuitively, in the above definition, x1x2 represents the stack just before a reduce
operation in a shift-reduce parser. The definition then says that there is only a
single choice for when to reduce, based only on the next input symbol4.

Theorem 6 A context-free grammar G = (V,Σ, δ, P, S), where S does not ap-
pear on the right hand side of any production, is LR(1) iff Algorithm 7 succeeds.

One may wonder about the relationship between LL(k) and LR(k) grammars and
languages. It turns out (see e.g. [Sal73]) that every LR(k) (k ≥ 0) language
can be generated by an LR(1) grammar. On the other hand, there are context
free languages, e.g. the inherently ambiguous language of Section 3.1, page 38,
that are not LR(1). In fact, it can be shown that all deterministic context-free
languages5 are LR(1) (and, obviously, also the reverse). As for LL(k) languages,
they form a proper hierarchy in that for every k > 1 there is an LL(k) language
Lk for which no LL(k − 1) grammar exists. Still, every LL(k) language is LR(1).

Summarizing, as far as parsing power is concerned, bottom-up (LR(1)) parsers
are provably superior to top-down (LL(1)) parsers.

4One can also define LR(k) grammars and languages for any k ≥ 0. It suffices to replace l+ 1
by l + k in Definition 15

5A context-free language is deterministic if it can be accepted by a deterministic pushdown
automaton.

VUB-DINF/2009/2 62

3.3.3 LALR parsers and yacc/bison

LR(1) parsing tables can become quite large due to the large number of states in
the viable prefix DFA. A DFA for a language like Pascal may have thousands of
states.

In an LALR parser, one tries to reduce the number of states by merging states
that have the same (extended) productions in their items. E.g. in the DFA of
Example 15, one may merge, among others, state 3 and state 17.

It is then not hard to see that, due to the way states are constructed using ε-
closures, if s1 and s2 can be merged, then so can δ(s1, X) and δ(s2, X). This
yields a more compact DFA which is “almost” equivalent to the original one in the
sense that compaction cannot produce shift-reduce conflicts although new reduce-
reduce conflicts are possible.

It can be shown that if the LALR compaction succeeds (i.e. does not lead to new
reduce-reduce conflicts), the resulting parser accepts the same language as the
original LR(1) parser.

The parser-generator yacc (and bison) generates an LALR parser based on an
input grammar. In addition, yacc (and bison) provide facilities for resolving shift-
reduce conflicts based on the declared precedence of operators.

Bison will resolve a shift reduce conflict on a state like

E → Eo1E• , o2

E → E • o2E

by comparing the declared precedences of o1 and o2: if o1 has the higher prece-
dence, then reduce will be selected. If o2 has a higher precedence than o1 then shift
will be selected. If o1 and o2 have the same precedence, associativity information
on o1 and o2 will be used: if both symbols (operators) are left-associative, reduce
will be selected; if both symbols are right-associative, shift will be selected; if
both symbols are non-associative an error will be reported6. If a symbol (such as
MINUS in Example 17 below) is used with two precedences, bison allows you to
define the precedence of the rule using a %prec directive7

The default conflict resolution strategy of bison (and yacc) is as follows:
6Note that operators with the same precedence must have the same associativity.
7The above description is made more concrete in the bison manual:

The first effect of the precedence declarations is to assign precedence levels to the terminal
symbols declared. The second effect is to assign precedence levels to certain rules: each rule gets
its precedence from the last terminal symbol mentioned in the components (o1 in the example).
(You can also specify explicitly the precedence of a rule.)

VUB-DINF/2009/2 63

• Choose shift when resolving a shift-reduce conflict.

• Choose reduce by the first production (in the order of declaration) when
resolving a reduce-reduce conflict.

Example 17 The following is the bison input file for a highly ambiguous gram-
mar, where ambiguities are resolved using the precedence/associativity defining
facilities of bison/yacc.

1
2 %token NAME NUMBER LPAREN RPAREN EQUAL PLUS MINUS
3 %token TIMES DIVIDE IF THEN ELSE
4
5 /* associativity and precedence: in order of increasing precedence */
6
7 %nonassoc LOW /* dummy token to suggest shift on ELSE */
8 %nonassoc ELSE /* higher than LOW */
9

10 %nonassoc EQUAL
11 %left PLUS MINUS
12 %left TIMES DIVIDE
13 %left UMINUS /* dummy token to use as precedence marker */
14
15 %%
16
17 stmt : IF exp THEN stmt %prec LOW
18 | IF exp THEN stmt ELSE stmt /* shift will be selected */
19 | /* other types of statements would come here */
20 ;
21
22 exp : exp PLUS exp
23 | exp MINUS exp
24 | exp TIMES exp
25 | exp DIVIDE exp
26 | exp EQUAL exp
27 | LPAREN exp RPAREN
28 | MINUS exp %prec UMINUS /* this will force a reduce */
29 | NAME
30 | NUMBER

Finally, the resolution of conflicts works by comparing the precedence of the rule (of o1 in the
example, unless that rule’s precedence has been explicitly defined) being considered (for reduce)
with that of the look-ahead token (o2 in the example). If the token’s precedence is higher, the
choice is to shift. If the rules precedence is higher, the choice is to reduce. If they have equal
precedence, the choice is made based on the associativity of that precedence level. The verbose
output file made by ‘-v’ (see section Invoking Bison) says how each conflict was resolved.

Not all rules and not all tokens have precedence. If either the rule or the look-ahead token has
no precedence, then the default is to shift.

VUB-DINF/2009/2 64

31 ;
32 %%

Chapter 4

Checking static semantics

4.1 Attribute grammars and syntax-directed trans-
lation

Attribute grammars extend context-free grammars by associating a set of attributes
with each grammar symbol. Such attributes can be used to present information
that cannot easily (if at all) be expressed using only syntactical constructs (e.g.
productions). Thus each node in a parse tree has values for each of the attributes
associated with the corresponding symbol.

For example, we could associate an attribute type with the nonterminal expression
to represent the type of the expression.

Attributes for nodes are computed using functions that take attribute values of
other nodes as input. The computation is specified by semantic actions which
are associated with each production. Since such actions can only reference the
symbols in the production, the value of an attribute of a node depends only on the
attribute values of its parent, children and siblings.

Example 18 Consider the grammar

G4 = ({E}, {+,×,−, /, (,),number}, P, E)

where P consists of

E → number | (E) | E + E | E × E | E/E | E − E | −E

We define an attribute value for E and number. The semantic actions are as
follow:

65

VUB-DINF/2009/2 66

E.value = 12

E.value = 24

+

E.value = 4

number.value = 4

number.value = 3

×

number.value = 12

E.value = 12

E.value = 3

Figure 4.1: Computing synthesized attribute values

E → number E0.value = number1.value
E → (E) E0.value = E1.value
E → E + E E0.value = E1.value + E3.value
E → E × E E0.value = E1.value × E3.value
E → E − E E0.value = E1.value − E3.value
E → E/E E0.value = E1.value/E3.value
E → −E E0.value = −E1.value

Note that we use subscripts to refer to a particular occurrence of a symbol in the
rule (subscript 0 is used for the left-hand side of the rule).

The attribute values for a parse tree of 12 + 3 ∗ 4 are shown in Figure 4.1. Note
that the number.value is supposed to have been provided by the lexical analyzer.

The actions in Example 18 all compute an attribute value for a node based on the
attribute values of its children. Attributes that are always computed in this way
are called synthesized attributes. Attributes whose value depends on values of its
parent and/or siblings are called inherited attributes.

The following example shows a grammar with both synthesized and inherited
attributes.

VUB-DINF/2009/2 67

Example 19 Consider the grammar

G5 = ({D,T, L}, {′,′ , ; , id, int,double}, P,D)

HereD represents a C-style declaration consisting of a type followed by a comma-
separated list of identifiers. The symbols T , L, and id have a type attribute which
is inherited for L and id.

The productions and actions of P are

D → TL; L2.type = T1.type
T → int T0.type = int
T → double T0.type = double
L → L, id L1.type = L0.type

id3.type = L0.type
L → id id1.type = L0.type

The attribute values for the parse tree of

int x,y,z;

are shown in Figure 4.2. The dependencies between values are shown by dashed
arrows.

In general, one can define a dependency graph for a parse tree where the nodes
are pairs (n, a) where n is a node in the parse tree and a is an attribute for (the
symbol of) n. There is an edge from (n1, a1) to (n2, a2) if the value of n2.a2

depends on the value of (n1, a1), i.e. an action computing n2.a2 uses (n1, a1).

Attribute values can then be computed in any order that corresponds to a topo-
logical sort1 of the nodes of the dependency graph. Clearly, for this to work, the
dependency graph may not contain a cycle.

Thus, the syntax-directed translation G(α) of an input string α using an attribute
grammar G can be computed by executing the following steps:

1. Parse α, according to the context-free grammar underlying G, yielding a
parse tree tα.

2. Construct the dependency graph gtα , and compute the attribute values of the
nodes of tα as described above.

1A topological sort of a directed (acyclic) graph is any total ordering
x1 < x2 < . . . < xn < . . . of the nodes of the graph that satisfies xi < xj whenever there
is an edge from xi to xj .

VUB-DINF/2009/2 68

x

,

L.type = int
y

id.type = int

L.type = int

D

;

id.type = int

z
,

L.type = int

id.type = int

T.type = int

Figure 4.2: Computing inherited attribute values

3. G(α) is the value corresponding to some selected attribute of the root of tα.

In practice, the full parse tree for an input program is often not explicitly con-
structed. Rather, attributes are computed and stored on a stack that mirrors the
parsing stack (just like the stack containing the states of the viable prefix DFA)
and actions are performed upon a reduce operations. This allows computation
of synthesized attributes but inherited attributes are not easily supported although
in certain cases it is possible to also evaluate inherited attributes (see [ASU86],
pages 310-311).

In yacc and bison, each symbol (nonterminal or token) can have only one at-
tribute, not larger than a single word. The type of an attribute is fixed per symbol
using %type declarations, as can be seen in the example parser in Appendix C.6,
page 175. The set of used types must also be declared in a %union declaration.
The restriction to a single word is not limiting: usually the attribute is declared to
be a pointer to a structure.

4.2 Symbol tables

The restriction of shift-reduce parsers to use only synthesized attributes can be
overcome by using a global symbol table to share information between various

VUB-DINF/2009/2 69

parts of the parse tree. In general, a symbol table maps names (of variables, func-
tions, types, . . .) to information on this name which has been accumulated by the
parser and semantic actions.

We discuss two aspects of symbol tables:

• The management of names (the domain of the mapping).

• The organization of the symbol table to take into account the scope rules of
the language.

4.2.1 String pool

Since a symbol table maps names to information, one could implement a symbol
table entry as a structure where the first field is the name and the other fields
contain the information associated with the name

1 struct symtab_entry {
2 char name[MAX_NAME_LENGTH];
3 INFO info;
4 };

However, because modern programming languages do not impose a small limit
on the length of a name, it is wasteful or impossible to keep this organization.
Hence one typically stores names contiguously in a so-called “string pool” array,
declaring a symbol table entry as follows:

1 struct symtab_entry {
2 char* name; /* points into string pool */
3 INFO info;
4 };

For fast retrieval, entries may be organized into a hash table, as illustrated in
Figure 4.3 where separate chaining is used to link entries that correspond to the
same hash value.

4.2.2 Symbol tables and scope rules

Many programming languages impose scope rules that determine which defini-
tion of a name corresponds to a particular occurrence of that name in a program
text. E.g. in Pascal, and in C, scopes may be nested to an arbitrary depth, as is
illustrated in the following fragment.

VUB-DINF/2009/2 70

a b c \0 a l o n g i s h n a m e \0 x y z u \0

symbol table entry

hash table

Figure 4.3: A simple symbol table using a string pool and hashing

1 float x; /* def 1 */
2
3 int
4 f(int a)
5 {
6 while (a>0) {
7 double x = a*a,i; /* def 2 */
8
9 for (i=0;(i<a);++i) {

10 int x = a+i,b; /* def 3 */
11 b = x+2; /* refers to def 3 */
12 }
13
14 }
15 }

In the above examples, the symbol table will contain three entries (definitions) for
x at the time the inner loop is processed. Which definition is meant is determined
using the “most closely nested scope” rule.

In a compiler for a language with scope rules, when a semantic action wants to
retrieve the information associated with a certain occurrence of a name, it has to
know which definition of the name corresponds to the given occurrence. If the
language allows only nested scopes for which the “most closely nested scope”
rule holds, this can be solved by replacing the symbol table by a stack of simple

VUB-DINF/2009/2 71

scope

current scopestring pool

parent

Figure 4.4: A stacked symbol table

symbol tables, one for each scope. Moreover, each simple table refers to its parent
in the stack which contains symbol definitions from the enclosing scope. When
looking up a name, it suffices to search the simple table at the top of the stack. If
the name is not found, the parent table (corresponding to the enclosing scope) is
searched and so on.

When the parser finishes a scope it pops the current scope from the stack and
continues with the parent scope as the current one. Of course, if the scope is still
needed, as is the case e.g. in C++ with scopes that correspond to class declara-
tions, the scope will not be thrown away but a reference to it will be kept, e.g. in
the symbol table entry corresponding to the class name.

This organization is depicted in Figure 4.4.

An simple implementation of this scheme, where hashing is replaced by linear
search (first in the current scope, then in the parent scope), may be found in Ap-
pendix C.3, page 163.

4.3 Type checking

Informally, the so-called static semantics of a programming language describes
the properties of a program that can be verified without actually executing it. Typ-
ically, for statically-types languages, this consists of verifying the “well-typed”
property where a program is well-typed if all its constructs (statements, expres-
sions, . . .) obey the type rules of the language.

The type system of a programming language consists of

• A definition of the set of all possible types.

VUB-DINF/2009/2 72

• Type rules that determine the type of a language construct.

The language from Appendix C, Minic, has two primitive types: integers and
floats and a few type constructors, as shown by the following domain2 definition3:

type :: int
:: float
:: array(type)
:: struct(tenv)
:: type∗ → type

tenv :: name → type

Note that the above definition is more general than is actually needed in Minic,
which has no higher order functions. E.g. it is not possible to define a function
with type

int→ (int→ int)

in Minic.

The type rules of Minic can be symbolically represented as follows (we use x : t to
denote that x has type t). In the table below we use + to use any of the arithmetic
operators +,×, /,−.

t x; ⇒ x : t // declaration of x
x : int ∧ y : int ⇒ (x+ y) : int

x : float ∧ y : float ⇒ (x+ y) : float

x : t ∧ y : t ⇒ (x == y) : int // support = test on any type
x : array(t) ∧ i : int ⇒ x[i] : t

x : struct(s) ∧ n ∈ dom(s) ⇒ x.n : s(n)

x = e ∧ x : t ∧ e : t′ ∧ t 6= t′ ⇒ error

∀1 ≤ i ≤ n · xi : ti ∧ f : t1t2 . . . tn → t ⇒ f(x1, . . . , xn) : t

return x ∧ x : t′ ∧ f : t1t2 . . . tn → t ∧ t′ 6= t ⇒ error // within the body of f

Here error is used to indicate that a certain construct is not well-typed, i.e. no
type can be assigned to it without violating the type rules.

2See e.g. the “Foundations of Computer Science II” course.
3Note that there is no boolean type: like C, Minic uses integers instead of booleans.

VUB-DINF/2009/2 73

Type checking then consists of using the rules to assign a type to each expression,
variable etc. If no type, or more than one type, can be assigned to a construct, or
if the rules generate error, the program is not well-typed.

It should be obvious that with the help of attributes, semantic actions and a symbol
table, such type checking is possible. An example of a type-checking parser for
Minic can be found in Appendix C. In the example implementation, types are
represented by structures where each structure contains a tag corresponding to the
type constructor. Furthermore, types are shared, which saves space and facilitates
later checking for equality (only pointers must be compared).

Note that there are statically typed languages (e.g. ML or Haskell) that do not
require, as Minic does, that each variable is declared to have a specific type. In-
stead, the type of a variable is inferred from its use. In addition, such languages
usually have a more sophisticated type system where types can have variables that
may be instantiated. In this way, a language can allow for polymorphism where a
function has several (possibly an infinite number of) types.

A similar feature is supported by C++ through the template facility. E.g. a func-
tion

1 template <class T>
2 int length(list<T>) {
3 // ...
4 }

has a type list(α)→ int where α is a type variable. The compiler will instantiate
α to int when processing the expression length(l) in

1 list<int> l;
2
3 length(l);

Chapter 5

Intermediate code generation

While it is possible to construct a compiler that translates the source text directly
into the target language, especially if sophisticated optimization is not required,
there are important advantages of using an intermediate representation:

• It facilitates retargeting. A compiler employing an intermediate representa-
tion can be viewed as consisting of a “front end” (everything up to interme-
diate code generation1) and a “back end” (optimization, code generation).
Note that all dependencies on the source language are located in the front
end while dependencies on the target language are confined to the back end.
Thus, to retarget the compiler (i.e. to generate code for another processor),
it suffices to adapt the back end only. Similarly, if the intermediate code is
sufficiently general, the back end could be reused in a compiler for another
language.

• Many machine-independent optimizations, especially those that require code
movement etc., can be done more easily on intermediate code.

Several forms of intermediate code have been proposed (and used):

• Postfix notation.

• Abstract syntax trees.

• Three-address code.
1Any machine-independent optimization that can be performed on the intermediate code

should also be done in the front end.

74

VUB-DINF/2009/2 75

5.1 Postfix notation

Postfix notation, also called “postfix Polish” after the originator J. Lukasiewicz,
represents expressions and flow of control statements in postfix form, which is
free of parentheses, as in the following example:

infix postfix
a+ b ab+
(a+ b)× (c− d) ab+ cd−×

In general, an expression consisting of a k-ary operator θ, applied on k (sub)expressions
e1, . . . , ek is represented as

e′1e
′
2 . . . e

′
kθ

where e′i, 1 ≤ i ≤ k, is the postfix form of ei.

Evaluation of postfix expressions is trivial, provided one uses an operand stack, as
shown below.

1 operand
2 eval_operator(OPERATOR o,item args[]);
3
4 operand
5 eval_postfix(item code[],int code_len)
6 {
7 operand stack[MAX_STACK];
8 int tos = 0; // top of stack
9

10 for (int i=0;(i<code_len);++i)
11 if (is_operand(code[i]))
12 stack[tos++] = code[i]; // push on stack
13 else
14 { // operator: pop args, eval, push result
15 k = arity(code[i]);
16 stack[tos-k] = eval_operator(code[i].oprtr, stack-k);
17 tos -= (k-1);
18 }
19 return stack[0];
20 }

By introducing labels which refer to a position in the postfix expression, arbitrary
control structures can be implemented using instructions like

label jump

e1e2 label jumplt

VUB-DINF/2009/2 76

In order to interpret labels and jump instructions, the above algorithm must of
course be extended to use a program counter (an index in the code array),

Postfix notation is attractive because it can be easily generated using syntax-
directed translation. Below, we use an synthesized attribute code representing
the postfix notation of the corresponding symbol occurrence. The statements
associated with a rule define the attribute of the left hand side of the rule (denoted
$$), based on the attribute values of the symbols in its right hand side ($i refers to
the i’th symbol in the rules right hand side).

1 exp : exp binop exp {
2 $$.code = concat($1.code, $3.code, operator($2));
3 }
4 exp : (exp) {
5 $$.code = $1.code;
6 }
7 exp : var { $$.code = $1; /* probably a symtab ref */ }

This scheme has the so-called simple postfix property which means that for a pro-
duction

A→ A1A2 . . . An

the generated code is such that2

code(A) = code(A1) + . . .+ code(An) + tail

which implies that code can be emitted as soon as a reduction occurs.

Postfix code is often used for stack-oriented virtual machines without general pur-
pose registers, such as the Java virtual machine (see e.g. the micro compiler in
Appendix B. It is not particularly suitable for optimization (code movement is
hard).

5.2 Abstract syntax trees

Abstract syntax trees are “pruned” parse trees where all nodes that contain re-
dundant (e.g. with respect to the tree structure) information have been removed.
Indeed, many nodes in the parse tree result from syntactic sugar in the grammar
which is needed to ensure that the language can be efficiently parsed. Once we
have parsed the text, there is no need to keep these superfluous nodes3. E.g. the
abstract syntax tree corresponding to the parse tree of Figure 1.6 on page 14 is
shown in Figure 5.1.

2We use + to denote concatenation.
3It should be noted that a formal definition of a language’s semantics is often based on a so-

called abstract syntax which only specifies the structure of the language’s constructs, rather than

VUB-DINF/2009/2 77

<program>

<statement> <statement_list>

<statement> <statement_list>

<assignment>

(xyz)

<NAME>

<statement>

<write_statement>(xyz)

<NAME>

<declaration>

<MINUS>

<PLUS>

<NUMBER>

(33)

<NUMBER>

(3)

<NUMBER>

(35)

<statement_list>

<>

<var>

<NAME>

(xyz)

Figure 5.1: Abstract syntax tree corresponding to the program in Figure 1.3

Abstract syntax trees (and directed acyclic graphs), particularly of expressions,
are useful for certain optimizations such as common subexpression elimination
and optimal register allocation (for expression computation).

An abstract syntax tree can be generated using synthesized attributes.
1 exp : exp binop exp {
2 $$.tree = new_node_2($2,$1.tree,$3,tree);
3 }
4 %*
5 exp : (exp) {
6 $.tree = $2.tree;
7 }
8 %*
9 exp : unop exp {

10 $$.tree = new_node_1($1,$2.tree);
11 }
12 %*
13 exp : var {
14 $$.tree = new_node_0($1);
15 }

Abstract syntax trees can also be constructed for complete source texts. They then

the concrete syntax. E.g. in the abstract syntax specification, one would have a rule

assignment → var expression

rather than
assignment → var = expression

VUB-DINF/2009/2 78

form the input for code generators that are based on pattern matching (in trees)
and tree transformations. This strategy is employed by so-called code-generator
generators (see e.g. Section 9.12 in [ASU86]) which take as input tree-rewriting
rules of the form

replacement ← template { action }

where the template specifies a tree pattern that must be matched, the replacement
is a tree (usually a single node) that is to replace the matched template and the
action is a code fragment, as in syntax-directed translation. The code fragment
may check additional constraints and generates target instructions. Figure 5.2
illustrates such tree-rewriting rules. The idea is that to retarget the compiler to

reg i

vara ←

← vara

:=

vara

reg i

{MOV ri, a}

{MOV a, ri}

Figure 5.2: Tree-rewriting rules

a processor with different instruction sets (and costs), one simply replaces the
tree-rewriting rules.

5.3 Three-address code

Three address code is a convenient and uniform intermediate representation. It
consists of a number of simple instructions which involve at most three addresses,
hence the name. The addresses refer to user-defined names (variables, functions,
. . .) or constants, or to temporary variables generated by the compiler.

In this and the following chapter, we will use three-address code as an intermediate
representation. The instructions are listed in Figure 5.3.

An important advantage of three-address code is that it can be easily reordered (at
least within a function body) for optimization. A convenient representation for
three-address code instructions is as a quadruple.

1 typedef enum {A2PLUS, A2TIMES, A2MINUS, A2DIV, A1MINUS,
2 A1FTOI, A1ITOF, A0, GOTO, IFEQ, .., PARAM,

VUB-DINF/2009/2 79

opcode instruction meaning
A2(binop) A = B binop C assignment, binop can be +, ×, . . .
A1(unop) A = unop B assignment, unop can be −, float2int, . . .
A0 A = B simple assignment
GOTO goto label
IF(relop) if A relop B goto label relop can be <, >, ≤, ==, . . .
PARAM param A push parameter before function call
CALL call F, n function call, n is number of parameters
AAC A = B[I] array access, B contains base address, I is offset in memory units
AAS A[I] = B array modification, A contains base address
ADDR A = address B take address of B
DEREF A = * B as in C
DEREFA *A = B as in C
RETURN RETURN A as in C

Figure 5.3: Three-address code instructions

3 CALL, AAC, AAS, ADDR, DEREF, DEREFA } OPCODE;
4 typedef struct {
5 OPCODE op_code;
6 SYM_INFO* args[2];
7 SYM_INFO* result;
8 } INSTRUCTION;

5.4 Translating assignment statements

The actions below use a simplified grammar for expressions. Also, we assume
that all expressions are of type integer.

We use two synthesized attributes:

• exp.place represents a reference to the location (variable, symbol table ref-
erence) containing the value of the expression exp.

• exp.code represents the sequence of three-address statements computing the
value of exp. Code concatenation is written as “+”.

1 extern INSTRUCTION /* create quadruple representing instruction */
2 gen3ai(short op_code,SYM_INFO* arg1, SYM_INFO* arg2, SYM_INFO* result);
3
4 assign : var = exp {
5 $$.code = $3.code + gen3ai(A0,$3.place,0,$1.place);

VUB-DINF/2009/2 80

6 }
7 exp : exp + exp {
8 $$.place = newvar();
9 $$.code = $1.code + $3.code

10 + gen3ai(A2PLUS,$1.place,$3.place,$$.place);
11 }
12 exp : - exp {
13 $$.place = newvar();
14 $$.code = $2.code
15 + gen3ai(A1MINUS,$2.place,0,$$.place);
16 }
17 exp : (exp) {
18 $$.place = $2.place;
19 $$.code = $2.code;
20 }
21 exp : var {
22 $$.place = $1.place;
23 $$.code = 0;
24 }

Note that the actions for the code attribute have the “simple postfix” property.
Hence we can simplify the actions.

1 extern void
2 emit(INSTRUCTION i);
3
4 assign : var = exp {
5 emit(gen3ai(A0,$3.place,0,$1.place));
6 }
7 exp : exp + exp {
8 $$.place = newvar();
9 emit(gen3ai(A2PLUS,$1.place,$3.place,$$.place));

10 }
11 exp : - exp {
12 $$.place = newvar();
13 emit(gen3ai(A1MINUS,$2.place,0,$$.place));
14 }
15 exp : (exp) {
16 $$.place = $2.place;
17 }
18 exp : var {
19 $$.place = $1.place;
20 }

As an example of the integration of static (notably type) checking with interme-
diate code generation, we show below how appropriate conversions can be gen-
erated for languages that support them. Note that we use an extra attribute type
representing the type of an expression, which can be either t int (integer) or
t float (floating point). We also assume that there are two instructions for

VUB-DINF/2009/2 81

addition: A2PLUSI and A2PLUSF for integer and floating point addition, re-
spectively.

1 exp : exp + exp {
2 $$.place = newvar();
3 if (($1.type==t_int)&&($3.type==t_int)) {
4 $$.type = t_int; symtab_set_type($$.place,t_int);
5 emit(gen3ai(A2PLUSI,$1.place,$3.place,$$.place));
6 }
7 else if (($1.type==t_float)&&($3.type==t_float)) {
8 $$.type = t_float; symtab_set_type($$.place,t_float);
9 emit(gen3ai(A2PLUSF,$1.place,$3.place,$$.place));

10 }
11 else if (($1.type==t_int)&&($3.type==t_float)) {
12 SYM_INFO* tmpf = newvar(t_float);
13 emit(gen3ai(A1ITOF,$1.place,0,tmpf));
14 $$.type = t_float; symtab_set_type($$.place,t_float);
15 emit(gen3ai(A2PLUSF,$1.place,tmpf,$$.place));
16 }
17 else if (($1.type==t_float)&&($3.type==t_int)) {
18 SYM_INFO* tmpf = newvar(t_float);
19 emit(gen3ai(A1ITOF,$3.place,0,tmpf));
20 $$.type = t_float; symtab_set_type($$.place,t_float);
21 emit(gen3ai(A2PLUSF,tmpf,$3.place,$$.place));
22 }
23 }

5.5 Translating boolean expressions

First we consider the translation of boolean expressions (conditions). An obvious
possibility is to translate such expressions by value, i.e. by creating, if necessary,
a temporary variable to hold its value. In this case, we agree to use 0 to represent
“false” and 1 to represent “true”.

1 extern int
2 next3ai(); /* returns number of next (free) location in code sequence */
3
4 bexp : bexp OR bexp {
5 $$.place = newvar(t_bool);
6 emit(gen3ai(A2OR,$1.place,$3.place,$$.place));
7 }
8
9 bexp : bexp > bexp {

10 $$.place = newvar(t_bool);
11 emit(gen3ai(IFGT,$1.place,$3.place,next3ai()+3));
12 emit(gen3ai(A0C,0,0,$$.place));

VUB-DINF/2009/2 82

13 emit(gen3ai(GO,next3ai()+2,0,0));
14 emit(gen3ai(A0C,1,0,$$.place));
15 }

Note the use of the function next3ai() which is used to generate forward jump
instructions.

As an example, one can verify that the C expression
1 a<b || c

will be translated to

1 if a < b goto 4
2 t1 = 0
3 goto 5
4 t1 = 1
5 t2 = t1 || c

Translation by value is appropriate e.g. for code computing the value of a boolean
variable. However, for conditions in while- or if-statements, translating by value
may be wasteful. Indeed, suppose that a < b in the following statement.

1 if ((a<b)||(c<d))
2 x = y + z;

When translating by value, the value of c < d will be computed, even though it is
already known (because a < b) that the then-branch will be taken. A better trans-
lation scheme would branch to the code for x=y+z as soon as possible, saving on
superfluous computations4.

The alternative translation strategy for boolean expressions is by flow of control.
This scheme is used for conditions in the context of control-flow statements. In-
tuitively the value of a condition is not represented directly as (the value of) a
variable but rather indirectly as the location to which control transfers after evalu-
ating (part of) the condition. This is illustrated in Figure 5.4.

The example statement above should then be translated as

1 if a < b goto 4
2 if c < d goto 4
3 goto 6
4 t1 = y + z /* true exit */
5 x = t1
6 /* false exit */

4Note that it depends on the semantics of the source language whether such short-circuit trans-
lation of conditions is allowed. E.g. in C, translating if ((a<b)||((u=z)<d)) x= y+z;
by value will always execute u=z while translating “by flow of control” may not.

VUB-DINF/2009/2 83

C S goto

false

true S’ goto S”C

if C then S’ else S”

while C S

false

true

Figure 5.4: Conditional control flow statements

Thus a condition is associated with two locations in the code: a true and false
exit. The generated code is such that control will transfer to the true or false exit
as soon as possible. However, as can be seen in Figure 5.4, the exits are usually
unknown when the condition is parsed, since they refer to locations further in the
code array. The solution is to generate a dummy “goto ?” instruction wherever a
jump to an exit should come. Here “?” is a placeholder for the, as yet unknown,
location of the exit. The locations of the dummy jump instructions are kept in two
synthesized attributes associated with the condition:

• bexp.true contains the set of all “goto ?” instructions generated so far where
“?” should eventually be replaced by the address of the true exit.

• bexp.false contains the set of all “goto ?” instructions generated so far where
“?” should eventually be replaced by the address of the false exit.

When the exact location l of e.g. the true exit becomes known, one can backpatch
the instructions in bexp.true, replacing “?” by l in each of them.

The semantics of boolean operations such as disjunction, conjunction and nega-
tion can easily be expressed by manipulation of the true and false sets, as illus-
trated in Figure 5.5.

The actions are shown below.
1
2 cond : cond AND marker cond {
3 $$.true = $4.true;

VUB-DINF/2009/2 84

E1 E2

E1 ∧ E2

true true
false

false

true

Figure 5.5: Exit sets after “and”

4 backpatch($1.true,$3.location);
5 $$.false = locations_union($1.false,$4.false);
6 }
7 marker : /* empty right hand side */ {
8 $$.location = next3ai();
9 }

10 cond : NOT cond {
11 $$.true = $2.false;
12 $$.false = $2.true;
13 }
14 cond : var {
15 $$.true = locations_add(locations_create_set(),next3ai());
16 emit(gen3ai(IFNEQ,$1.place,0,0)); /* true, backpatch later */
17 $$.false = locations_add(locations_create_set(),next3ai());
18 emit(gen3ai(GOTO,0,0,0)); /* false,backpatch later */
19 }
20 cond : exp < exp {
21 $$.true = locations_add(locations_create_set(),next3ai());
22 emit(gen3ai(IFLT,$1.place,$3.place,0)); /* true, backpatch later */
23 $$.false = locations_add(locations_create_set(),next3ai());
24 emit(gen3ai(GOTO,0,0,0)); /* false,backpatch later */
25 }

Note the dummy marker → ε production: since it is reduced just before code for
the second bexp will be generated, it can be used to store the location of the start
of this code in an attribute marker.location.

The following example illustrates the translation of
1 p<q || (r<s && t<u)

The generated intermediate code is shown below:

VUB-DINF/2009/2 85

100 if p < q goto ?t /* true exit */
101 goto 102
102 if r < s goto 104
103 goto ?f /* false exit */
104 if y < u goto ?t /* true exit */
105 goto ?f /* false exit */

5.6 Translating control flow statements

We will use the following example grammar:

stmt → if cond stmt else stmt
| while cond stmt
| { slist }
| assign

slist → slist ; stmt
| stmt

Observe that the code corresponding to a stmt, e.g. a while statement, may con-
tain forward references to a “next” location (meaning, after the code of the present
statement) which is unknown at the time code is generated for the current state-
ment. Therefore we use an attribute stmt.next which contains the locations con-
taining instructions that need to be backpatched with the location of the first state-
ment after the current one. We will also use dummy nonterminals to mark certain
locations in the code. The actions for the above grammar are shown below.

1 marker : /* empty */ {
2 $$.location = next3ai();
3 }
4
5 goend : /* empty */ {
6 $$.next = locations_add(locations_create_set(),next3ai());
7 emit(gen3ai(GOTO,0,0,0)); /* goto end,backpatch later */
8 }
9

10 stmt : IF cond marker stmt goend ELSE marker stmt {
11 backpatch($2.true,$3.location);
12 backpatch($2.false,$7.location);
13 $$.next = locations_union(
14 locations_union($4.next,$5.next),
15 $8.next);
16 }
17

VUB-DINF/2009/2 86

18 stmt : WHILE marker cond marker stmt {
19 backpatch($3.true,$4.location);
20 backpatch($5.next,$2.location);
21 $$.next = $3.false;
22 emit(gen3ai(GOTO,$2.location,0,0));
23 }
24
25 stmt : assign {
26 $$.next = locations_create_set();
27 }
28
29 stmt : LBRACE slist RBRACE {
30 $$.next = $2.next;
31 }
32
33 slist : stmt {
34 $$.next = $1.next;
35 }
36
37 slist : slist SEMICOLON marker stmt {
38 backpatch($1.next,$3.location);
39 $$.next = $4.next;
40 }

The following example illustrates the translation of
1 while (a<b)
2 if (c<d)
3 x = y + z;

The generated intermediate code is shown below:

100 if a < b goto 102
101 goto 107
102 if c < d goto 104
103 goto 100 /* false exit */
104 t = y + z
105 x = t
106 goto 100

5.7 Translating procedure calls

We will use the following example grammar:

VUB-DINF/2009/2 87

stmt → id(arg list)
arg list → arg list , exp

| exp

Note that, as in C, we assume that all parameters are passed “by value”. If, as
e.g. in Pascal or C++, the source language also supports passing parameters “by
address”, extra instructions that take the address of an operand, may need to be
inserted before the PARAM instruction.

A statement such as
1 f(e1,e2)

will be translated as

.. .. /* code for e1, place t1 */

.. .. /* code for e2, place t2 */
102 param t1
103 param t2
104 call f

The actions are:
1 typedef struct place_list {
2 ...
3 } PLACE_LIST;
4
5 typedef struct {
6 ..
7 } PLACE_LIST_CURSOR;
8
9 /*

10 * list of places, return new list after successful operation
11 */
12 PLACE_LIST* place_list_create();
13 void place_list_destroy(PLACE_LIST*);
14 PLACE_LIST* place_list_append(PLACE_LIST*,SYM_INFO*);
15
16 /*
17 * cursor into list of places, return null pointer upon failure.
18 */
19 PLACE_LIST_CURSOR* place_list_first(PLACE_LIST*);
20 void place_list_cursor_destroy(PLACE_LIST_CURSOR*);
21 PLACE_LIST_CURSOR* place_list_next(PLACE_LIST_CURSOR*);
22 SYM_INFO* place_list_current(PLACE_LIST_CURSOR*);
23
24 stmt : ID (arg_list) {

VUB-DINF/2009/2 88

25 PLACE_LIST_CURSOR* c;
26 int n = 0; /* number of arguments */
27
28 while (c = place_list.first($3.places)) {
29 ++n;
30 emit(gen3ai(PARAM,place_list_current(c),0,0));
31 c = place_list_next(c);
32 }
33 emit(gen3ai(CALL,ID.place,n,0);
34 /* clean up */
35 place_list_cursor_destroy(c);
36 place_list_destroy($3.places);
37 }
38
39 arg_list: arg_list , exp {
40 $$.places = place_list_append($1.places,$3.place);
41 }
42 arg_list: exp {
43 $$.places = place_list_append(place_list_create(),$1.place);
44 }

5.8 Translating array references

Consider the declaration
1 int a[10,20];
2 int i,j;
3
4 ..
5 .. a[i,j]

We will show how to generate intermediate code for array references such as
a[i, j].

We assume that the size of an integer is 4 bytes, that a is the address of the array
and that the array is stored in row-major order.

The address of a[i, j] is then

a+ (20× (i− 1) + (j − 1))× 4

where 20× (i− 1) is the number of integers in rows appearing before the i’th row
and (j − 1) is the number of integers on the same row but before a[i, j].

The address calculation can be rewritten as

a− 21× 4 + (20× i+ j)× 4

VUB-DINF/2009/2 89

Note that a−21×4 is a fixed “base” quantity that only depends on the (declaration
of) the array. The remainder (20× i+ j)× 4 is called the “offset”.

The corresponding intermediate code is shown below.

.. .. /* compute i, place t1 */

.. t2 = t1 * 20 /* 20× i */

.. .. /* compute j, place is t3 */
102 t4 = t2 + t3 /* (20× i+ j) */
103 t5 = addr a
104 t5 = t5 - 84 /* (a− 21× 4) */
105 t = t5[t4] /* a[i, j] */

In general, we consider an array

type a[d1, . . . , dk];

where s = sizeof (type), di is the number of elements corresponding to the i’th
dimension (1 ≤ i ≤ k), and a is the address of a.

The address of an element a[i1, . . . , ik] is

address(a[i1, . . . , ik]) =

a+ [(i1 − 1)× d2 × . . .× dk + (i2 − 1)× d3 × . . .× dk + . . .

+(ik−1 − 1)× dk + (ik − 1)]× s
= a+ [(i1 × d2 × . . .× dk + i2 × d3 × . . .× dk + . . .+ ik−1 × dk + ik

−(d2 × . . .× dk + d3 × . . .× dk + . . .+ dk + 1)]× s
= a− C + [(. . . (((i1 × d2) + i2)× d3 + i3) . . .)× dk + ik]× s

where
C = (d2 × . . .× dk + d3 × . . .× dk + . . .+ dk + 1)× s

depends only on (the declaration of) the array.

We will use the following example grammar (an lvalue is an expression that can
be assigned to):

exp → lvalue
lvalue → ID /* simple variable */

| elist] /* array reference */
elist → elist , exp

| ID [exp

VUB-DINF/2009/2 90

For lvalue, we use two attributes: lvalue.place and lvalue.offset representing the
base address and the offset, respectively (the offset is only meaningful for array
references).

For elist, we have the attributes elist.place, containing the offset computed so far,
elist.array containing a reference to the symbol table entry for the array variable
and elist.ndim representing the number of dimensions seen so far.

The offset will be computed by successively computing (in elist.place)

o1 = i1

o2 = o1 × d2 + i2

o3 = o2 × d3 + i3

..

ok = ok−1 × dk + ik

offset = ok × s

The actions are shown below.
1 #define NIL 0x0FFFFFFF
2
3 int array_limit(SYM_INFO*,int); /* return size of dimension i of array */
4 int array_base(SYM_INFO*); /* return constant C associated with array */
5 int array_el_size(SYM_INFO*); /* return size of element of array */
6
7 elist : ID [exp {
8 $$.place = exp.place; /* first index */
9 $$.ndim = 1;

10 $$.array = $1.place;
11 }
12 elist : elist , exp {
13 int limit = array_limit($1.array,$1.ndim+1);
14 $$.place = newvar();
15 /* offset(next) = offset(prev)*limit(prev)+index(next) */
16 emit(gen3ai(A2TIMES,$1.place,limit,$$.place);
17 emit(gen3ai(A2PLUS,$$.place,$3.place,$$.place);
18 $$.array = $1.array;
19 $$.ndim = $1.ndim+1;
20 }
21 lvalue : elist] {
22 $$.place = newvar();
23 $$.offset = newvar();
24 /* base = addr a - array_base(a) */
25 emit(gen3ai(ADDR,$1.array,0,$$.place);

VUB-DINF/2009/2 91

26 emit(gen3ai(A2MINUS,$$.place,array_base($1.array),$$.place);
27 /* offset = elist.offset * sizeof(element) */
28 emit(gen3ai(A2TIMES,$1.place,array_el_size($1.array),$$.offset);
29 /* now $$.place[$$.offset] references array element */
30 }
31 lvalue : ID {
32 $$.place = $1.place;
33 $$.offset = NIL;
34 }
35 exp : lvalue {
36 if ($1.offset==NIL) { /* note: NIL!=0 */
37 $$.place = $1.place
38 }
39 else
40 {
41 $$.place = newvar();
42 emit(gen3ai(AAC,$1.place,$1.offset,$$.place));
43 }
44 }

Chapter 6

Optimization of intermediate code

6.1 Introduction

In this chapter we look at techniques for improving intermediate (machine-independent)
code with respect to two criteria: time, i.e. execution time, and space, i.e. the
space taken up by the intermediate code instructions and variables. Note that opti-
mization is actually a misnomer since there is no guarantee that the resulting code
is the best possible.

Usually, improvements in time will also result in more compact code since in-
structions and variables will be eliminated. This is due to the “technical” nature
of the improvements. On a more abstract, e.g. the algorithm, level, the opposite is
usually the case in that one can obtain faster algorithms at the cost of more space
for data structures. As a simple example, consider the problem of designing a
function that takes any ASCII character as input and converts upper case to lower
case letters.

A naive “small” algorithm will look something like
1 char
2 tolower(char c) /* assume 0<=c<=127 */
3 {
4 if ((c>=’A’) && (c<=’Z’))
5 return c-’A’+’a’;
6 else
7 return c;
8 }

By storing the function as a table, hence taking up more space, one can obtain a
faster algorithm as shown below.

92

VUB-DINF/2009/2 93

1 static char TOLOWER[] = {
2 ’\0’, /* 0 */
3 ...
4 ’a’, /* 65 (’A’) */
5 ’b’, /* 66 (’B’) */
6 ..
7 ’˜’, /* 126 (’˜’) */
8 ’\0177’ /* 127 */
9 };

10
11 char
12 tolower(char c) /* assume 0 <= c <= 127 */
13 {
14 return TOLOWER[c];
15 }

In general, it is worth noting that, if speed is an issue, optimization by the compiler
can make a fast algorithm run faster but it cannot make a slow algorithm run fast
enough.

In the example below, the running time of a bad algorithm (bubblesort, B) is
compared with its optimized version B∗ and with a good algorithm (quicksort,
Q). The number n is a measure for the size of the problem (i.e. the number of
records to be sorted).

n = 104 n = 105

B 1 100
B∗ .1 10
Q .1 1.5

As the table shows, while compiler optimization can result in a tenfold speedup,
as the size of the problem grows, an unoptimized superior algorithm easily catches
up with the optimized version of a slow algorithm. Hence, if speed is an issue,
there is no excuse for not designing an efficient algorithm before relying on the
compiler for further optimization.

Finally, one should be aware that machine-independent code improvement tech-
niques, such as the ones discussed in this chapter, are only one source of optimiza-
tion that can be performed by the compiler. Indeed, during the code generation
phase, there are additional opportunities for the compiler to dramatically improve
program running times, e.g. by judicious allocation of variables to registers.

VUB-DINF/2009/2 94

6.2 Local optimization of basic blocks

A sequence of intermediate code instructions is converted to a flow graph where
the nodes consist of basic blocks as follows.

Definition 16 Let s be a sequence of intermediate code instructions. A leader
instruction is any instruction s[i] such that

• i = 0, i.e. s[i] is the first instruction; or

• s[i] is the target of a (conditional or unconditional) jump instruction; or

• s[i− 1] is a (conditional or unconditional) jump instruction

A basic block is a maximal subsequence s[i], . . . , s[i+ k] such that s[i] is a leader
and none of the instructions s[i+ j], i < j ≤ k is a leader.

Thus, a basic block is a sequence of consecutive instructions in which flow of
control enters at the beginning and leaves at the end.

Definition 17 Let s be a sequence of intermediate code instructions. The flow
graph of s is a directed graph where the nodes are the basic blocks in s and there
is an edge from B1 to B2 iff

• The last instruction of B1 is a (conditional or unconditional) jump instruc-
tion to the first instruction of B2; or

• B2 follows B1 in s and the last instruction of B1 is not an unconditional
jump instruction.

As an example, consider the following fragment which computes the inner product
of two vectors.

1 {
2 product = 0;
3 for (i=0;i<20;i=i+1)
4 product = product + a[i]*b[i];
5 }

The intermediate code is shown below. It contains two basic blocks, B1 and B2,
comprising the instructions 1-2 and 3-16, respectively. The flow graph is shown
in Figure 6.1

VUB-DINF/2009/2 95

1 product = 0
2 i = 1
3 t1 = 4*i
4 t2 = addr a
5 t3 = t2 -4
6 t4 = t3[t1]
7 t5 = addr b
8 t6 = t5 - 4
9 t7 = 4*i

10 t8 = t6[t7]
11 t9 = t4 * t8
12 t10 = product + t9
13 product = t10
14 t11 = i+1
15 i = t11
16 if (i<20) goto 3

B2

B1

Figure 6.1: Flow graph of example code

6.2.1 DAG representation of basic blocks

A basic block can be represented as a directed acyclic graph (dag) which abstracts
away from the non-essential ordering of instructions in the block. On the other
hand, the dag will be constructed such that expressions are evaluated only once,
since they correspond to single nodes in the graph.

Pseudo-code for the algorithm to construct the dag for a basic block is shown
below.

Algorithm 8 [Constructing a DAG from a basic block]

VUB-DINF/2009/2 96

1 /*
2 * node(SYM_INFO*) and set_node(SYM_INFO*,NODE*) maintain a mapping:
3 *
4 * node: SYM_INFO* -> NODE*
5 *
6 * which associates a (at most 1) node with a symbol (the node containing
7 * the "current value" of the symbol).
8 */
9 extern NODE* node(SYM_INFO*); /* get node associated with symbol */

10 extern void set_node(SYM_INFO*,NODE*); /* (re)set node associated with symbol */
11
12 /*
13 * leaf(SYM_INFO*) and set_leaf(SYM_INFO*,NODE*) maintain a mapping:
14 *
15 * leaf: SYM_INFO* -> LEAF*
16 *
17 * which associates a (at most 1) leaf node with a symbol (the node
18 * containing the "initial value" of the symbol)
19 *
20 * set_leaf() is called only once for a symbol, by the leaf
21 * creating routine new_leaf(SYM_INFO*)
22 */
23 extern NODE* leaf(SYM_INFO*); /* get leaf associated with symbol */
24 extern void set_leaf(SYM_INFO*,NODE*); /* set leaf associated with symbol */
25
26 /*
27 * node creation functions. Each node has an opcode and a set
28 * of symbols associated with it. A node may have up to 2 children.
29 */
30 extern new_0_node(SYM_INFO*);
31 extern new_1_node(OPCODE,SYM_INFO*);
32 extern new_2_node(OPCODE,SYM_INFO*, SYM_INFO*);
33 extern node_add_sym(SYM_INFO*,NODE*);
34 /*
35 * node finding function: returns node with given opcode and node arguments
36 */
37 extern NODE* match(OPCODE,NODE*,NODE*)
38
39 NODE*
40 new_leaf(SYM_INFO* s) {
41 NODE* n;
42 n = new_0_node(s);
43 set_leaf(s,n);
44 set_node(s,n);
45 node_add_sym(s,n);
46 return n;
47 }
48
49 void

VUB-DINF/2009/2 97

50 basic_block_2_dag(INSTRUCTION bb[],int len) {
51 for (i=0;(i<len);++i) { /* for each instruction in the basic block */
52 switch (type_of(bb[i]) {
53 case BINOP: /* A = B op C */
54 nb = node(B);
55 if (!nb) /* B not yet in dag */
56 nb = new_leaf(B);
57 nc = node(C);
58 if (!nc) /* C not yet in dag */
59 nc = new_leaf(C);
60 /* find op-node wich children nb,nc */
61 n = match(op,nb,nc);
62 if (!n)
63 n = new_2_node(op,nb,nc);
64 node_add_sym(A,n); set_node(A,n);
65 break;
66 case UNOP: /* A = op B */
67 nb = node(B);
68 if (!nb) /* B not yet in dag */
69 nb = new_leaf(B);
70 /* find op-node wich children nb,nc */
71 n = match(op,nb,nc);
72 if (!n)
73 n = new_1_node(op,nb);
74 node_add_sym(A,n); set_node(A,n);
75 break;
76 case ZOP: /* A = B */
77 n = node(B);
78 if (!n) /* B not yet in dag */
79 n = new_leaf(B);
80 node_add_sym(A,n); set_node(A,n);
81 break;
82 case CJUMP: /* if B relop C GOTO L */
83 /* this must be the last instruction in the block! */
84 nb = node(B);
85 if (!nb) /* B not yet in dag */
86 nb = new_leaf(B);
87 nc = node(C);
88 if (!nc) /* C not yet in dag */
89 nc = new_leaf(C);
90 n = new_2_node(relop,nb,nc);
91 /* set_node(L,n); */
92 break;
93 default:
94 break;
95 }
96 }
97 }

VUB-DINF/2009/2 98

2

The result of executing the algorithm on the basic block B2 from Figure 6.1 is
shown in Figure 6.2.

4

* t2
addr

t3

t4

t1,t7

t9

+ t10,product

addr t5

- t6

t8

-

=[]

+

20

< L3

=[]

*

t11,i

product i a1 b

Figure 6.2: Dag of example code

The DAG representation of a basic block provides useful information:

• The range of the leaf map is the set of all symbols that are used in the basic
block.

• The range of the node map contains the set of symbols that are available for
use outside the basic block. In the absence of more precise global informa-
tion, we must assume that they will be used and therefore we assume that
these variables are live1 at the end of the basic block. However, temporary
variables created during intermediate code generation may be assumed not
to be live.

Note that a variable available at the end of a basic block is not necessarily “live”.
Section 6.3.5 (page 110), contains a global analysis that obtains a more precise
smaller estimate of which variables are really “live”.

1See Definition 24, page 110, for a precise definition of “live variable”.

VUB-DINF/2009/2 99

6.2.2 Code simplification

Algorithm 9 [Code simplification in a basic block]
The DAG can also be used to perform code simplification on the basic block.

Basically, intermediate code is generated for each node in the block, subject to
the following rules and constraints (we assume that the code does not contain
array assignments or pointer manipulations):

• Code for children should precede the code for the parent. The code for the
unique jump instruction should be generated last.

• When performing the operation corresponding to a node n we prefer a live
target variable from the set node(n).

• If node(n) contains several live variables, add additional simple assign-
ments of the form A = B to ensure that all live variables are assigned to.

• If node(n) is empty, use a new temporary variable as the target.

• Do not assign to a variable v if its current value is still needed (e.g. because
its leaf node still has an unevaluated parent).

2

The result of applying the algorithm sketched above is shown below. Note that,
compared with the original version, both the number of instructions and the num-
ber of temporary variables has decreased.

1
2
3 t1 = 4*i
4 t2 = addr a
5 t3 = t1 -4
6 t4 = t3[t1]
7 t5 = addr b
8 t6 = t5 - 4
9 t8 = t6[t1]

10 t9 = t4 * t8
11 product = product + t9
12 i = i+1
13 if (i<20) goto 3

It should be noted that there are heuristics (see e.g Section 9.8 in [ASU86]) to
schedule node evaluation of a dag which tend to have a beneficial effect on the
number of registers that will be needed when machine code is generated 2.

2For trees there is even an optimal, w.r.t. register usage, algorithm.

VUB-DINF/2009/2 100

6.2.3 Array and pointer assignments

The presence of array references and pointer manipulations complicates the code
simplification algorithm.

Consider the intermediate code
1 x = a[i]
2 a[j] = y
3 z = a[i]

The corresponding dag is shown in Figure 6.3.

=[] x,z
[]=

a i j y

Figure 6.3: Dag of code with array manipulation

A possible simplified instruction sequence would be
1 x = a[i]
2 z = x
3 a[j] = y

which is clearly not equivalent to the original (consider e.g. what would happen
if i == j but y 6= a[i].

The effect of an array assignment (a[x]=y) node should be that all nodes refer-
ring to an element of a should be killed in the sense that no further identifiers can
be added to such nodes. Moreover, when generating simplified code, care should
be taken that all array reference nodes that existed before the creation of the ar-
ray assignment node should be evaluated before the assignment node. Similarly,
all array reference nodes created after the array assignment node should be eval-
uated after that node. One way to represent such extra constraints is by adding
extra edges to the dag from the “old” array reference nodes to the array assign-
ment node and from that node to the “new” array reference nodes, as shown in
Figure 6.4 (the extra constraining edges are shown as dashed arrows).

The effect of a pointer assignment *a = b is even more drastic. Since a can
point anywhere, the node corresponding to such an instruction kills every node in
the dag so far. Moreover, when generating simplified code, all “old” nodes will

VUB-DINF/2009/2 101

=[]

a i j y

[]=

z

x

=[]

Figure 6.4: Corrected dag of code with array manipulation

have to be evaluated before the pointer assignment and all “new” nodes after it.
Similarly, if we assume that a procedure can have arbitrary side effects, the effect
of a CALL instruction is similar to the one of a pointer assignment.

6.2.4 Algebraic identities

The dag creation algorithm can be made more sophisticated by taking into account
certain algebraic identities such as commutativity (a ∗ b = b ∗ a) and associativity.

Another possibility when processing a conditional jump instruction on a > b is to
check whether there is an identifier x holding a − b and to replace the condition
by x > 0 which is probably cheaper.

As an example, consider the intermediate code below.
1 t1 = b + c
2 a = t1
3 t2 = c + d
4 t3 = t2 + b
5 e = t3

The corresponding dags (with and without algebraic optimization) are shown in
Figure 6.5. In the example, the first version of the dag is optimized by applying
associativity to recognize b+ c as a common subexpression, eliminating the need
for the temporary variable t2.

6.3 Global flow graph information

In this section we discuss several kinds of information that can be derived from
the flow graph (and the instructions in it). In the next section, we will design code
improving transformations that rely on this information.

VUB-DINF/2009/2 102

+ t3,e

+t1,a
+ t2

+
t1,a

+ t3,e

b c d b c d

dag optimized dag

Figure 6.5: Dag using algebraic identities

Note that we assume that a flow graph corresponds to a single procedure. Also,
we will not consider problems caused by aliasing, where two variables refer to
the same location (aliasing may be caused by pointer manipulation and/or refer-
ence parameters in procedure calls). The impact of aliasing is briefly discussed in
Section 6.5.

In the discussion below we use the following concepts related to flow graphs of ba-
sic blocks, which themselves consist of intermediate code instruction sequences.

• A basic block B′ is a successor of a basic block B, denoted B < B′, if
there is an edge from B to B′ in the flow graph.

• We assume the existence of an initial basic block which represents the entry
to the procedure.

• There are n + 1 points in a basic block with n instructions: one between
each pair of consecutive instructions, one before the first instruction and one
just after the last instruction.

• Consider all points in all basic blocks of a flow graph. A path from a point
p0 to a point pn is a sequence of points p0, p1, . . . , pn−1, pn such that for
each 0 ≤ i < n, either

– pi is the point immediately before an instruction s and pi+1 is the point
immediately after s; or

– pi is (after) the end of some block and pi+1 is the point before the first
instruction in a successor block.

Often, we will confuse an instruction s with the point immediately before it.

VUB-DINF/2009/2 103

6.3.1 Reaching definitions

Definition 18 A definition of a variable is an instruction that assigns, or may
assign, a value to it. In the first case, we say that a definition is unambiguous,
otherwise its is called ambiguous. The set of all definitions of a variable a is
denoted by Def(a), while UDef(a) represents the set of unambiguous definitions
of a

A definition d reaches a point p if there is a path from the point immediately
following d to p such that d is not killed by an unambiguous definition of the same
variable along that path.

The phrase “may assign” is necessary since, e.g. a call to a procedure with x as
a formal (reference) parameter may or may not result in an assignment to x. A
similar reasoning holds for an assignment through a pointer or to an array element.

Note that Def(a) is easy to compute.

Thus, if a definition d for x reaches a point p, the value of x at p may be given by
the value assigned at d.

The following basic block properties will be useful later on:

Definition 19 Let B be a basic block.

GEN (B) = {d ∈ B | d is a definition that reaches the end of B}
KILL(B) = {d 6∈ B | d ∈ Def(x) and B ∩ UDef(x) 6= ∅}

IN (B) = {d | d is a definition and d reaches the start of B}
OUT (B) = {d | d is a definition and d reaches past the end of B}

Observe that GEN (B), which depends only on B, is straightforward to construct
using a backward scan of B (after seeing an unambiguous definition for a variable
x, no more definitions for x should be added to GEN (B)). Similarly, given the
set DEF of all definitions in the graph, the set KILL(B) can easily be computed
by keeping only those definitions from DEF that define a variable for which an
unambiguous definition in B exists.

It is easy to see that IN (B) and OUT (B) must satisfy the following data-flow
equations:

OUT (B) = (IN (B) \KILL(B)) ∪GEN (B)

IN (B) = ∪C<BOUT (C)

VUB-DINF/2009/2 104

If there are n blocks in the graph, we have 2n equations with 2n unknowns
(GEN (B) and KILL(B) can be determined independently). Due to the possi-
ble presence of cycles in the flow graph, these equations usually do not have a
unique solution.

E.g. consider the graph in Figure 6.6.

B

Figure 6.6: Flow graph with cycle

Clearly, if IN (B) = I0 and OUT (B) = O0 form a solution and d is a definition
such that d 6∈ I0 ∪O0 ∪KILL(B), then IN (B) = I0 ∪ {d} is also a solution. It
turns out that the smallest solution is the desired one3. It can be easily computed
using the following (smallest) fixpoint computation.

Algorithm 10 [Computing definitions available at a basic block]

1 typedef set<Instruction*> ISET;
2 typedef .. BLOCK;
3
4 ISET in[BLOCK], out[BLOCK], kill[BLOCK], gen[BLOCK];
5
6 void
7 compute_in_out() {
8 for all b in BLOCK {
9 in[b] = emptyset;

10 out[b] = gen[b];
11 }
12
13 bool change = false;
14
15 do {
16 change = false;
17 foreach b in BLOCK {

3The solutions are closed under intersection

VUB-DINF/2009/2 105

18 newin = set_union { out[c] | c < b };
19 change = change || (newin != in[b]);
20 in[b] = newin;
21 out[b] = (in[b] - kill[b]) set_union gen[b]
22 }
23 while change;
24 }
25 }

2

Definition 20 Let a be a variable and let u be a point in the flow graph. The set
of definitions of a that reach u is defined by

UD(a, u) = {d ∈ Def(a) | d reaches u}

Such a set is often called a use-definition chain.

UD(a, u) can be easily computed using IN (B) where u is the basic block con-
taining u.

Algorithm 11 [Computing use-definition chains]

1 iset
2 defu(SYM_INFO* a,POINT u) {
3 BLOCK b = block_of(u);
4
5 if (Def(a) intersection B != emptyset)
6 /* return the singleton containing the last
7 * definition in b of a before u
8 */
9 for (p=u; (p>0); --p)

10 if (p in UDEF(a))
11 return {p}
12 return Def(a) intersect in[b]
13 }

2

6.3.2 Reaching definitions using datalog

An alternative definition uses logic programming (in particular, datalog) to define
reaching definitions, see [ALSU07], page 925.

VUB-DINF/2009/2 106

We will use a term B.N, N ≥ 0 to denote the point in block B us before the
N + 1’th statement (in block B). The latter statement is said to be at point B.N.
We start with the following base predicates.

1 assign(B.N, X, E) % the statement following B.N has the
2 % form X = E, E an expression (with at most 2 operands)
3 use(B.N, X) % the statement at B.N uses the variable X
4 type(X,T) % type type of X is T
5 size(B, N) % block B has N statements
6 succ(B, C) % true iff block B has a successor block C
7 initial(B) :- not(succ(C,B)). % initial block has no predecessors

We can then define what it means for a statement to (ambiguously or unam-
bigously) define a variable X (here we assume a strongly typed language without
casting).

1 % unambig_def(B.N, X) -- statement N in block B unambiguously defines variable X
2 unambig_def(B.N, X) :- assign(B.N, X, _).
3
4 % def(B.N, X) -- statement N in block B may define variable X
5 define(B.N, X) :- unambig_def(B.N, X).
6 define(B.N, X) :- assign(B.N, *P, _), type(X, T), type(P, T*).

Then the following program computes the reaching definitions.
1 % rd(B.N, C.M, X) -- definition of X at C.M reaches B.N
2 rd(B.N, B.N, X) :- define(B.N, X).
3 rd(B.N, C.M, X) :- rd(B.N-1, C.M, X), not(unambig_def(B.N-1, X)).
4 rd(B.0, C.M, X) :- rd(D.N, C.M, X), succ(D, B), size(D,N).

The first rule simply states that a definition reaches itself while the second rule
indicates that if a definition reaches a point N − 1 in a block B and the next
statement does not unambiguously (re)define X , then the definition also reaches
pointN (after the next statement) inB. The third rule says that a definition reaches
the beginning of a block B if it reaches the end of a predecessor D of B.

A use-definition predicate be defined as follows, where the use u is represented
by a point N in a block B, and d by its block C and point M):
ud(A, u(B.N), d(C.M)) :- rd(B.N, C.M, A), use(B.N, A).

6.3.3 Available expressions

Definition 21 An expression e = x+y4 is available at a point p, denoted AVAIL(e, p)
if every path from the initial basic block to p evaluates z = x + y, and after the

4We use ’+’ as an example operator. The same definition applies to other binary or unary
operators.

VUB-DINF/2009/2 107

last such evaluation prior to p, there are no subsequent definitions for x, y or z.
A block kills an expression x + y if it defines x or y and does not subsequently
(re)compute x + y. A block generates an expression x + y is if it unambiguously
evaluates x+ y and does not subsequently redefine x or y.

In order to be able to determine the availability of an expression at some point, we
define

Definition 22 Let B be a basic block.

GEN e(B) = {e | B generates e}
KILLe(B) = {e | B kills e}

IN e(B) = {e | e is available at the start of B}
OUT e(B) = {e | e is available past the end of B}

Observe that GEN e(B), which depends only onB, is straightforward to construct
using a forward scan ofB, keeping track of available expressions by appropriately
processing definitions. E.g. an instruction z = x + y makes x + y available but
kills any available expressions involving z (note that z = x is possible). The set
KILLe(B) consists of all expressions y+ z such that either y or z is defined in the
block and y + z is not generated by the block.

It is easy to see that IN e(B) and OUT e(B) must satisfy the following data-flow
equations:

OUT e(B) = (IN (B) \KILLe(B)) ∪GEN e(B)

IN e(B) =

{
∩C<BOUT e(C) if B is not initial
∅ if B is initial

Note the similarity of these equations with the ones for reaching definitions. The
main difference is the use of ∩ instead of ∪ in the equation for IN e(B) (∩ is
necessary since e must be available on all paths into B in order to be sure that e is
available at the start of B).

Consider the flow graph in Figure 6.7 and assume that neither x nor y are defined
in block B after d which is itself the final definition of z in block B. Assume
furthermore that block C does not contain any definitions for x, y or z. Hence
x + y should be available at the beginning of block C, i.e. x + y ∈ IN e(C),
which would not be found if the minimal solution for the above equations were
computed.

VUB-DINF/2009/2 108

d: z=x + y

B

C

Figure 6.7: Example flow graph for available expressions

Since, clearly, the solutions for IN e(C) should be closed under union, it turns out
that the intended solution is the maximal one. Hence, in the following fixpoint
procedure, we compute the greatest fixpoint.

Algorithm 12 [Computing expressions available at a basic block]

1 typedef .. EXPRESSION;
2 typedef set<EXPRESSION> ESET;
3 typedef .. BLOCK;
4
5 extern BLOCK* initial_block();
6 extern ESET all_expressions();
7
8 ESET ine[BLOCK], oute[BLOCK], kille[BLOCK], gene[BLOCK];
9

10 void
11 compute_avail_exp() {
12 BLOCK b1 = initial_block();
13
14 /* initialization */
15
16 ine[b1] = empyset; /* never changes */
17 out[b1] = gene[b1]; /* never changes */
18
19 for all b in (BLOCK - {b1}) {
20 oute[b] = all_expressions() - kille[b]
21 }
22
23 bool change = false;

VUB-DINF/2009/2 109

24
25 do {
26 change = false;
27 for all b in (BLOCK - {b1}) {
28 ine[b] = intersection { oute[c] | c < b }
29 oldout = oute[b];
30 oute[b] = gene[b] set_union (ine[b] - kille[b]);
31 change = change || (oute[b]!=oldout);
32 }
33 }
34 while (change);
35
36 }

2

Note that, based on IN e(B), it is easy to determine AVAIL(e = x + y, p), for
p ∈ B.

Algorithm 13 [Computing expression availability at a point]
Let p ∈ B be a point where we want to compute AVAIL(e, p).

• Check whether e ∈ IN e(B).

• If so, check whether x or y are redefined before p inB. If not, e is available;
else not.

• If e 6∈ IN e(B), check whether e is generated before p in B. If so, e is
available; else not.

2

6.3.4 Available expressions using datalog

In datalog, the formulation is slightly more involved than might be expected be-
cause the usual datalog semantics computes minimal solutions. The approach is
to define a predicate unavail_exp/2 asserting that an expression is not available
at some point. The availability of an expression at a point then hold is unavail

does not hold at that point.
1 define_exp(B.N, X+Y) :- assign(B.N, _, X+Y).
2 % a possibled definition of any operand kills the expression
3 kill_exp(B.N, X+Y) :- define(B.N, X, _).
4 kill_exp(B.N, X+Y) :- define(B.N, Y, _).

VUB-DINF/2009/2 110

5
6 unavail_exp(B.N, X+Y) :- kill_exp(B.N
7 unavail_exp(B.N+1, X+Y) :-
8 unavail_exp(B.N, X+Y), not(define_exp(B.N+1, X+Y)).
9 % if X+Y is unavaible at the end of a predecessor of B,

10 % it is also unavailable at the beginning of B
11 unavail_exp(B.0, X+Y) :- succ(C, B), size(C,N), unavail_exp(C.N, X+Y).
12 % at the start of the initial block, all expressions are unavailable
13 unavail_exp(B.0, X+Y) :- initial(B).
14 % an expression is available if it is not unavailable
15 avail(B.N, X+Y) :- not(unavail_exp(B.N, X+Y)).

6.3.5 Live variable analysis

Definition 23 A variable x is used at instruction s if its value may be required by
s.

Definition 24 Let x be a variable and let p be a point in the flow graph. We say
that x is live at p is there is some path from p on which the value of x at p can be
used. If x is not live at p, we say that it is dead at p.

In datalog this becomes:
1 live(B.N, X) :- assign(B.N, _, X + Y).
2 live(B.N, X) :- assign(B.N, _, Y + X).
3 live(B.N-1, X) :- live(B.N, X),
4 not(unambig_def(B.N-1, X).
5 live(B.N, X) :- size(B, N), succ(B, C), live(C.0, X).

In order to be able to determine whether a variable is live at some point, we define

Definition 25 Let B be a basic block.

KILLlive(B) = {x | x is unambiguously defined before used in B}
GEN live(B) = {x | x may be used in B before it is unambiguously defined in B}

IN live(B) = {x | x is live at the start of B}
OUT live(B) = {x | x is live past the end of B}

VUB-DINF/2009/2 111

Note that, in the definition of KILLlive(B), it is not necessary that x is actually
used in B, as long as there is an unambiguous definition of x before any use. Sim-
ilarly, in the definition of IN live(B), it may well be that x ∈ IN live(B) although x
is not (unambiguously) defined in B.

Observe that both KILLlive(B) and GEN live(B), which depend only on B, are
straightforward to construct.

To compute IN live(B) and OUT live(B), we note that they satisfy the following
data-flow equations:

IN live(B) = GEN live(B) ∪ (OUT live(B)−KILLlive(B))

OUT live(B) = ∪B<CIN live(C)

Again we will use a fixpoint computation to determine the smallest solution of the
above equations. Note that intuitively, the algorithm works “backwards” in the
graph, as can be seen from the use of successors instead of predecessors in the
equation for OUT live(B).

Algorithm 14 [Computing live variables for a basic block]

1 typedef set<SYM_INFO*> VSET;
2 typedef .. BLOCK;
3
4 VSET in_live[BLOCK], out_live[BLOCK], use[BLOCK], gen_live[BLOCK];
5
6 void
7 compute_live()
8 {
9 for all b in BLOCK

10 in_live[b] = emptyset;
11
12 bool change = true;
13
14 while (change) {
15 change = false;
16 foreach b in BLOCK {
17 oldin = in_live[b];
18 out_live[b] = union { in[s] | b < s };
19 in_live[b] = use[b] union (out_live[b] - gen_live[b]);
20 change = change || (oldin!=in_live[b]);
21 }
22 }
23 }

VUB-DINF/2009/2 112

2

Note that the information from OUT live(B) can be profitably used to refine Al-
gorithm 9.

6.3.6 Definition-use chaining

Definition 26 The definition-use chain of a definition d is defined as

DU (d, x) = {s | s uses x and there is a path from d to s that does not redefine x}

The following sets, defined for basic blocks, facilitate the computation of DU (d, x).

Definition 27 Let B be a basic block.

KILLuse(B) = {(s, x) | s 6∈ B uses x and B defines x}
GEN use(B) = {(s, x) | s ∈ B uses x and x is not defined prior to s in B}

IN use(B) = {(s, x) | s uses x and s reachable from the beginning of B}
OUT use(B) = {(s, x) | s 6∈ B uses x and s reachable from the end of B}

Here, “reachable” means without any intervening definitions of x.

Observe that both KILLuse(B) and GEN use(B) are straightforward to construct.

To compute IN use(B) and OUT use(B), we note that they satisfy the following
data-flow equations:

IN use(B) = GEN use(B) ∪ (OUT use(B)−KILLuse(B))

OUT use(B) = ∪B<CIN use(C)

Since the above equations are isomorphic to the ones in Section 6.3.5, an algo-
rithm similar to Algorithm 14 can be used to compute OUT use(B). DU (d, x) can
then be computed by.

DU (d, x) =


OUT use(B) ∪ {(s, x) | s ∈ B uses x}

if B does not contain a definition of x after d
{(s, x) | s ∈ B uses x and s comes before d′}

if d′ ∈ B is the first definition of x after d

VUB-DINF/2009/2 113

6.3.7 Application: uninitialized variables

To illustrate the use of global flow information, we show how to detect uninitial-
ized variables.

It suffices to add a dummy assignment dx:x = 0 for each variable x in front of the
initial block. Now if for any such dx, it turns out that DU (dx, x) 6= ∅, we can
deduce that x is possibly used before it is assigned to.

6.4 Global optimization

6.4.1 Elimination of global common subexpressions

Algorithm 15 [Elimination of global common subexpressions]
For every instruction s:x = y+z5 such that AVAIL(y+z, p) where p is the point
before s, do the following (assume s ∈ B):

1. Find the evaluations of y+z that reach B by searching the graph (and each
block) backwards from B, not continuing after a block that evaluates y+ z.

2. Create a new temporary variable u.

3. Replace each instruction w = y + z found in step 1 by u = y + z;w = u.

4. Replace s by x = u.

2

Note that the algorithm will miss the fact that a ∗ z is the same as c ∗ z in

1 a = x + y
2 b = a * z
3 ...
4 c = x + y
5 d = c * z

Figure 6.8: Code before first subexpression elimination

Algorithm 15 will produce the code in Figure 6.9. However, repeated application
of Algorithm 15, combined with copy propagation (Algorithm 16), will eventually
optimize the code further.

5Here ’+’ stands for any operator.

VUB-DINF/2009/2 114

1 u = x + y
2 a = u
3 b = a * z
4 ...
5 c = u
6 d = c * z

Figure 6.9: Code after first subexpression elimination

6.4.2 Copy propagation

Copy instructions of the form x = y are generated e.g. by intermediate code
generation and by Algorithm 15. Copy propagation can be used to eliminate many
such instructions by replacing further uses of x by y.

One can eliminate a copy instruction s:x = y and substitute y for x in all uses of
x in s′ ∈ DU (s, x) provided that:

• UD(s′, x) = {s}, i.e. s is the only definition of x to reach s′.

• No paths from s to s′, including paths that go through s′ several times,
contains definitions of y.

In datalog:
1 % copy(B.N, X, Y) -- X is copy of Y at B.N
2 copy(B.N, X, Y) :- assign(B.N, X, Y).
3 copy(B.N, X, Y) :- copy(B.N-1, X, Y),
4 not(def(B.N-1, X)), not(def(B.N-1, Y)).
5 copy(B.0, X, Y) :- not(initial(B)),
6 not (
7 succ(C, B), size(C, M), not(copy(C.M, X, Y))
8).

To solve the latter question, we solve yet another data-flow problem where IN copy(B)
(OUT copy(B)) is the set of copies s : x = y such that every path from the initial
node to the beginning (end) of B contains s, and subsequent to the last occurrence
of s, there are no definitions of y. We also consider GEN copy(B), the set of copies
s:x = y generated by B where s ∈ B and there are no subsequent definitions of
x or y within B. KILLcopy(B) contains the set of copies s:x = y where either x
or y is defined in B and s 6∈ B. Note that IN copy(B) can contain only one copy
instruction with x on the left since, otherwise, both instructions would kill each
other.

VUB-DINF/2009/2 115

Then the following equations hold:

OUT copy(B) = GEN copy(B) ∪ (IN copy(B) \KILLcopy(B))

IN copy(B) =

{
∩C<BOUT copy(C) if B is not initial
∅ if B is initial

Note that these equations are isomorphic to the ones used for Algorithm 12 and
therefore we can use a similar algorithm to solve them.

Given IN copy(B), i.e. the set of copies x = y that reach B along every path, with
no definition of x or y following the last occurrence of x = y on the path, we can
propagate copies as follows.

Algorithm 16 [Copy propagation]
For each copy instruction s:x = y do the following:

1. Determine DU (s, x), i.e. the set of uses s′ that are reached by s.

2. Check whether for every s′ ∈ DU (s, x), s ∈ IN copy(Bs′)
6, i.e. s reaches

Bs′ on every path and, moreover, no definitions of x or y occur prior to s′

in B.

3. If the previous step succeeds, remove s and replace x by y in each s′ ∈ DU (s, x).

2

Applying Algorithm 16 on the code of Figure 6.9 yields
1 u = x + y
2 b = u * z
3 ...
4 d = u * z

Now, running Algorithm 15 again will result in
1 u = x + y
2 v = u * z
3 b = v
4 ...
5 d = v

6Bs′ is the basic block containing s′.

VUB-DINF/2009/2 116

6.4.3 Constant folding and elimination of useless variables

Another transformation concerns the propagation of constants. As an example,
consider the code

1 t0 = 33
2 t1 = 3
3 t2 = t0 + t1
4 t3 = t2 - 35
5 x = t3;

Algorithm 17 [Constant folding]
Call a definition s:x = a+ b7 “constant” if all its operands a and b are constant.

• We can then replace s by x = c where c = a+ b is a new constant.

• For each constant definition s and for each s′ ∈ DU (x, s), if UD(x, s′) = {s},
i.e. s is the only x-definition reaching s′, we can replace x in s′ by c, possi-
bly making s′ constant. If after this, DU (x, s) = ∅, we can eliminate s.

• Repeat the above steps until there are no further changes.

2

Note that the second step above can be seen as a special simple case of copy
propagation since the right hand side c of the copy instruction x = c is constant
and therefore there are no c-assignments to worry about.

In the example, application of the algorithm sketched above yields
1 x = 1

6.4.4 Loops

It is a well-known piece of computer science folklore that programs tend to spend
90% of their execution time in 10% of their code. One can use a profiling tool
such as gprof to collect statistics on a program run from which it can be deduced
which routines and instructions are most often executed. These “hot spots” will
almost always turn out to be loops. So it is natural to concentrate optimization
efforts on loops.

Before considering loop optimization, we need to define what constitutes a loop
in a flow graph.

7Here + may be any operator.

VUB-DINF/2009/2 117

Definition 28 Let G be a flow graph with an initial basic block node b0.

• A basic block b dominates another block b′ iff every path from b0 to b′ passes
through b.

• A back edge is an edge n→ b such that b dominates n.

• The (natural) loop L of a back edge n → h consists of h and all basic
blocks x such that there is a path from x to n not going through h; h is
called the header of the loop.

• An inner loop is a loop that contains no other loops.

• An exit node of a loop L is a block e ∈ L that has a successor outside L.

B1

B2

B3

B6B5

B4

Figure 6.10: Flow graph with loops

In Figure 6.10, there are three loops: L0 = {B2}, L1 = {B3}, L2 = {B2, B3, B4, B5}.
B2 is the header of L2, while B4 is L2’s single exit node.

One crude way to compute the dominators of a block b is to take the intersection
of all acyclic paths from the initial node to b.

A smarter algorithm relies on the fact that

dom(b) = {b} ∪ ∩c<bdom(c)

i.e. a node that dominates all predecessors of b also dominates b.

Algorithm 18 [Computing dominators]

VUB-DINF/2009/2 118

1 typedef set<BLOCK*> BLOCKS;
2
3 BLOCK* b0; /* initial basic block */
4 set<BLOCK*> B; /* set of all blocks */
5
6 void
7 compute_dominates()
8 {
9 /* initialize */

10
11 dom(b0) = { b0 };
12 for b in (B - {b0})
13 dom(b) = B;
14
15 /* compute fixpoint */
16
17 do
18 {
19 change = false;
20 for b in (B-{b0})
21 {
22 old_dom = dom(b);
23 dom(b) = {b} union intersection { dom(c) | c < b }
24 change = change || (dom(b)!=old_dom);
25 }
26 }
27 while (change)
28 }

2

The table below shows the application of Algorithm 19 to the flow graph of Fig-
ure 6.10.

block 1 2 3 4 5 6
predecessors 1,2,5 2,3 3 4 4
dominators initialize 1 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6
dominators iteration 1 1 1,2 1,2,3 1,2,3,4 1,2,3,4,5 1,2,3,4,6
dominators iteration 2 1 1,2 1,2,3 1,2,3,4 1,2,3,4,5 1,2,3,4,6

The following algorithm can be used to compute the natural loop corresponding
to a back edge. It corresponds to a backward scan from the header.

Algorithm 19 [Computing the natural loop of a back edge]

VUB-DINF/2009/2 119

1 type set<BLOCK*> BLOCKS;
2
3 typedef struct {
4 BLOCKS nodes;
5 BLOCK* header;
6 } LOOP;
7
8 BLOCKS
9 predecessors(BLOCK *b); /* return predecessors of b in flow graph */

10
11 LOOP
12 natural_loop(BLOCK* src,BLOCK* trg)
13 {
14 /* compute natural loop corresponding to back edge src-->trg */
15
16 BLOCK* stack[];
17 BLOCK* tos = stack;
18 LOOP loop = { { trg }, trg }; /* trg is header */
19
20 if (trg!=src) {
21 loop.nodes = loop.nodes union { src }
22 stack[tos++] = src; /* push src */
23 }
24
25 while (tos!=stack) { /* stack not empty */
26 BLOCK* b = stack[--tos]; /* pop b */
27 BLOCKS P = predecessors(b);
28
29 for each p in P
30 if (!(p in loop)) {
31 loop.nodes = loop.nodes union {p};
32 stack[tos++] = p;
33 }
34
35 }
36 }

2

Applying Algorithm 19 to the back edgeB5 → B2 in the flow graph of Figure 6.10
is illustrated in the table below.

faze loop.nodes stack
initialize {2}
adding src {2, 5} 5
iteration 1 {2, 5, 4} 4
iteration 2 {2, 5, 4, 3} 3
iteration 3 {2, 5, 4, 3}

VUB-DINF/2009/2 120

6.4.5 Moving loop invariants

A loop invariant is a instruction of the form s:x = y + z8 such that x does not
change as long as control stays in the loop. Such instructions can, under certain
conditions, be moved outside of the loop so that the value x is computed only
once.

Example 20 Consider a C function to compute the scalar product of two vectors
(represented as arrays).

1 int
2 innerproduct(int a[]; int b[], int s) {
3 // s is size of arrays
4 int r = 0;
5 int i = 0;
6 while (i<s) {
7 r = r + a[i]*b[i];
8 i = i+1;
9 }

10 return r;
11 }

The flow graph, after code simplification, is shown in Figure 6.11 on page 121.
Note that the size of an int is assumed to be 4 bytes, as witnessed by the offset
computation t1 = 4* i.

Applying Algorithm 19 on the graph of Figure 6.11 yields that, among others, C
dominates A, B and D and that, consequently, D → C is a back edge. It then
follows from Algorithm 19 that L = {D,C} is an inner loop with exit node C.

Algorithm 20 [Computing loop invariants]
Given a loop L, we find the list of loop invariants from L as follows (note that

the order of the list is important, as it reflects the order of the instructions after
having been moved):

1. Mark “invariant” (and append to the list of invariants) all instructions
s:x = y + z such that each operand y (or z) is either constant or is such
that UD(y, s) ∩ L = ∅, i.e. all its reaching definitions are outside L.

2. Repeat the following step until no more instructions are marked.

3. Mark (and append to the list) “invariant” all instructions s:x = y + z such
that each operand y (or z) is

8Here + stands for any operator.

VUB-DINF/2009/2 121

r = 0

i = 0

E

C

B

A

D t1 = 4 * i

if i<s goto B

goto A

return r

t2 = &a

t3 = t2[t1]

t4 = &b

t5 = t4[t1]

t6 = t3 * t5
r = r + t6

i = i+1

goto C

Figure 6.11: Flow graph of Example 20

• constant; or

• all its reaching definitions are outside L; or

• UD(y, s) = {q} where q ∈ L is marked invariant; i.e. the only reach-
ing definition of y is an invariant in the loop.

2

Applying Algorithm 20 for Example 20 yields two loop invariants: t2 = &a and
t4 = &b, both in block D.

Having found the invariants in a loop, we can move some of them outside the
loop. They will be put in a new node, called a preheader which has as its single
successor the header of the loop. The flow graph is further updated such that all
edges that pointed from outside the loop to the header, will be made to point to
the new preheader node.

Algorithm 21 [Moving invariants]
Let I be the list of invariants of the loop L.

1. For each s:x = y + z from I , check that:

VUB-DINF/2009/2 122

(a) s is in a block b that dominates all exits of L or x 6∈ IN live(e) for any
successor e 6∈ L of an exit block of L; and

(b) x is not defined anywhere else in L; and

(c) For each use s′ of x in L, UD(x, s′) ∩ L = {s}, i.e. all uses of x in L
can only be reached by the definition s of x

2. Move instructions from I that satisfy the above test, and that do not depend
on definitions in I that do not pass the test, to the preheader, in the same
order as they appear in I .

2

Figure 6.12 shows the result of applying Algorithm 21 to Example 20. Note that
the block (D) containing t2 = &a does not dominate all exits of L. However,
since t2 6∈ IN live(B), condition (1a) above is still satisfied.

C

B

A

D t1 = 4 * igoto A

return r

r = 0

i = 0

E

t2 = &a

t4 = &b

t3 = t2[t1]

t5 = t4[t1]

t6 = t3 * t5

r = r + t6

i = i+1

goto C

H

if i<s goto D

Figure 6.12: Flow graph of Example 20 after moving loop invariants

VUB-DINF/2009/2 123

6.4.6 Loop induction variables

A variable x is called an induction variable of a loop L if every time it changes
value, it is incremented or decremented by some constant. Examples include array
indexes that are incremented on each pass through the loop, counters correspond-
ing to for instructions etc.

Often, one induction variable depends on another one.

E.g. in Example 20, both i and t1 are induction variables where t1 depends on
i.

Definition 29 Let L be a loop. A basic induction variable is a variable i such
that the only assignments to i in L are of the form i = i± c where c is a constant.
An induction variable is a variable j such that j is defined only once in L and its
value is a linear function of some basic induction variable i, i.e. j = a × i + b
for some constants a, b. We say that j belongs to the family of i, and associate the
triple (i, a, b) with j.

The following algorithm determines the induction variables of a loop.

Algorithm 22 [Finding the induction variables of a loop]
Given a loop L, we proceed as follows:

1. Find all basic induction variables i. Such variables are associated with the
triple (i, 1, 0).

2. Find variables k such that Def(k) ∩ L is a singleton s which has one of
the forms k = j × b, k = b× j, k = j/b, k = b/j, k = j ± b, or k = b± j,
where b is a constant and j is an induction variable, basic or otherwise.

• If j is basic, then k is in the family of j and we associate k with the
appropriate triple. E.g. if s:k = j × b then the triple of k is (i, b, 0).

• If j is not basic, then j belongs to the family of some basic induction
variable i. We first check the following additional conditions:

– There is no definition of i between the (single) definition of j in L
and the (single) definition of k; and

– (UD(j, s) \ L) = ∅, i.e. no definition of j outside L reaches s.

Provided these conditions are met, we add k to the family of i and
associate it with the triple (i, b× c, b× d), where we assume that s is
of the form k = j × b and the triple of j is (i, c, d).

VUB-DINF/2009/2 124

2

Applying Algorithm 22 to the loop L = {C,D} in Figure 6.12 yields:

• a basic induction variable i which is associated with the tuple (i, 1, 0).

• an induction variable t1 in the family of i. t1 is associated with the tuple
(i, 4, 0).

Once we have found suitable induction variables, we can perform strength reduc-
tion, where expensive multiplications are replaced by cheaper additions, as in the
following algorithm

Algorithm 23 [Strength reduction]
Given a loop L and a set of induction variables, each with associated triple, we

consider each basic induction variable i in turn.
For each non-basic induction variable j with associated triple (i, c, d) we do the
following:

1. Create a new variable t (but if two variables j1 and j2 have the same triples,
create only one variable for both of them).

2. Replace the unique assignment to j in L by j = t.

3. Immediately after each assignment i = i+ a (a constant) to the basic in-
duction variable i in L, add an instruction t = t+ c× a and place t in the
family of i with triple (i, c, d).

4. To properly initialize t, put

t = c× i
t = t+ d

at the end of the preheader of L.

2

The result of applying Algorithm 23 to the loop L = {C,D} in Figure 6.12 is
shown in Figure 6.13.

Block D can be further simplified using Algorithm 9 (code simplification): be-
cause t1 6∈ OUT live(D), t1 will be eliminated. On the other hand, block B
can be simplified using copy propagation and constant folding (Algorithms 16
and 17). The result is shown in Figure 6.14.

After strength reduction, it may be that the only use of some induction variable i
is in tests such as

VUB-DINF/2009/2 125

C

B

A

Dgoto A

return r

t1 = t

t3 = t2[t1]

t5 = t4[t1]

t6 = t3 * t5

i = i+1

r = r + t6

goto C

t = t + 4

t = 4 * i

t = t + 0

t2 = &a

t4 = &b

r = 0

i = 0

E

H

if i<s goto D

Figure 6.13: Flow graph of Example 20 after strength reduction

1 if i>C goto XXX

(and in the computation of other induction variables). In such a case, it may be
profitable to replace the variable in the test by another induction variable j from
the same family, and modify the test accordingly.

E.g., in our example (Figure 6.14), the triple of t is (i, 4, 0), and we can replace
the code in block C by

1 s1 = 4 * s
2 if t<s1 goto B

After this it may become possible to eliminate i since it is only used to compute
itself. It may also be that the definition of the new temporary corresponds to a
loop invariant which may be moved outside the loop.

VUB-DINF/2009/2 126

C

B

A

Dgoto A

return r

goto C

t = t + 4

t2 = &a

r = 0

i = 0

E

H

t = 0

t4 = &b

t3 = t2[t]

t5 = t4[t]

t6 = t3 * t5

r = r + t6

i = i+1

if i<s goto D

Figure 6.14: Flow graph of Figure 6.13 after copy propagation and constant fold-
ing

A more detailed description of this algorithm can be found in [ASU86].

Applying the above transformations to Example 20 results in the final graph de-
picted in Figure 6.15.

6.5 Aliasing: pointers and procedure calls

Two expressions are aliases of each other if they denote the same memory address.
Both pointers and procedure calls introduce aliases. Aliases complicate data-flow
analysis and code improvement, locally (see e.g. Section 6.2.3, page 100) as well
as globally.

VUB-DINF/2009/2 127

C

B

A

Dgoto A

return r

goto C

E

H

t3 = t2[t]

t5 = t4[t]

s1 = 4 * s

t = 0

t4 = &b

t2 = &a

r = 0

r = r + t6

t6 = t3 * t5

t = t + 4

if t<s1 goto D

Figure 6.15: optimized flow graph for Example 20

If nothing is known about where a pointer points to, as is e.g. the case in a lib-
eral language such as C, we must assume that any pointer assignment ∗p = e can
potentially define any variable. Likewise, dereferencing a pointer, as in x = ∗p
must be counted as a use of any variable. This obviously increases the number of
live variables and reaching definition, while decreasing the number of available
expressions. The net result is fewer code improvement opportunities.

A similar reasoning holds for procedure calls: if nothing is known about which
variables the procedure may change, we must assume that it potentially defines all
variables.

If, e.g. because of the rules of the source language, we know more about the
possible usage of pointers and/or procedure calls, we may improve matters.

VUB-DINF/2009/2 128

6.5.1 Pointers

We deal with pointers first. For each basic block B, we define two sets IN ptr(B)
and OUT ptr(B) containing pairs (p, a) where p is a pointer variable and a is
another variable. Intuitively, (p, a) ∈ IN ptr(B) means that, on entry to B, p may
point to a (note that there may be several a such that (p, a) ∈ IN ptr(B)), while
OUT ptr(B) encodes where pointers may point upon exit of B.

The knowledge about pointer rules is encoded in a set of functions transs, one for
each type of instruction s, which transforms a set of pairs (p, a) into another such
set which is such that, if p may point to any a such that (p, a) ∈ S, then, after s, p
may point to any b such that (p, b) ∈ transs(S). transs can be extended to transB
for any basic block B by composing , in order, the functions corresponding to the
instructions of B. IN ptr(B) and OUT ptr(B) then satisfy the data-flow equations.

OUT ptr(B) = transB(IN ptr(B))

IN (B) = ∪C<BOUT ptr(B)

Note that these equations are isomorphic to the ones used to compute reaching def-
initions (Section 6.3.1, page 103, and hence one can use Algorithm 10 (page 104)
to compute the smallest fixpoint.

IN ptr(B) can then be used to derive a precise set of variables that may be defined
by an instruction such as ∗p = e. Similarly, the set of variables that may be used
by an instruction such as a = ∗p can be derived from IN ptr(B), and the data-flow
algorithms can be suitably refined to take this information into account (note that,
e.g. for use-definition chains, unless p can point to only one variable, we must not
consider ∗p = a as a definition that may hide earlier ones).

6.5.2 Procedures

If we have knowledge about procedures, we can apply a similar reasoning as for
pointers in order to better estimate the effect of CALL instructions. In this section,
we will use p(&x, y) to denote a procedure calling sequence in three address code
where x is passed by reference while y is not.

As an example, we consider the case of C where procedures may only modify
local and global variables. Note that procedures may also pass global variables
as reference parameters9. Clearly, passing a variable x for a reference formal

9In C, reference parameters are simulated by passing a pointer by value.

VUB-DINF/2009/2 129

parameter y makes x and y aliases, denoted x ≡ y (we assume that the names of
all local variables, including formal parameters, in all procedures and the names
of global variables are all distinct).

The following algorithm computes the set of possible aliases amongst all vari-
ables.

Algorithm 24 [Computing aliases]
We show only reference formal parameters for the procedures.

1. For each procedure p(&x1, . . . ,&xn) and each call p(&y1, . . . ,&yn), add
x1 ≡ y1, . . . , xn ≡ yn to the set of aliases.

2. Take the reflexive and transitive closure of the relation ≡ resulting from
step 1.

2

Now we can determine the set change(p), where p is a procedure, of global vari-
ables and formal parameters10 that may possibly be changed by a call to p.

Define

• def (p) as the set of formal parameters and globals of p that have definitions
in the flow graph of p.

• Ap as the set of global variables or formal parameters a of p such that p
contains a call q(. . . ,&a, . . .) and the corresponding formal parameter is in
change(q).

• Gp as the set of global variables in change(q) where p calls q.

Then
change(p) = def (p) ∪ Ap ∪Gp

and this equation can be solved by a smallest fixpoint computation, starting with
change(p) = def (p) as an underestimate.

change(p) can then be used as an estimate of possible definitions of variables,
e.g. when computing available expressions (see also Section 10.8 in [ASU86]). A
similar analysis can be made for the possible uses represented by a procedure call
(for local variables this is easy: they are at most the parameters, for globals, one
would need to analyze the call graph of the called procedure).

10Note that formal parameters of p are also local variables of p.

Chapter 7

Code generation

Code generation concerns the generation of machine code from (relatively) machine-
independent intermediate code.

Actually, there are a few possibilities as to exactly what kind of “machine code”
is generated:

• One could generate so-called absolute machine code in which addresses are
fixed (“absolute”) as much as possible. This strategy predates multiprocess-
ing operating systems and was of little use in modern operating systems.
It may however be relevant again in the context of so-called “just-in-time”
compilers.

• It is also feasible to generated relocatable code where most addresses are
relative to some unknown base addresses. The code then has to be processed
by a linker-loader before it can be executed. Since this option duplicates the
work done by an assembler, we prefer the next option.

• We generate assembler source code where addresses are symbolic and leave
it to a separate program to translate further to relocatable code.

Code generation deals mainly with the following issues:

• Run-time storage management is concerned with the mapping of names to
addresses. We will look mainly at stack-based allocation of local variables
into so-called activation records.

• Instruction selection. Depending on the characteristics of the hardware and
the context, the same instruction may be translated in several ways, each
with different costs in time and/or space.

130

VUB-DINF/2009/2 131

• Closely related to the previous concern is the issue of register allocation.
Many processors have very efficient instructions that take their operands
from a limited set of registers. The aim is to allocate registers to variables
in order to optimize global performance.

7.1 Run-time storage management

7.1.1 Global data

The global memory layout for a traditional language such as C is shown in Fig-
ure 7.1. Of course, in modern operating systems, these areas may be in different
memory segments, with different permissions, e.g. the code segment may be read-
only and shared.

Code

Static
Data

Stack

Heap

Figure 7.1: Memory layout in C

For static global variables, there is usually no problem: we simply use assembler
pseudo-operations like

1 GLOBAL BYTE 4,0 ; allocate & initialize 4 byte quantity GLOBAL

For dynamic global variables (e.g. the new operator in C++), memory is (de)allocated
at run-time from a so-called heap. Efficient algorithms for heap management, in-
cluding e.g. garbage collection, are outside the scope of this text.

VUB-DINF/2009/2 132

7.1.2 Stack-based local data

If we are dealing with a language such as C, we also have to provide storage for
local variables. If the language supports recursion, we are naturally lead to a
stack-based organization where, upon a function/procedure call, a so-called acti-
vation record is pushed onto the stack. Upon return from the call, the activation
record is popped.

A possible layout for an activation record is shown in Figure 7.2.

temporaries

temporaries

returned value

parameters

returned value

parameters

links and saved status
SP

caller’s
responsibility

callee’s
responsibility

activation
recordlinks and saved status

local data and

local data and

Figure 7.2: Activation records

Such a record contains, in growing stack order,

• Room for the value to be returned by the procedure (if any).

• The actual parameters.

• Links and saved status. The first item here is the stack pointer to be restored
upon exit of the procedure. The next one might be the return address, i.e. the

VUB-DINF/2009/2 133

address to which control should be transferred upon exit of the procedure.
There may be additional hardware status information that is save here for
restoration upon exit of the call.

• Room for local and temporary variables. By local variables, we mean the
ones explicitly declared by the programmer. Temporary variables have been
generated by the compiler during intermediate code generation and/or opti-
mization.

The above organization is convenient because it allows an easy division of the
work between caller and callee. The scenario for a procedure call is:

1. The caller evaluates the actual parameters and pushes them on the stack
(note that the caller knows where is the top of the stack, since it knows SP
and the size of its local and temporary data).

2. The caller pushes the value of SP, followed by the return address. It then
puts SP to its new value and transfers control to the callee, e.g. by a jump
instruction.

3. The callee saves further status information on the stack (using SP). The
callee may further update SP to point just past the saved information (as in
the figure).

4. The callee initializes its local data and goes about its further business.

A possible return (from a call) sequence is:

1. The callee places the return value is the appropriate place (note that it knows
how many and which parameters it received, so the return value will be
stored at SP [−c] for some known c).

2. The callee restores the saved information, including the SP and jumps to the
saved return address.

3. The caller has access to the returned value (right at the top of the stack),
which it may copy into its local data.

It should be clear that, at run time, a register will be used to store SP. Access to
local data will then be achieved using indirect addressing through the contents of
SP and some constant offset which is known at compile time. This offset can eas-
ily be computed and stored in the symbol table. An interesting aspect is that local
variables or temporaries may share a slot in the activation record provided they
are never live at the same time. This occurs, e.g. when compiling the following C
code.

VUB-DINF/2009/2 134

1 int f(int x)
2 {
3 int a, b; /* slot 0, 1 */
4
5 ...
6
7 if (x>1) {
8 int y; /* slot 2 */
9

10 ...
11 }
12 else {
13 int z; /* slot 2 */
14 }
15 }

In the example, y and z will never be alive at the same time since they are in
different (non-nested) scopes. Therefore, both can share slot 2.

Note also that the organization above leaves the possibility for a procedure to have
local data whose size is only known at run-time. E.g. variable-sized arrays can
be allocated on top of the stack, with a pointer to them reserved in the fixed-size
local data area.

7.2 Instruction selection

Even abstracting from the register allocation program (Section 7.3, page 136),
there may be several possibilities and constraints involved in the translation of an
intermediate code instruction.

As a simple example, consider the intermediate code instruction
1 a = a + 1

This may be translated as (note the use of indirect addressing to access local
names):

1 load [sp]+a,r0 ; copy a to register 0
2 add #1
3 store r0,[sp]+a ; copy register 0 back to a

but if the processor supports an inc (increment) instruction, it could also be trans-
lated as

1 inc [sp]+a ; increment a

VUB-DINF/2009/2 135

Some operations may only be possible with certain registers. E.g. on the IBM/370
architecture, multiplication needs to performed as shown in Figure 7.3, i.e. one
operand must be available in the odd register of an even-odd register pair which
will be filled with the result.

r0 r1
a

bB

r0 r1

mul r0,B

a × b

Figure 7.3: Multiplication on IBM/370

Addressing modes also influence the cost of an instruction. As an example, sup-
pose the following table gives addressing modes and (relative) costs.

move r0,r1 1 register-to-register
move [r0],[r1] 1 register-to-register (indirect)
move r5,x 2 register-to-memory
move #1,r3 2 constant-to-register
move [r0]+4,[r1]+5 3 indexed-to-indexed

We can then consider the following alternative code sequences for a = b+ c (as-
suming they are all global):

• We can use a scratch register (total cost 6):
1 move b,r0
2 add c,r0 ; result in r0
3 move r0,a

• We can perform addition in “memory” (total cost 6):
1 move b,a
2 add c,a

• If the values of b and c are in registers r1 and r2, we can reduce the cost to
3, provided that b is not live after the instruction:

VUB-DINF/2009/2 136

1 add r2,r1
2 move r1,a

As the example illustrates, register allocation can have a dramatic effect on per-
formance.

7.3 Register allocation

We describe how register allocation can be reduced to a graph coloring problem.

The idea is that, for a given flow graph (procedure), every variable corresponds to
a symbolic register 1. The problem then is to assign each of a limited number of
real registers to symbolic ones without introducing errors.

Clearly, we cannot use the same real register for symbolic registers (variables) r1

and r2 if e.g. r1 is defined at a time when r2 is live.

Definition 30 The register inference graph G corresponding to a flow graph is
an undirected graph where the nodes are the symbolic registers and there is an
edge between r1 and r2 is r1 is defined at a point where r2 is live.

If there are k real registers available, every symbolic register can be mapped to a
real one without causing errors if G can be colored using k colors (no connected
nodes may have the same color). Graph coloring with k colors is known to be
NP-complete if k > 2 but the following heuristic procedure gives good results in
practice.

Algorithm 25 [Register allocation using graph coloring]
Let G be the graph to be colored.

1. While there is a node n with fewer than k connected edges, remove the n
(and remember it).
The reason for this is that n can always receive a color, independent of the
color chosen for its neighbors.

2. If we are left with an empty graph, G was colorable and we can assign
colors by coloring the nodes in the reverse order (of removal).

1The algorithm can be adapted to hardware peculiarities where, e.g., a special register needs to
be used for certain instructions. In this case, we associate a symbolic register with these instruc-
tions; the register is defined at the time the instruction is used.

VUB-DINF/2009/2 137

3. If we are left with a nonempty graph, it is not k-colorable since it has a node
with at least k neighbors. We then choose a node n to be spilled, remove
the node from the graph and start again with step 1. Spilling a node means
that the corresponding variable will be loaded (into a register) on each use
and stored back on each definition.

Several heuristics have been proposed to choose a spilled node:

• Choose a node with a maximal number of attached edges, maximizing the
chance of ending up with a k-colorable graph.

• Estimate the cost of spilling a node, and choose the one with the lowest
cost. A simple measure would count the number of extra load/store instruc-
tions, taking care to multiply with a suitable factor any such instructions
that appear in a loop2.

2

7.4 Peephole optimization

Some machine code optimizations are very easy to perform by scanning the code
(using a sliding window of instructions, hence the name) for certain patterns that
can be replaced by improved patterns.

Often, it is the case that successful replacements induce opportunities for further
replacements; therefore scanning is usually repeated until no further matches are
found.

Below we list some example patterns and replacements.

2One could also have a higher cost factor for instructions in an inner loop than in an encom-
passing loop.

VUB-DINF/2009/2 138

Pattern Replacement Description
move x,y move x,y redundant load, store
move y,x
jump(con) z jump(notcon) y jumps over jumps
jump y z: (seq1)
z: (seq1) y: (seq2)
y: (seq2)
jump(con) z jump(con) y jumps to jumps
.. ..
z: jump y z: jump y
mul #1,x (delete) algebraic
add #0,x (delete) simplification
mul #2,x add x,x machine specifics
mul #2,x shiftleft x,1 machine specifics
add #1,x inc x machine specifics

Appendix A

A Short Introduction to x86
Assembler Programming under
Linux

A.1 Architecture

Memory is byte addressable. There are several general purpose registers: %eax,
%ebx, %ecx, %edx, %edi and %esi.

The following registers have a special purpose:

• The “base pointer” %ebp is used to point to a stack frame for easy accessing
to local variables and parameters, see Section A.4.

• The “stack pointer” %esp always points to the top of the stack which grows
downwards. E.g. if the contents of %esp is 1000, then the top two elements
of the stack are at addresses 1000 and 999.

• The instruction counter %eip points to the next instruction (in memory) to
be executed.

• The register %eflags contains the condition codes which are set by sev-
eral instructions and can be tested/used by others. Table A.1 shows some
commonly used flags.

139

VUB-DINF/2009/2 140

code name description
O overflow 1 if destination cannot hold result
S sign sign of last result
Z zero 1 if last result was 0
P parity 1 if low byte of result has even number of 1 bits
C carry 1 if overflow bit

Table A.1: Some x86 Flags

A.2 Instructions

A.2.1 Operands

The operands for instructions may be of the following types:

• Immediate (I), i.e. constant integer data. For the gnu assembler (as), such
data is prefixed with ’$’, e.g. $100 (decimal) or $0x80 (hexadecimal).
Such data are encoded using 1, 2 or 4 bytes.

• Register (R), referring to a (4 byte) register, e.g. %eax.

• Memory (M), referring to 4 consecutive bytes of memory.

As an example, the movl moves a word (4 bytes) from the first to the second
operand. The possibilities are illustrated in the following code fragment.

1 movl $100, %eax /* IR store 100 in register eax */
2 movl $100, (%eax) /* IM store 100 in memory pointed to by eax */
3 movl %eax, %ebx /* RR store content of eax in ebx */
4 movl %ebx, (%eax) /* RM store content of ebx in memory pointed to by eax */
5 movl (%eax), %ebx /* MR store content of memory pointed to by eax in ebx */

Note that single-instruction MM (memory to memory) transfers are impossible.
In fact, no instruction can have two M operands.

A.2.2 Addressing Modes

The following addressing modes are available for refering to a memory location:

• Normal mode, e.g. (%eax) refers to the location with address the contents
of the %eax register. Thus, using ∗r to denote the contents of register r,

(r)→ [∗r]

VUB-DINF/2009/2 141

• In displacement mode, an offset is specified together with a register. E.g.
-4(%esp) refers to the (32bit) word just “under” the top of the stack while
8(%esp) refers to the location at (%esp)+8. Thus:

d(r)→ [∗r + d]

• Indexed addressing mode involves a base (any) and an index (any except
%esp) register as well as a constant displacement (1, 2 or 4) and a scale
which must be 1,2 4 or 8:

d(rb, ri, s)→ [∗rb + s× ∗ri + d]

E.g. movl 8(%ebx,%edi,4), %eax would move the word located at
address (%ebx)+4*(%edi)+8 to register %eax.

One of the registers or the scale (default 1) or displacement (default 0) may
be missing. E.g. as accepts all of the following:

1 movl $100, (%eax, %ebx)
2 movl $100, 4(%eax, %ebx)
3 movl $100, (%eax, %ebx,4)
4 movl $100, (, %ebx,4)

The tables in the following sections are adapted from [Bar03]. Also, o1 and o2 are
sometimes used to refer to the first and second operand of the instruction.

A.2.3 Moving Data

Data Transfer Instructions
name operands flags set description

movl IMR,IMR OSZC move word from o1 to o2

movb IMR,IMR OSZC move byte from o1 to o2

leal M,IMR OSZC store address of M in o2

popl MR OSZC pop word from stack into operand
pushl IMR OSZC push word on stack
pushfl push eflags register on stack
xchgl MR, MR OSZC exchange the words in o1 and o2

Table A.2: Data Transfer Instructions

VUB-DINF/2009/2 142

Integer Arithmetic Instructions
name operands flags set description
adcl IMR,MR OSZPC add with carry o2 += (o1 + C)
addl IMR,MR OSZPC add o2 += o1

cdq OSZPC convert %eax to double word in
%edx:%eax, see idivl

cmpl IMR,MR OSZPC set flags according to o2 − o1

decl MR OSZPC decrement (−1) word
decb MR OSZPC decrement (−1) byte
divl MR OSZPC unsigned divide %edx:%eax by o1,

quotient in %eax, remainder in %edx
idivl MR OSZPC signed division, see divl
imull IMR, R OSZPC signed multiplication: o2 ×= o1

imull IMR OSZPC signed multiplication:
%edx:%eax = %eax ×o1

incl MR OSZPC increment (+1) word
incb MR OSZPC increment (+1) byte
negl MR OSZPC negate (2’s complement inversion)

operand
sbbl IMR, MR OSZPC o2 −= o1, with borrowing (see adcl)
subl IMR, MR OSZPC o2 −= o1, no borrowing

Table A.3: Integer Arithmetic Instructions

A.2.4 Integer Arithmetic

See Table A.3 on page 142.

A.2.5 Logical Operations

See Table A.5 on page 145.

A.2.6 Control Flow Instructions

See Table A.6 on page 146.

VUB-DINF/2009/2 143

A.3 Assembler Directives

The gnu assembler as supports a number of directives:

• A section switch directive is of the form

.section name

where name is usually .text, for code, .data, for data embedded in the pro-
gram, or .bss for uninitialized data. It indicates which section the following
directives and instructions belong to.

• An equ directive is of the form

.equ label, value

and assigns the value to label.

• Data are defined using an .ascii, .byte or .long directive, as in the following
example

1 astring: /* label */
2 .ascii "Hello world\0"
3 bytes:
4 .byte 0, 1, 2, 3, 4, 5
5 words:
6 .long 1024, 2048, 4096

• Data in the .bss section can be reserved using the .lcomm directive which
has the form

.lcomm label, size_in_bytes

• The .globl directive exports a label so that it is accessible from other object
files. The .type directive tells the linker that a label is a function, as in the
following example.

1 .globl ackerman
2 .type ackerman, @function
3 ackerman:
4 ...

The .include directive inserts another file at that point in the text. It has the
form

.include "pathname"

VUB-DINF/2009/2 144

• Finally, the .rept and .endr can be used to repeat everything between the
directives a number of times, as in the following example. which reserves
100 data bytes that are initialized to 0.

1 .rept 100
2 .byte 0
3 .endr

A.4 Calling a function

The C calling convention is illustrated in the following example. Note how %ebp
is used as a frame pointer.

1 .globl print
2 .type myfun, @function
3 # myfun(int a, int b) { int c = 0; int d = 2; ... }
4 myfun:
5 # stack: b a [return-addr]
6 pushl %ebp # save base(frame) pointer on stack
7 # stack: b a [return-addr] [saved-bp]
8 movl %esp, %ebp # base pointer is stack pointer
9 .equ a, 8

10 .equ b, 4
11 # a(%ebp) => a; b(%ebp) => b
12 pushl $0 # initialize c
13 pushl $2 # initialize d
14 # stack: b a [return-addr] [saved-bp] 0 2
15 .equ c, -4
16 .equ d, -8
17 # c(%ebp) => c; d(%ebp) => d
18
19 /* body of function, the return value is stored in %eax */
20
21 movl %ebp, %esp # restore stack pointer
22 # stack: b a [returnaddress] [savedebp]
23 popl %ebp # restore saved base (frame) pointer
24 /* stack: b a [return-addr]
25 ret

A.5 System calls

To obtain a service from Linux, it suffices to specify the service in register eax,
set up the input parameters in various registers (see Table A.4 below) and then

VUB-DINF/2009/2 145

generate an interrupt using the instruction int int $0x80. The return value
and/or error code will be stored in register eax.

More information can be found in the man pages corresponding to the “function”
column in Table A.4 which lists a few I/O related system calls.

%eax name %ebx %ecx %edx function
1 exit code exit(code)

3 read fd buf count read(fd, buf, count)

4 write fd buf count write(fd, buf, count)

5 open path flags mode open(path, flags, mode)

6 close fd close(fd)

19 lseek fd offset whence lseek(fd, offset, whence)

Table A.4: Linux System Calls

Logical Operations
name operands flags set description
andl IMR,MR OSZPC o2 &= o1 C = O = 0
orl IMR,MR OSZPC o2 |= o1 C = O = 0
notl MR o1 = o1

rcll I%cl,RM OC rotate o2 + C by o1 bits left
rcrl I%cl,RM OC rotate o2 + C by o1 bits right
roll I%cl,RM OC rotate o2 by o1 bits left
rorl I%cl,RM OC rotate o2 by o1 bits right
sall I%cl,RM C arithmetic shift o1 bits left; sign bit to

C, 0 added as lsb
sarl I%cl,RM C arithmetic shift o1 bits right; lsb bit to

C, S to msb
shll I%cl,RM C shift o1 bits left; msb bit to C
shrl I%cl,RM C shift o1 bits right; lsb bit to C
testl IRM, RM OSZPC set flags from o1&o2

xorl IRM, RM OSZPC o2 = o2 xor o1, O = C = 0

Table A.5: Logical Operations

VUB-DINF/2009/2 146

Control Flow Instructions
name operands flags set description

call address OSZC push %eip, jump to address
call *R OSZC call function a (R), e.g.

call *%eax
int I OSZC cause interrupt number I , I = 0x080

for Linux kernel call
jmp address OSZC unconditional jump
jmp *R OSZC goto (R), e.g. jmp *%eax
ret OSZC return: popl %eip;jmp *%eip
jecxz address OSZC jump if %ecx is 0
j[n][spoc] address OSZC jump if [SPOC] is (not) set
j[n][gl][e] address OSZC signed comparison: jump if (not) >

(g), < (l), ≥ (ge) or ≤ (le)
j[n]z address OSZC jump if (not) 0
j[n]e address OSZC jump if (not) equal
j[n][ab][e] address OSZC unsigned comparison jump if (not) >

(a), < (b), ≥ (ae) or ≤ (be)

Table A.6: Control Flow Instructions

A.6 Example

Example 21 The listing below shows a function that prints its single parameter
(an integer) on stdout, followed by ’\n’.

1 # print an integer
2 .section .text
3 .globl print_int
4 .type print_int, @function
5 # print_it(int value) -- print value followed by \n to stdout.
6 print_int:
7 pushl %ebp
8 movl %esp, %ebp
9 .equ value, 8 # parameter offset

10 # initialize local variables:
11 .equ base, -4
12 pushl $10 # base = 10
13 .equ bufsize, -8
14 pushl $1 # bufsize = 1 (’\n’)
15 .equ negative, -12
16 pushl $0 # negative = 0
17 # stack: .. value return-addr saved-ebp base bufsize

VUB-DINF/2009/2 147

18 pushl $10 # push newline to be printed last
19 movl value(%ebp), %eax
20 jge .L1 # if value >= 0
21 # value < 0: remember
22 movl $1, negative(%ebp)
23 negl %eax # value = -value
24 .L1:
25 cdq # setup %edx:%eax for division
26 # aex = value/base, edx = value % base
27 divl base(%ebp)
28 # push remainder digit
29 pushl %edx
30 addl $48, (%esp)
31 incl bufsize(%ebp) # ++bufsize
32 cmpl $0, %eax
33 jne .L1 # loop if value != 0
34 # put sign if negative
35 cmpl $0, negative(%ebp)
36 je .L2
37 pushl $45 # ’-’
38 incl bufsize(%ebp)
39 .L2:
40 # write(2): eax = 4, ebx = fd, ecx = buffer start, edx = buffer size
41 movl $4, %eax # code for write syscall
42 movl $1, %ebx # fd stdout = 1
43 movl %esp, %ecx # buffer start = top of stack
44 movl $4, %edx # bufsize * 4 bytes
45 imul bufsize(%ebp), %edx
46 int $0x80 # syscall
47 movl %ebp, %esp
48 popl %ebp # restore saved frame pointer
49 ret

Example 22 The function from Example 21 is used in the following program.
1 # print an integer
2 .section .text
3 .globl _start
4 _start:
5 call main
6 jmp exit
7 .include "print_int.s"
8 .globl main
9 .type main, @function

10 main:
11 pushl %ebp # save frame pointer
12 movl %esp, %ebp # set frame pointer
13 pushl $-100 # number to print
14 call print_int

VUB-DINF/2009/2 148

15 movl %ebp, %esp
16 popl %ebp
17 ret
18 .type exit, @function
19 exit:
20 movl $0, %ebx
21 movl $1, %eax
22 int $0x80

It can be assembled and linked using the following command which translates tst.s
into an object file tst.o which is then linked to an executable file tst

as tst.s -o tst.o && ld tst.o -o tst

Appendix B

Mc: the Micro-x86 Compiler

B.1 Lexical analyzer

1 %{
2 /* $Id: lex.l,v 1.1 2008/07/09 13:06:42 dvermeir Exp $
3 *
4 * Lexical analyzer for the toy language ‘‘Micro’’
5 */
6 #include <string.h> /* for strcmp, strdup & friends */
7 #include <stdlib.h> /* for atoi() */
8
9 #include "micro.tab.h" /* token type definitions from .y file */

10 #include "symbol.h" /* symbol table management */
11
12 extern int lineno; /* defined in micro.y */
13
14 void
15 lex_init() {
16 /* Initialize data structures etc. for scanner */
17 symbol_insert("declare",DECLARE); /*Insert keywords in symbol table */
18 symbol_insert("read",READ); /*Insert keywords in symbol table */
19 symbol_insert("write",WRITE);
20 }
21
22 /*
23 * The macro below will be called automatically when the generated scanner
24 * initializes itself.
25 */
26 #define YY_USER_INIT lex_init();
27
28 %}
29

149

VUB-DINF/2009/2 150

30 alpha [A-Za-z]
31 digit [0-9]
32 alphanum [A-Za-z0-9]
33
34 %%
35 [\t] break; /* ignore white space */
36 "\n" ++lineno;
37
38 {alpha}{alphanum}* {
39 yylval.idx = symbol_find(yytext);
40
41 if (yylval.idx<0) { /* new symbol: insert it */
42 yylval.idx =symbol_insert(yytext, NAME);
43 return NAME;
44 }
45 else
46 return symbol_type(yylval.idx);
47 }
48
49 {digit}+ {
50 yylval.value = atoi(yytext);
51 return NUMBER;
52 }
53
54 "(" return LPAREN;
55 ")" return RPAREN;
56 "{" return LBRACE;
57 "}" return RBRACE;
58 "=" return ASSIGN;
59 ";" return SEMICOLON;
60 "+" return PLUS;
61 "-" return MINUS;
62
63 . {
64 fprintf(stderr,
65 "Illegal character \’%s\’ on line #%d\n",
66 yytext, lineno);
67 exit(1);
68 }
69
70 %%
71
72 int
73 yywrap() {
74 return 1; /* tell scanner no further files need to be processed */
75 }

VUB-DINF/2009/2 151

B.2 Symbol table management

1 /* $Id: symbol.c,v 1.1 2008/07/09 13:06:42 dvermeir Exp $
2 *
3 * Symbol table management for toy ‘‘Micro’’ language compiler.
4 * This is a trivial example: the only information kept
5 * is the name, the token type: READ, WRITE or NAME and, for NAMEs
6 * whether they have been declared in the JVM code.
7 */
8 #include <stdio.h> /* for (f)printf(), std{out,int} */
9 #include <stdlib.h> /* for exit */

10 #include <string.h> /* for strcmp, strdup & friends */
11 #include "micro.tab.h" /* token type definitions from .y file */
12
13 #include "symbol.h"
14
15 typedef struct {
16 char *name;
17 int type; /* READ, WRITE, or NAME */
18 int declared; /* NAME only: 1 iff already declared in JVM code, 0 else */
19 } ENTRY;
20
21 #define MAX_SYMBOLS 100
22 static ENTRY symbol_table[MAX_SYMBOLS]; /* not visible from outside */
23 static int n_symbol_table = 0; /* number of entries in symbol table */
24
25 int
26 symbol_find(char* name) {
27 /* Find index of symbol table entry, -1 if not found */
28 int i;
29
30 for (i=0; (i<n_symbol_table); ++i)
31 if (strcmp(symbol_table[i].name, name)==0)
32 return i;
33 return -1;
34 }
35
36 int
37 symbol_insert(char* name,int type) {
38 /* Insert new symbol with a given type into symbol table,
39 * returns index new value */
40 if (n_symbol_table>=MAX_SYMBOLS) {
41 fprintf(stderr, "Symbol table overflow (%d) entries\n", n_symbol_table);
42 exit(1);
43 }
44 symbol_table[n_symbol_table].name = strdup(name);
45 symbol_table[n_symbol_table].type = type;
46 symbol_table[n_symbol_table].declared = 0;

VUB-DINF/2009/2 152

47 return n_symbol_table++;
48 }
49
50 int
51 symbol_type(int i) {
52 /* Return type of symbol at position i in table. */
53 /* ASSERT ((0<=i)&&(i<n_symbol_table)) */
54 return symbol_table[i].type;
55 }
56
57 void
58 symbol_declare(int i) {
59 /* Mark a symbol in the table as declared */
60 /* ASSERT ((0<=i)&&(i<n_symbol_table)&&(symbol_table[i].type==NAME)) */
61 symbol_table[i].declared = 1;
62 }
63
64 int
65 symbol_declared(int i) {
66 /* Return declared property of symbol */
67 /* ASSERT ((0<=i)&&(i<n_symbol_table)&&(symbol_table[i].type==NAME)) */
68 return symbol_table[i].declared;
69 }
70
71 char*
72 symbol_name(int i) {
73 /* Return name of symbol */
74 /* ASSERT ((0<=i)&&(i<n_symbol_table)) */
75 return symbol_table[i].name;
76 }

B.3 Parser

1 %{
2 /* $Id: micro.y,v 1.9 2008/07/11 18:56:43 dvermeir Exp $
3 *
4 * Parser specification for Micro
5 */
6 #include <stdio.h> /* for (f)printf() */
7 #include <stdlib.h> /* for exit() */
8
9 #include "symbol.h"

10
11 int lineno = 1; /* number of current source line */
12 extern int yylex(); /* lexical analyzer generated from lex.l */
13 extern char *yytext; /* last token, defined in lex.l */
14
15 void

VUB-DINF/2009/2 153

16 yyerror(char *s) {
17 fprintf(stderr, "Syntax error on line #%d: %s\n", lineno, s);
18 fprintf(stderr, "Last token was \"%s\"\n", yytext);
19 exit(1);
20 }
21
22 #define PROLOGUE "\
23 .section .text\n\
24 .globl _start\n\
25 \n\
26 _start:\n\
27 call main \n\
28 jmp exit\n\
29 .include \"../x86asm/print_int.s\"\n\
30 .globl main\n\
31 .type main, @function\n\
32 main:\n\
33 pushl %ebp /* save base(frame) pointer on stack */\n\
34 movl %esp, %ebp /* base pointer is stack pointer */\n\
35 "
36
37 #define EPILOGUE "\
38 movl %ebp, %esp\n\
39 popl %ebp /* restore old frame pointer */\n\
40 ret\n\
41 .type exit, @function\n\
42 exit:\n\
43 movl $0, %ebx\n\
44 movl $1, %eax\n\
45 int $0x80\n\
46 "
47
48 %}
49
50 %union {
51 int idx;
52 int value;
53 }
54
55 %token NAME
56 %token NUMBER
57 %token LPAREN
58 %token RPAREN
59 %token LBRACE
60 %token RBRACE
61 %token ASSIGN
62 %token SEMICOLON
63 %token PLUS
64 %token MINUS

VUB-DINF/2009/2 154

65 %token DECLARE
66 %token WRITE
67 %token READ
68
69 %type <idx> NAME var
70 %type <value> NUMBER
71
72 %%
73 program : LBRACE
74 { puts(".section .data\n"); } declaration_list
75 { puts(PROLOGUE); } statement_list
76 RBRACE { puts(EPILOGUE); }
77 ;
78 declaration_list : declaration SEMICOLON declaration_list
79 | /* empty */
80 ;
81
82 statement_list : statement SEMICOLON statement_list
83 | /* empty */
84 ;
85
86 statement : assignment
87 | read_statement
88 | write_statement
89 ;
90
91 declaration : DECLARE NAME
92 {
93 if (symbol_declared($2)) {
94 fprintf(stderr,
95 "Variable \"%s\" already declared (line %d)\n",
96 symbol_name($2), lineno);
97 exit(1);
98 }
99 else {

100 printf(".lcomm %s, 4\n", symbol_name($2));
101 symbol_declare($2);
102 }
103 }
104 ;
105
106 assignment : var ASSIGN expression
107 {
108 /* we assume that the expresion value is (%esp) */
109 printf("\tpopl %s\n", symbol_name($1));
110 }
111 ;
112
113 read_statement : READ var { /* not implemented */}

VUB-DINF/2009/2 155

114 ;
115
116 write_statement : WRITE expression { puts("\tcall print_int\n"); }
117 ;
118
119 expression : term
120 | term PLUS term { puts("\tpopl %eax\n\taddl %eax, (%esp)\n"); }
121 | term MINUS term { puts("\tpopl %eax\n\tsubl %eax, (%esp)\n"); }
122 ;
123
124 term : NUMBER { printf("\tpushl $%d\n", $1); }
125 | var { printf("\tpushl %s\n", symbol_name($1)); }
126 | LPAREN expression RPAREN
127 ;
128
129 var : NAME
130 {
131 if (!symbol_declared($1)) {
132 fprintf(stderr,
133 "Variable \"%s\" not declared (line %d)\n",
134 symbol_name($1), lineno);
135 exit(1);
136 }
137 $$ = $1;
138 }
139 ;
140 %%
141
142 int
143 main(int argc,char *argv[]) {
144 return yyparse();
145 }

B.4 Driver script

1 #!/bin/sh
2 #
3 # $Id: microc.sh,v 1.3 2008/07/10 16:44:14 dvermeir Exp $
4 #
5 # Usage: microc basename.mi
6 #
7 # e.g. "microc tst.mi" to compile tst.mi, resulting in
8 #
9 # tst.s assembler source code

10 # tst.o object file
11 # tst executable file
12 #
13 # determine basename

VUB-DINF/2009/2 156

14 base=‘basename $1 .mi‘
15 # this checks whether $1 has .mi suffix
16 [${base} = $1] && { echo "Usage: microc basename.mi"; exit 1; }
17 # make sure source file exists
18 [-f "$1"] || { echo "Cannot open \"$1\""; exit 1; }
19 # compile to assembly code
20 ./micro <$1 >${base}.s || { echo "Errors in compilation of $1.mi"; exit 1; }
21 # assemble to object file: the --gdwarf2 option generates info for gdb
22 as --gdwarf2 ${base}.s -o ${base}.o || { echo "Errors assembling $1.s"; exit 1; }
23 # link
24 ld ${base}.o -o ${base} || { echo "Errors linking $1.o"; exit 1; }

B.5 Makefile

1 # $Id: Makefile,v 1.8 2008/07/10 16:44:14 dvermeir Exp $
2 #
3 CFLAGS= -Wall -g
4 CC= gcc
5 #
6 SOURCE= microc.sh micro.y lex.l symbol.c symbol.h Makefile *.mi
7 #
8 all: micro microc demo
9 micro: micro.tab.o lex.yy.o symbol.o

10 gcc $(CFLAGS) -o $@ $ˆ
11
12 lex.yy.c: lex.l micro.tab.h
13 flex lex.l
14 #
15 # Bison options:
16 #
17 # -v Generate micro.output showing states of LALR parser
18 # -d Generate micro.tab.h containing token type definitions
19 #
20 micro.tab.h\
21 micro.tab.c: micro.y
22 bison -v -d $ˆ
23 ##
24 demo: microc micro demo.mi
25 ./microc demo.mi
26 #
27 CFILES= $(filter %.c, $(SOURCE)) micro.tab.c lex.yy.c
28 HFILES= $(filter %.h, $(SOURCE)) micro.tab.h
29 include make.depend
30 make.depend: $(CFILES) $(HFILES)
31 gcc -M $(CFILES) >$@
32
33 clean:
34 rm -f lex.yy.c micro.tab.[hc] *.o microc micro *.jasm *.class micro.output t?.s t?

VUB-DINF/2009/2 157

35 #
36 tar:
37 tar cvf micro.tar $(SOURCE)

B.6 Example

B.6.1 Source program

1 {
2 declare xyz;
3 xyz = (33+3)-35;
4 write xyz;
5 }

B.6.2 Assembly language program

1 .section .data
2
3 .lcomm xyz, 4
4 .section .text
5 .globl _start
6
7 _start:
8 call main
9 jmp exit

10 .include "../x86asm/print_int.s"
11 .globl main
12 .type main, @function
13 main:
14 pushl %ebp /* save base(frame) pointer on stack */
15 movl %esp, %ebp /* base pointer is stack pointer */
16
17 pushl $33
18 pushl $3
19 popl %eax
20 addl %eax, (%esp)
21
22 pushl $35
23 popl %eax
24 subl %eax, (%esp)
25
26 popl xyz
27 pushl xyz
28 call print_int
29
30 movl %ebp, %esp
31 popl %ebp /* restore old frame pointer */

VUB-DINF/2009/2 158

32 ret
33 .type exit, @function
34 exit:
35 movl $0, %ebx
36 movl $1, %eax
37 int $0x80

Appendix C

Minic parser and type checker

C.1 Lexical analyzer

1 %{
2 /* lex.l(1.6) 17:46:22 97/12/10
3 *
4 * Lexical analyzer for the toy language ‘‘minic’’
5 */
6 #include <string.h> /* for strcmp, strdup & friends */
7 #include <stdio.h> /* for strcmp, strdup & friends */
8 #include <stdlib.h> /* for atoi() */
9

10 #include "symtab.h" /* symbol table management */
11 #include "types.h" /* symbol table management */
12 #include "minic.tab.h" /* token type definitions from .y file */
13 #include "names.h" /* string pool management */
14
15 extern int lineno; /* defined in minic.y */
16 extern SYM_TAB *scope; /* defined in minic.y */
17
18 void
19 lex_init()
20 /* Initialize data structures etc. for scanner */
21 {
22 scope = symtab_open(0); /* open topmost scope */
23 }
24
25 /*
26 * The macro below will be called automatically when the generated scanner
27 * initializes itself.
28 */
29 #define YY_USER_INIT lex_init();

159

VUB-DINF/2009/2 160

30
31 %}
32
33 alpha [A-Za-z]
34 digit [0-9]
35 alphanum [A-Za-z0-9]
36
37 %%
38 [\t] break; /* ignore white space */
39 "\n" ++lineno;
40
41
42 int return INT; /* Keywords come before NAMEs */
43 if return IF;
44 else return ELSE;
45 return return RETURN;
46 float return FLOAT;
47 struct return STRUCT;
48
49 {alpha}{alphanum}* {
50 yylval.name = names_find_or_add(yytext);
51 return NAME;
52 }
53
54 {digit}+ {
55 yylval.value = atoi(yytext);
56 return NUMBER;
57 }
58
59 "(" return LPAR;
60 ")" return RPAR;
61 "{" return LBRACE;
62 "}" return RBRACE;
63 "[" return LBRACK;
64 "]" return RBRACK;
65 "==" return EQUAL;
66 "=" return ASSIGN;
67 ";" return SEMICOLON;
68 "," return COMMA;
69 "." return DOT;
70 "+" return PLUS;
71 "-" return MINUS;
72 "*" return TIMES;
73 "/" return DIVIDE;
74
75 . {
76 fprintf(stderr,
77 "Illegal character \’%s\’ on line #%d\n",
78 yytext,lineno);

VUB-DINF/2009/2 161

79 exit(1);
80 }
81
82 %%
83
84 int
85 yywrap()
86 {
87 return 1; /* tell scanner no further files need to be processed */
88 }

C.2 String pool management

1 #ifndef NAMES_H
2 #define NAMES_H
3 /* names.h(1.1) 09:25:08 97/12/08
4 *
5 * String pool management.
6 */
7 char* names_insert(char*);
8 char* names_find(char*);
9 char* names_find_or_add(char*);

10
11 #endif

1 /* names.c(1.1) 09:25:08 97/12/08
2 *
3 * String pool management.
4 */
5 #include <stdio.h> /* for fprintf and friends */
6 #include <stdlib.h> /* for malloc and friends */
7 #include <assert.h> /* for assert(invariant) */
8 #include <string.h> /* for strcmp(), strcpy() */
9

10 #include "names.h"
11
12 #define INCREMENT_SIZE 1000
13
14 static char* buf = 0;
15 static int buf_size = 0; /* total size of buffer */
16 static size_t buf_avail = 0; /* free bytes in buf */
17 static char* next_name = 0; /* address available for next string */
18
19 #define INVARIANT assert(buf+buf_size==next_name+buf_avail); \
20 assert(buf_size>=0); \
21 assert(buf_avail>=0); \
22 assert(next_name>=buf);
23 static void

VUB-DINF/2009/2 162

24 names_grow(size_t size)
25 {
26 size_t next_offset = next_name - buf;
27
28 { INVARIANT }
29
30 buf = realloc(buf,buf_size+size); /* like malloc() if buf==0 */
31 if (!buf) {
32 fprintf(stderr,"Cannot expand name space (%d bytes)",buf_size+size);
33 exit(1);
34 }
35 buf_avail += size;
36 buf_size += size;
37 next_name = buf+next_offset;
38
39 { INVARIANT }
40 }
41
42 char*
43 names_insert(char* s)
44 {
45 char* ps;
46 size_t l = strlen(s)+1; /* include trailing ’\0’ */
47
48 { INVARIANT }
49
50 while (l>buf_avail)
51 names_grow(INCREMENT_SIZE);
52
53 ps = strcpy(next_name,s);
54
55 buf_avail -= l;
56 next_name += l;
57
58 { INVARIANT }
59
60 return ps;
61 }
62
63 char*
64 names_find(char *s)
65 {
66 char *pc;
67
68 for (pc=buf;(pc!=next_name);pc += strlen(pc)+1)
69 if (!strcmp(pc,s))
70 return pc;
71 return 0;
72 }

VUB-DINF/2009/2 163

73
74 char*
75 names_find_or_add(char *s)
76 {
77 char *pc = names_find(s);
78
79 if (!pc)
80 pc = names_insert(s);
81 return pc;
82 }

C.3 Symbol table management

1 #ifndef SYMBOL_H
2 #define SYMBOL_H
3 /* symtab.h(1.5) 10:07:41 97/12/10
4 *
5 * Symbol table management
6 */
7
8 typedef struct syminfo {
9 char *name;

10 struct type_info *type;
11 } SYM_INFO;
12
13
14 typedef struct symcell {
15 SYM_INFO *info;
16 struct symcell *next;
17 } SYM_LIST;
18
19 typedef struct symtab {
20 struct symtab *parent;
21 SYM_INFO *function; /* enclosing this scope */
22 SYM_LIST *list;
23 } SYM_TAB;
24
25 SYM_TAB* symtab_open(SYM_TAB* enclosing_scope);
26 SYM_INFO* symtab_find(SYM_TAB*,char*);
27 SYM_INFO* symtab_insert(SYM_TAB*,char*,struct type_info*);
28 int symtab_list_equal(SYM_LIST*,SYM_LIST*);
29 SYM_LIST* symtab_list_insert(SYM_LIST*,SYM_INFO*);
30 SYM_INFO* symtab_list_find(SYM_LIST*,char*);
31 void symtab_list_release(SYM_LIST*);
32 SYM_INFO* symtab_info_new(char*,struct type_info*);
33
34 void symtab_print(FILE*,SYM_TAB*);
35 void symtab_info_print(FILE*,SYM_INFO*);

VUB-DINF/2009/2 164

36 void symtab_list_print(FILE*,SYM_LIST*,char* separator);
37 #endif

1 /* symtab.c(1.5) 10:07:40 97/12/10
2 *
3 * Symbol table management
4 */
5 #include <stdlib.h> /* for malloc() and friends */
6 #include <stdio.h> /* for fprintf() and friends */
7
8 #include "util.h"
9 #include "symtab.h"

10 #include "types.h"
11
12 SYM_TAB*
13 symtab_open(SYM_TAB * enclosing_scope)
14 {
15 SYM_TAB *st = fmalloc(sizeof(SYM_TAB));
16
17 st->parent = enclosing_scope;
18 st->list = 0;
19 if (enclosing_scope)
20 st->function = enclosing_scope->function;
21 return st;
22 }
23
24 SYM_INFO*
25 symtab_find(SYM_TAB *st,char *name)
26 {
27 SYM_INFO *i;
28
29 for (; (st); st = st->parent)
30 if ((i=symtab_list_find(st->list,name)))
31 return i;
32 return 0;
33 }
34
35 SYM_INFO*
36 symtab_insert(SYM_TAB *st,char *name,T_INFO* t)
37 {
38 SYM_INFO* i = symtab_info_new(name,t);
39 st->list = symtab_list_insert(st->list,i);
40
41 return i;
42 }
43
44 static int
45 symtab_info_equal(SYM_INFO* i1,SYM_INFO* i2)
46 {

VUB-DINF/2009/2 165

47 /* rely on names and types being stored in a pool ‘‘without duplicates’’ */
48 return ((i1->name==i2->name)&&(i1->type==i2->type));
49 }
50
51 int
52 symtab_list_equal(SYM_LIST* l1,SYM_LIST* l2)
53 {
54 if (l1==l2)
55 return 1;
56
57 while (l1&&l2)
58 if (symtab_info_equal(l1->info,l2->info))
59 {
60 l1 = l1->next;
61 l2 = l2->next;
62 }
63 else
64 return 0;
65 if (l1) /* l2 == 0 */
66 return 0;
67 else
68 return (l1==l2);
69 }
70
71 SYM_LIST*
72 symtab_list_insert(SYM_LIST* l,SYM_INFO* i)
73 {
74 SYM_LIST* nl = fmalloc(sizeof(SYM_LIST));
75 nl->info = i;
76 nl->next = l;
77 return nl;
78 }
79
80 SYM_INFO*
81 symtab_list_find(SYM_LIST* l,char* name)
82 {
83 for (; (l); l = l->next)
84 if (l->info->name==name) /* this works if all names in string pool */
85 return l->info;
86 return 0;
87 }
88
89 void
90 symtab_list_release(SYM_LIST* l)
91 {
92 if (l)
93 {
94 symtab_list_release(l->next);
95 free(l);

VUB-DINF/2009/2 166

96 }
97 }
98
99 SYM_INFO*

100 symtab_info_new(char* name,T_INFO* t)
101 {
102 SYM_INFO* i = fmalloc(sizeof(SYM_INFO));
103 i->name = name;
104 i->type = t;
105 return i;
106 }
107
108 void
109 symtab_info_print(FILE* f,SYM_INFO* info)
110 {
111 types_print(f,info->type);
112 fprintf(f," %s",info->name);
113 }
114
115 void
116 symtab_list_print(FILE* f,SYM_LIST* l,char* separator)
117 {
118 while (l)
119 {
120 symtab_info_print(f,l->info);
121 if (l->next)
122 fprintf(f,"%s",separator);
123 l = l->next;
124 }
125 }
126
127 void
128 symtab_print(FILE *f,SYM_TAB *tab)
129 {
130 if (!tab)
131 fprintf(f,"<null symtab>");
132 else
133 while (tab)
134 {
135 symtab_list_print(f,tab->list,"\n");
136 if (tab->parent)
137 fprintf(f,"--------");
138 tab = tab->parent;
139 }
140 }

C.4 Types library

VUB-DINF/2009/2 167

1 #ifndef TYPES_H
2 #define TYPES_H
3 /*
4 * types.h(1.4) 17:11:16 97/12/08
5 *
6 * Type pool management
7 */
8 #include "symtab.h"
9

10 typedef enum { int_t, float_t, fun_t, record_t, array_t } T_CONS; /* type constructors */
11
12 typedef struct {
13 SYM_LIST *fields;
14 } T_RECORD;
15
16 typedef struct {
17 struct type_info *target;
18 struct types_list *source;
19 } T_FUN;
20
21 typedef struct array_type {
22 struct type_info *base;
23 } T_ARRAY;
24
25
26 typedef struct type_info {
27 T_CONS cons;
28 union {
29 T_FUN fun;
30 T_ARRAY array;
31 T_RECORD record;
32 } info;
33 } T_INFO;
34
35 typedef struct types_list {
36 T_INFO *type;
37 struct types_list *next;
38 } T_LIST;
39
40 T_INFO* types_simple(T_CONS c);
41 T_INFO* types_fun(T_INFO* target,T_LIST *source);
42 T_INFO* types_record(SYM_LIST *fields);
43 T_INFO* types_array(T_INFO *base);
44 T_LIST* types_list_insert(T_LIST*,T_INFO*);
45 int types_list_equal(T_LIST*,T_LIST*);
46 void types_print(FILE*,T_INFO*);
47 void types_list_print(FILE*,T_LIST*,char*);
48 void types_list_release(T_LIST*);
49 void types_print_all(FILE*);

VUB-DINF/2009/2 168

50
51 #endif

1 /* types.c(1.5) 17:11:14 97/12/08
2 *
3 * Type pool management
4 */
5 #include <stdlib.h> /* for malloc() and friends */
6 #include <stdio.h> /* for fprintf() and friends */
7 #include <assert.h> /* for assert(condition) */
8
9 #include "util.h"

10 #include "symtab.h"
11 #include "types.h"
12
13 static T_LIST *types = 0;
14
15 static int
16 types_equal(T_INFO *t1, T_INFO *t2)
17 {
18 if (t1==t2)
19 return 1;
20
21 if (t1->cons==t2->cons)
22 switch (t1->cons)
23 {
24 case int_t:
25 case float_t:
26 return 1;
27 case fun_t:
28 if (!types_equal(t1->info.fun.target, t2->info.fun.target))
29 return 0;
30 else
31 return types_list_equal(t1->info.fun.source, t2->info.fun.source);
32 case array_t:
33 return types_equal(t1->info.array.base, t2->info.array.base);
34 case record_t:
35 return symtab_list_equal(t1->info.record.fields, t2->info.record.fields);
36 default: assert(0);
37 }
38 return 0;
39 }
40
41
42 void
43 types_list_release(T_LIST* l)
44 {
45 if (l) /* free memory held by list nodes, not by types in the nodes */
46 {

VUB-DINF/2009/2 169

47 types_list_release(l->next);
48 free(l);
49 }
50 }
51
52 int
53 types_list_equal(T_LIST* t1,T_LIST *t2)
54 {
55 if (t1==t2)
56 return 1;
57
58 while (t1&&t2)
59 if (types_equal(t1->type,t2->type))
60 {
61 t1 = t1->next;
62 t2 = t2->next;
63 }
64 else
65 return 0;
66
67 if (t1) /* t2 == 0 */
68 return 0;
69 else /* t1 == 0 */
70 return (t1==t2);
71 }
72
73 static T_INFO*
74 types_find(T_INFO *t)
75 {
76 T_LIST *tl;
77
78 for (tl=types;(tl);tl=tl->next)
79 if (types_equal(t,tl->type))
80 return tl->type;
81 return 0;
82 }
83
84 static T_INFO*
85 types_new(T_CONS c)
86 {
87 T_INFO *t = fmalloc(sizeof(T_INFO));
88 T_LIST *tl = fmalloc(sizeof(T_LIST));
89 t->cons = c;
90 tl->type = t;
91 tl->next = types;
92 types = tl;
93 return t;
94 }
95

VUB-DINF/2009/2 170

96 T_INFO*
97 types_simple(T_CONS c)
98 {
99 T_INFO t,*pt;

100 t.cons = c;
101
102 if ((pt=types_find(&t)))
103 return pt;
104 else
105 return types_new(c);
106 }
107
108 T_INFO*
109 types_fun(T_INFO* target,T_LIST *source)
110 {
111 T_INFO t,*pt;
112
113 t.cons = fun_t;
114 t.info.fun.target = target;
115 t.info.fun.source = source;
116
117 if (!(pt=types_find(&t)))
118 {
119 pt = types_new(fun_t);
120 pt->info.fun.source = source;
121 pt->info.fun.target = target;
122 }
123 else
124 types_list_release(source);
125 return pt;
126 }
127
128 T_INFO*
129 types_record(SYM_LIST *fields)
130 {
131 T_INFO t,*pt;
132
133 t.cons = record_t;
134 t.info.record.fields = fields;
135
136 if (!(pt=types_find(&t)))
137 {
138 pt = types_new(record_t);
139 pt->info.record.fields = fields;
140 }
141 else
142 symtab_list_release(fields);
143 return pt;
144 }

VUB-DINF/2009/2 171

145
146 T_INFO*
147 types_array(T_INFO *base)
148 {
149 T_INFO t,*pt;
150 t.cons = array_t;
151 t.info.array.base = base;
152
153 if (!(pt=types_find(&t)))
154 {
155 pt = types_new(array_t);
156 pt->info.array.base = base;
157 }
158 return pt;
159 }
160
161 T_LIST*
162 types_list_insert(T_LIST* l,T_INFO *t)
163 {
164 T_LIST *nl = fmalloc(sizeof(T_LIST));
165 nl->type = t;
166 nl->next = l;
167 return nl;
168 }
169
170 void
171 types_print(FILE* f,T_INFO *t)
172 {
173 if (!t)
174 fprintf(f,"<null_type>");
175 else
176 switch (t->cons) {
177 case int_t:
178 fprintf(f,"int");
179 break;
180 case float_t:
181 fprintf(f,"float");
182 break;
183 case fun_t:
184 types_print(f,t->info.fun.target);
185 fprintf(f,"(");
186 types_list_print(f,t->info.fun.source,",");
187 fprintf(f,")");
188 break;
189 case record_t:
190 fprintf(f,"struct {");
191 symtab_list_print(f,t->info.record.fields,";");
192 fprintf(f,"}");
193 break;

VUB-DINF/2009/2 172

194 case array_t:
195 types_print(f,t->info.array.base);
196 fprintf(f,"*");
197 break;
198 default:
199 assert(0);
200 }
201 /* fprintf(f,"[%x]",(unsigned int)t); */
202 }
203
204 void
205 types_list_print(FILE* f,T_LIST* tl,char* separator)
206 {
207 /* fprintf(f,"{%x}",(unsigned int)tl); */
208 while (tl)
209 {
210 types_print(f,tl->type);
211 if (tl->next)
212 fprintf(f,"%s",separator);
213 tl = tl->next;
214 }
215 }
216
217 void
218 types_print_all(FILE* f)
219 {
220 types_list_print(f,types,"\n");
221 }

C.5 Type checking routines

1 #ifndef CHECK_H
2 #define CHECK_H
3 /*
4 * check.h(1.3) 10:31:17 97/12/10
5 *
6 * Semantic checks.
7 */
8 #include "types.h"
9 #include "symtab.h"

10
11 void check_assignment(T_INFO*,T_INFO*);
12 T_INFO* check_record_access(T_INFO* t,char* field);
13 T_INFO* check_array_access(T_INFO* ta,T_INFO* ti);
14 T_INFO* check_arith_op(int token,T_INFO* t1,T_INFO* t2);
15 T_INFO* check_relop(int token,T_INFO* t1,T_INFO* t2);
16 T_INFO* check_fun_call(SYM_TAB*,char*,T_LIST**);
17 SYM_INFO* check_symbol(SYM_TAB* scope,char* name);

VUB-DINF/2009/2 173

18
19 #endif

1 /*
2 * check.c(1.4) 17:46:20 97/12/10
3 */
4 #include <stdio.h> /* for fprintf() and friends */
5 #include "check.h"
6
7 #include "minic.tab.h" /* for tokens */
8
9 extern int lineno; /* defined in minic.y */

10
11 static void
12 error(char *s1,char *s2,T_INFO* t1,char* s3,char* s4,T_INFO* t2)
13 {
14 fprintf(stderr,"type error on line %d: ",lineno);
15 if (s1) fprintf(stderr,"%s",s1);
16 if (s2) fprintf(stderr,"%s",s2);
17 if (t1) types_print(stderr,t1);
18 if (s3) fprintf(stderr,"%s",s3);
19 if (s4) fprintf(stderr,"%s",s4);
20 if (t2) types_print(stderr,t2);
21 fprintf(stderr,"\n");
22 exit(1);
23 }
24
25 void
26 check_assignment(T_INFO* tlexp,T_INFO* texp)
27 {
28 if (tlexp!=texp)
29 error("cannot assign ",0,texp," to ",0,tlexp);
30 }
31
32 T_INFO*
33 check_record_access(T_INFO* t,char* field)
34 {
35 SYM_INFO *i;
36
37 if (t->cons!=record_t)
38 error("not a record: ",0,t," for field ",field,0);
39 if ((i=symtab_list_find(t->info.record.fields,field)))
40 return i->type;
41 error("record type ",0,t," has no field ",field,0);
42 return 0;
43 }
44
45 T_INFO*
46 check_array_access(T_INFO* ta,T_INFO* ti)

VUB-DINF/2009/2 174

47 {
48 if (ta->cons!=array_t)
49 error("not an array type: ",0,ta,0,0,0);
50 if (ti->cons!=int_t)
51 error("index for ",0,ta," must be integer, not ",0,ti);
52 return ta->info.array.base;
53 }
54
55 T_INFO*
56 check_arith_op(int token,T_INFO* t1,T_INFO* t2)
57 {
58 if (t1!=t2)
59 error("type ",0,t1," does not match ",0,t2);
60 if ((t1->cons!=int_t)&&(t2->cons!=float_t))
61 error("type ",0,t1," is not numeric",0,0);
62 return t1;
63 }
64
65 T_INFO*
66 check_relop(int token,T_INFO* t1,T_INFO* t2)
67 {
68 if (t1!=t2)
69 error("type ",0,t1," does not match ",0,t2);
70 return types_simple(int_t);
71 }
72
73 SYM_INFO*
74 check_symbol(SYM_TAB* scope,char* name)
75 {
76 SYM_INFO* i = symtab_find(scope,name);
77
78 if (!i)
79 error("undeclared variable \"",name,0,"\"",0,0);
80 return i;
81 }
82
83 T_INFO*
84 check_fun_call(SYM_TAB* scope,char* name,T_LIST** args)
85 {
86 SYM_INFO* i = symtab_find(scope,name);
87 T_INFO* ft;
88
89 if (!i)
90 error("undeclared function \"",name,0,"\"",0,0);
91
92 ft = i->type;
93
94 if (ft->cons!=fun_t)
95 error(name," is not a function",0,0,0,0);

VUB-DINF/2009/2 175

96
97 if (types_list_equal(ft->info.fun.source,(args?*args:0)))
98 {
99 /* release type_list from args, replace by equal list

100 * from function type
101 */
102 if (args) {
103 types_list_release(*args);
104 *args = ft->info.fun.source;
105 }
106 return ft->info.fun.target;
107 }
108 error("bad type of arguments for ",name,0,0,0,0);
109 return 0;
110 }

C.6 Parser with semantic actions

1 %{
2 /* minic.y(1.9) 17:46:21 97/12/10
3 *
4 * Parser demo of simple symbol table management and type checking.
5 */
6 #include <stdio.h> /* for (f)printf() */
7
8 #include "symtab.h"
9 #include "types.h"

10 #include "check.h"
11
12 int lineno = 1; /* number of current source line */
13 extern int yylex(); /* lexical analyzer generated from lex.l */
14 extern char *yytext; /* last token, defined in lex.l

*/
15 SYM_TAB *scope; /* current symbol table, initialized in lex.l */
16 char *base; /* basename of command line argument */
17
18 void
19 yyerror(char *s)
20 {
21 fprintf(stderr,"Syntax error on line #%d: %s\n",lineno,s);
22 fprintf(stderr,"Last token was \"%s\"\n",yytext);
23 exit(1);
24 }
25
26 %}
27
28 %union {
29 char* name;

VUB-DINF/2009/2 176

30 int value;
31 T_LIST* tlist;
32 T_INFO* type;
33 SYM_INFO* sym;
34 SYM_LIST* slist;
35 }
36
37 %token INT FLOAT NAME STRUCT IF ELSE RETURN NUMBER LPAR RPAR LBRACE RBRACE
38 %token LBRACK RBRACK ASSIGN SEMICOLON COMMA DOT PLUS MINUS TIMES DIVIDE EQUAL
39
40 %type <name> NAME
41 %type <value> NUMBER
42 %type <type> type parameter exp lexp
43 %type <tlist> parameters more_parameters exps
44 %type <sym> field var
45 %type <slist> fields
46
47 /* associativity and precedence: in order of increasing precedence */
48
49 %nonassoc LOW /* dummy token to suggest shift on ELSE */
50 %nonassoc ELSE /* higher than LOW */
51
52 %nonassoc EQUAL
53 %left PLUS MINUS
54 %left TIMES DIVIDE
55 %left UMINUS /* dummy token to use as precedence marker */
56 %left DOT LBRACK /* C compatible precedence rules */
57
58 %%
59 program : declarations
60 ;
61
62 declarations : declaration declarations
63 | /* empty */
64 ;
65
66 declaration : fun_declaration
67 | var_declaration
68 ;
69
70 fun_declaration : type NAME { /* this is $3 */
71 $<sym>$ = symtab_insert(scope,$2,0);
72 scope = symtab_open(scope); /* open new scope */
73 scope->function = $<sym>$; /* attach to this function */
74 }
75 LPAR parameters RPAR { /* this is $7 */
76 $<sym>3->type = types_fun($1,$5);
77 }
78 block { scope = scope->parent; }

VUB-DINF/2009/2 177

79 ;
80
81 parameters : more_parameters { $$ = $1; }
82 | { $$ = 0; }
83 ;
84
85 more_parameters : parameter COMMA more_parameters
86 { $$ = types_list_insert($3,$1); }
87 | parameter { $$ = types_list_insert(0,$1); }
88 ;
89
90 parameter : type NAME {
91 symtab_insert(scope,$2,$1); /* insert in symbol table */
92 $$ = $1; /* remember type info */
93 }
94 ;
95
96 block : LBRACE { scope = symtab_open(scope); }
97 var_declarations statements RBRACE
98 { scope = scope->parent; /* close scope */}
99 ;

100
101 var_declarations: var_declaration var_declarations
102 |
103 ;
104
105 var_declaration : type NAME SEMICOLON { symtab_insert(scope,$2,$1); }
106 ;
107
108 type : INT { $$ = types_simple(int_t); }
109 | FLOAT { $$ = types_simple(float_t); }
110 | type TIMES { $$ = types_array($1); }
111 | STRUCT LBRACE fields RBRACE /* record */
112 { $$ = types_record($3); }
113 ;
114
115 fields : field fields { $$ = symtab_list_insert($2,$1); }
116 | { $$ = 0; }
117 ;
118
119 field : type NAME SEMICOLON { $$ = symtab_info_new($2,$1); }
120 ;
121
122 statements : statement SEMICOLON statements
123 | /* empty */
124 ;
125
126 statement : IF LPAR exp RPAR statement %prec LOW
127 | IF LPAR exp RPAR statement ELSE statement /* shift */

VUB-DINF/2009/2 178

128 | lexp ASSIGN exp { check_assignment($1,$3); }
129 | RETURN exp /* statements always in scope with function */
130 { check_assignment(scope->function->type->info.fun.target,$2); }
131 | block
132 ;
133
134 lexp : var { $$ = $1->type; }
135 | lexp LBRACK exp RBRACK{ $$ = check_array_access($1,$3); }
136 | lexp DOT NAME { $$ = check_record_access($1,$3); }
137 ;
138
139 exp : exp DOT NAME { $$ = check_record_access($1,$3); }
140 | exp LBRACK exp RBRACK { $$ = check_array_access($1,$3); }
141 | exp PLUS exp { $$ = check_arith_op(PLUS,$1,$3); }
142 | exp MINUS exp { $$ = check_arith_op(MINUS,$1,$3); }
143 | exp TIMES exp { $$ = check_arith_op(TIMES,$1,$3); }
144 | exp DIVIDE exp { $$ = check_arith_op(DIVIDE,$1,$3); }
145 | exp EQUAL exp { $$ = check_relop(EQUAL,$1,$3); }
146 | LPAR exp RPAR { $$ = $2; }
147 | MINUS exp %prec UMINUS /* this will force a reduce */
148 { $$ = check_arith_op(UMINUS,$2,0); }
149 | var { $$ = $1->type; }
150 | NUMBER { $$ = types_simple(int_t); }
151 | NAME LPAR RPAR { $$ = check_fun_call(scope,$1,0); }
152 | NAME LPAR exps RPAR { $$ = check_fun_call(scope,$1,&$3); }
153 ;
154
155 exps : exp { $$ = types_list_insert(0,$1); }
156 | exp COMMA exps { $$ = types_list_insert($3,$1); }
157 ;
158
159 var : NAME { $$ = check_symbol(scope,$1); }
160 %%
161
162 int
163 main(int argc,char *argv[])
164 {
165 if (argc!=2) {
166 fprintf(stderr,"Usage: %s base_file_name",argv[0]);
167 exit(1);
168 }
169 base = argv[1];
170 return yyparse();
171 }

C.7 Utilities

1 #ifndef UTIL_H

VUB-DINF/2009/2 179

2 #define UTIL_H
3 /*
4 * util.h(1.1) 11:24:32 97/12/08
5 *
6 * General utility functions
7 */
8 #include <stdlib.h>
9

10 void *fmalloc(size_t); /* malloc() version that aborts on failure */
11
12 #endif

1 /*
2 * util.c(1.2) 10:13:01 97/12/10
3 *
4 * Utility functions.
5 */
6
7 #include <stdio.h> /* for fprintf() and friends */
8
9 #include "util.h"

10
11 /* aborts on failure */
12 void *fmalloc(size_t s)
13 {
14 void *ptr = malloc(s);
15 if (!ptr) {
16 fprintf(stderr,"Out of memory in fmalloc(%d)\n",s);
17 exit(1);
18 }
19 return ptr;
20 }

C.8 Driver script

1 #!/bin/sh
2 #
3 # Usage: mct basename
4 #
5 # e.g. "mct tst" to compile tst.c,
6 #
7 # No output except errors on stderr.
8 #
9 # First make sure source file exists

10 #
11 if [! -f "$1.c"]
12 then
13 echo "Cannot open \"$1.c\""

VUB-DINF/2009/2 180

14 exit 1
15 fi
16 #
17 minic $1 <$1.c

C.9 Makefile

1 # %M%(%I%) %U% %E%
2 #
3 CFLAGS= -Wall -g
4 CC= gcc
5 #
6 HH_FILES= util.h names.h symtab.h types.h check.h
7 CC_FILES= util.c names.c symtab.c types.c check.c
8 SOURCE= Makefile $(CC_FILES) $(HH_FILES) minic.y lex.l mct.sh
9 #

10 #
11 all: minic mct
12 minic: minic.tab.o lex.yy.o $(CC_FILES:%.c=%.o)
13 gcc $(CFLAGS) -o $@ $ˆ
14
15 lex.yy.c: lex.l minic.tab.h
16 flex lex.l
17 #
18 include make_dependencies
19 #
20 # Bison options:
21 #
22 # -v Generate minic.output showing states of LALR parser
23 # -d Generate minic.tab.h containing token type definitions
24 #
25 minic.tab.h\
26 minic.tab.c: minic.y
27 bison -v -d $ˆ
28 #
29 clean:
30 rm -f lex.yy.c minic.tab.[hc] *.o mct minic *.jasm *.class minic.output
31 #
32 tar:
33 tar cvf minic.tar $(SOURCE)
34 source:
35 @echo $(SOURCE)
36 #
37 ####### creating dependencies
38 #
39 dep: lex.yy.c minic.tab.c $(CC_FILES)
40 $(CC) -M $(CC_FILES) lex.yy.c minic.tab.c >make_dependencies
41 #

VUB-DINF/2009/2 181

42 ####### sccs rules
43 #
44 delta:
45 @echo "Comment: \c"; read inp; \
46 for f in $(SOURCE); do\
47 [-f SCCS/p.$$f] && \
48 { echo "#$$f:"; sccs delget -y"\"$$inp\"" $$f; } done;\
49 true
50 edit:
51 @for f in $(SOURCE); do\
52 [! -f SCCS/p.$$f] && \
53 { echo "#$$f:"; sccs edit $$f; } done; true
54 create:
55 @for f in $(SOURCE); do\
56 [! -f SCCS/s.$$f] && \
57 { echo "#$$f:"; sccs create $$f; } done; rm -f ,*; true

Index

=⇒n
G, 36

=⇒∗G, 36
=⇒G, 36
|w|, 24
pref l(w), 24
`∗M , 26, 29
`M , 26, 29
δ∗, 26
ε-closure, 30
ε-move, 28
$1, 76
$$, 76
GEN e(B), 107
KILLuse(B), 112
KILLlive(B), 110
GEN (B), 103
IN e(B), 107
IN use(B), 112
IN live(B), 110
IN (B), 103
KILLe(B), 107
KILL(B), 103
OUT e(B), 107
OUT use(B), 112
OUT live(B), 110
OUT (B), 103
UD(a, u), 105
GEN use(B), 112
GEN live(B), 110

absolute code, 130
abstract syntax trees, 76
action table, 53
activation record, 132

algorithm optimization, 93
aliases, 126, 129
aliasing, 102
alphabet, 24
assembler, 7
assembler source, 130
attribute, 65
attribute grammar, 65
attributes

inherited, 66
synthesized, 66

available expression, 106
awk, 8

back edge, 117
back end, 74
backpatching, 83
basic block, 94
basic induction variable, 123
bison

attributes, 68

cfg
see context-free grammar, 35

cfront, 7
code simplification, 99
code-generator generator, 78
compiler, 6
computation by a DFA, 26
configuration, 26
conflict

reduce-reduce, 57
shift-reduce, 57

context-free grammar, 14, 35

182

VUB-DINF/2009/2 183

derives, 36
generated language, 36
left recursive, 41
left sentential form, 38
leftmost derivation, 38
LL(1), 43
LL(k), 44
LR(1), 59
right sentential form, 50
rightmost derivation, 50

context-free language, 36
cross-compiler, 7

dag, 95
dead variable, 110
definition-use chain, 112
dependency graph, 67
derivation

leftmost, 38
rightmost, 50

deterministic finite automaton, 26
DFA, 26

computation, 26
computation step, 26
configuration, 26

directed acyclic graph, 95
dominate, 117

empty string, 24
exit node, 117
expression

available, 106

family of an induction variable, 123
finite automaton

deterministic, 26
nondeterministic, 28

first, 45
flow graph, 94
follow, 45
formal language, 7, 24
front end, 74

goto table, 53
gprof, 116
grammar, 10

attribute, 65

handle, 50
header of a loop, 117

immediate left recursion, 41
induction variable, 123

basic, 123
family, 123

inherently ambiguous languages, 38
inherited attributes, 66
initial basic block, 102
inner loop, 117
interpreter, 8
item

LR(1), 54

Java virtual machine, 8
JVM, 8

language
formal, 7, 24
little, 8
regular, 24
source, 6
target, 6

languages
inherently ambiguous, 38

leader, 94
left recursion, 41

immediate, 41
left sentential form, 38
leftmost derivation, 38
length of string, 24
lexical analyze, 12
lisp, 8
little language, 8
live variable, 110
LL(1) grammar, 43

VUB-DINF/2009/2 184

LL(1) parse table construction, 45
LL(k) grammars, 44
loop

header, 117
inner, 117
invariant, 120

LR(1) grammar, 59
LR(1) item, 54
lvalue, 89

Micro, 9
Minic, 72

natural loop, 117
NFA, 28
nondeterministic finite automaton, 28
nonterminal symbol, 35

parse tree, 13, 37
parser, 13

predictive, 44
parsing

predictive, 38
top-down, 38

path between points, 102
phrase, 50

simple, 50
point, 102
predictive parser, 44

operation, 45
predictive parsing, 38
prefix, 24
preheader, 121
product, 24
production, 35
prolog, 8

reduce operation, 51
reduce-reduce conflict, 57
register allocation, 17
regular expressions, 24
regular language, 24

relocatable code, 130
retargeting, 74
right sentential form, 50
rightmost derivation, 50

scanner, 12
scope, 69
semantic action, 15, 65
semantics

static, 71
shift operation, 51
shift-reduce conflict, 57
simple phrase, 50
simple postfix, 76
Smalltalk, 8
source language, 6
SQL, 8
start symbol, 35
state, 26, 28

final, 26
initial, 26

static semantics, 71
strength reduction, 124
successor, 102
symbol table, 12
syntax, 7
syntax-directed translation, 15, 67
synthesized attributes, 66

target language, 6
terminal symbol, 35
three-address code, 15

instructions, 78
token, 12
top-down parsing, 38
topological sort, 67
transition function, 26
type rules, 72
type system, 71

use-definition chain, 105
used variable, 110

VUB-DINF/2009/2 185

viable prefix, 50

x86, 10

yacc
attributes, 68

yield, 14

List of Figures

1.1 A source text in the C language 6

1.2 The syntax of the Micro language 9

1.3 A Micro program . 10

1.4 X86 assembly code generated for the program in Figure 1.3 11

1.5 Result of lexical analysis of program in Figure 1.3 13

1.6 Parse tree of program in Figure 1.3 14

1.7 three-address code corresponding to the program of Figure 1.3 . . 16

1.8 Optimized three-address code corresponding to the program of
Figure 1.3 . 17

2.1 A declaration for TOKEN and lex() 18

2.2 The transition diagram for lex() 23

2.3 A DFA for NAME . 27

2.4 DFA implementation . 28

2.5 M1 . 29

2.6 M∅,Mε and Ma . 31

2.7 Mr1+r2 ,Mr1r2 and Mr∗1
. 32

2.8 A generated scanner . 34

3.1 Parse trees in the ambiguous context-free grammar from Example 5 37

3.2 A simple top-down parse . 39

3.3 Eliminating immediate left recursion 42

3.4 The prediction problem . 43

3.5 A predictive parser . 44

186

VUB-DINF/2009/2 187

3.6 Predictive parser operation . 46

3.7 Naive shift-reduce parsing procedure 53

3.8 A shift-reduce parser . 54

3.9 Shift-reduce parser algorithm . 55

3.10 A (partial) rightmost derivation 56

3.11 States of the viable prefix DFA of G3 58

3.12 Transition function of the viable prefix DFA of G3 59

3.13 LR(1) tables for G3 . 60

4.1 Computing synthesized attribute values 66

4.2 Computing inherited attribute values 68

4.3 A simple symbol table using a string pool and hashing 70

4.4 A stacked symbol table . 71

5.1 Abstract syntax tree corresponding to the program in Figure 1.3 . 77

5.2 Tree-rewriting rules . 78

5.3 Three-address code instructions 79

5.4 Conditional control flow statements 83

5.5 Exit sets after “and” . 84

6.1 Flow graph of example code . 95

6.2 Dag of example code . 98

6.3 Dag of code with array manipulation 100

6.4 Corrected dag of code with array manipulation 101

6.5 Dag using algebraic identities . 102

6.6 Flow graph with cycle . 104

6.7 Example flow graph for available expressions 108

6.8 Code before first subexpression elimination 113

6.9 Code after first subexpression elimination 114

6.10 Flow graph with loops . 117

6.11 Flow graph of Example 20 . 121

6.12 Flow graph of Example 20 after moving loop invariants 122

VUB-DINF/2009/2 188

6.13 Flow graph of Example 20 after strength reduction 125

6.14 Flow graph of Figure 6.13 after copy propagation and constant
folding . 126

6.15 optimized flow graph for Example 20 127

7.1 Memory layout in C . 131

7.2 Activation records . 132

7.3 Multiplication on IBM/370 . 135

List of Tables

2.1 Regular expressions describing Micro tokens 25

A.1 Some x86 Flags . 140

A.2 Data Transfer Instructions . 141

A.3 Integer Arithmetic Instructions 142

A.4 Linux System Calls . 145

A.5 Logical Operations . 145

A.6 Control Flow Instructions . 146

189

Bibliography

[ALSU07] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, techniques and tools, second edition. Pear-
son,Addison Wesley, 2007.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, techniques and tools. Addison Wesley, 1986.

[Bar03] Jonathan Bartlett. Programming from the Ground Up. http://
www.bartlettpublishing.com/ and http://savannah.
nongnu.org/projects/pgubook/, 2003.

[FL91] Charles N. Fischer and Richard J. LeBlanc. Crafting a compiler with
C. Addison-Wesley, 1991.

[HU69] John E. Hopcroft and Jeffrey D. Ullman. Formal languages and their
relation to automata. Addison Wesley, 1969.

[Sal73] A. Salomaa. Formal languages. ACM Monograph Series. Academic
Press, 1973.

190

