
35

yacc — A Compiler Compiler 3

Introduction

yacc (yet another compiler compiler) provides a general tool for imposing
structure on the input to a computer program. Before using yacc , you prepare
a specification that includes:

• a set of rules to describe the elements of the input;

• code to be invoked when a rule is recognized;

• either a definition or declaration of a low-level scanner to examine the
input.

yacc then turns the specification into a C-language function that examines the
input stream. This function, called a parser, works by calling the low-level
scanner.

 The scanner, called a lexical analyzer, picks up items from the input stream.
The selected items are known as tokens. Tokens are compared to the input
construct rules, called grammar rules.

When one of the rules is recognized, the code you have supplied for the rule is
invoked. This code is called an action. Actions are fragments of C-language
code. They can return values and use values returned by other actions.

36 SunOS 5.3 Programming Utilities—November 1993

3

The heart of the yacc specification is the collection of grammar rules. Each
rule describes a construct and gives it a name. For example, one grammar rule
might be:

where date , month_name , day , and year represent constructs of interest;
presumably, month_name , day , and year are defined in greater detail
elsewhere.

In the example, the comma is enclosed in single quotes. This means that the
comma is to appear literally in the input. The colon and semicolon are
punctuation in the rule and have no significance in evaluating the input. With
proper definitions, the input:

might be matched by the rule.

The lexical analyzer is an important part of the parsing function. This user-
supplied routine reads the input stream, recognizes the lower-level constructs,
and communicates these as tokens to the parser. The lexical analyzer
recognizes constructs of the input stream as terminal symbols; the parser
recognizes constructs as nonterminal symbols. To avoid confusion, refer to
terminal symbols as tokens.

There is considerable leeway in deciding whether to recognize constructs using
the lexical analyzer or grammar rules. For example, the rules:

might be used in the above example. While the lexical analyzer only needs to
recognize individual letters, such low-level rules tend to waste time and space
and may complicate the specification beyond the ability of yacc to deal with
it.

Usually, the lexical analyzer recognizes the month names and returns an
indication that a month_name is seen. In this case, month_name is a token and
the detailed rules are not needed.

date: month_name day ’,’ year ;

July 4, 1776

month_name : ’J’ ’a’ ’n’ ;
month_name : ’F’ ’e’ ’b’ ;
...
month_name : ’D’ ’e’ ’c’ ;

yacc — A Compiler Compiler 37

3

Literal characters such as a comma must also be passed through the lexical
analyzer and are also considered tokens.

Specification files are very flexible. It is relatively easy to add to the previous
example the rule:

allowing:

as a synonym for:

on input. In most cases, this new rule could be slipped into a working system
with minimal effort and little danger of disrupting existing input.

The input being read may not conform to the specifications. With a left-to-right
scan, input errors are detected as early as is theoretically possible. Thus, not
only is the chance of reading and computing with bad input data substantially
reduced, but the bad data usually can be found quickly.

Error handling, provided as part of the input specifications, permits the reentry
of bad data or the continuation of the input process after skipping over the bad
data. In some cases, yacc fails to produce a parser when given a set of
specifications.

For example, the specifications may be self-contradictory, or they may require a
more powerful recognition mechanism than that available to yacc .

The former cases represent design errors; the latter cases often can be corrected
by making the lexical analyzer more powerful or by rewriting some of the
grammar rules.

While yacc cannot handle all possible specifications, its power compares
favorably with similar systems. Moreover, the constructs that are difficult for
yacc to handle are also frequently difficult for human beings to handle. Some
users have reported that the discipline of formulating valid yacc specifications
for their input revealed errors of conception or design early in program
development.

The remainder of this chapter describes the following subjects:

date : month ’/’ day ’/’ year ;

7/4/1776

July 4, 1776

38 SunOS 5.3 Programming Utilities—November 1993

3

• basic process of preparing a yacc specification

• parser operation

• handling ambiguities

• handling operator precedences in arithmetic expressions

• error detection and recovery

• the operating environment and special features of the parsers yacc
produces

• suggestions to improve the style and efficiency of the specifications

• advanced topics

In addition, there are two examples and a summary of the yacc input syntax.

Internationalization

To use yacc in the development of applications in languages other than
English, see yacc (1) for further information.

Basic Specifications

Names refer to either tokens or nonterminal symbols. yacc requires token
names to be declared as such. While the lexical analyzer may be included as
part of the specification file, it is perhaps more in keeping with modular design
to keep it as a separate file. Like the lexical analyzer, other subroutines may be
included as well.

Thus, every specification file theoretically consists of three sections: the
declarations, (grammar) rules, and subroutines. The sections are separated by
double percent signs (%%; the percent sign is generally used in yacc
specifications as an escape character).

When all sections are used, a full specification file looks like:

declarations
%%
rules
%%
subroutines

yacc — A Compiler Compiler 39

3

The declarations and subroutines sections are optional. The smallest legal yacc
specification might be:

Blanks, tabs, and newlines are ignored, but they may not appear in names or
multicharacter reserved symbols. Comments may appear wherever a name is
legal. They are enclosed in /* and */ , as in the C language.

The rules section is made up of one or more grammar rules. A grammar rule
has the form:

where A represents a nonterminal symbol, and BODY represents a sequence of
zero or more names and literals. The colon and the semicolon are yacc
punctuation.

Names may be of any length and may be made up of letters, periods,
underscores, and digits although a digit may not be the first character of a
name. Uppercase and lowercase letters are distinct. The names used in the
body of a grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes. As in the C language,
the backslash is an escape character within literals. yacc recognizes all C
language escape sequences. For a number of technical reasons, the null
character should never be used in grammar rules.

If there are several grammar rules with the same left-hand side, the vertical bar
can be used to avoid rewriting the left-hand side. In addition, the semicolon at
the end of a rule is dropped before a vertical bar.

Thus the grammar rules:

%%
S:;

A: BODY ;

A : B C D ;
A : E F ;
A : G ;

40 SunOS 5.3 Programming Utilities—November 1993

3

can be given to yacc as:

by using the vertical bar. It is not necessary that all grammar rules with the
same left side appear together in the grammar rules section although it makes
the input more readable and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated by:

The blank space following the colon is understood by yacc to be a
nonterminal symbol named epsilon .

Names representing tokens must be declared. This is most simply done by
writing:

and so on in the declarations section. Every name not defined in the
declarations section is assumed to represent a nonterminal symbol. Every
nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, the start symbol has particular importance. By
default, the symbol is taken to be the left-hand side of the first grammar rule in
the rules section. It is possible and desirable to declare the start symbol
explicitly in the declarations section using the %start keyword:

The end of the input to the parser is signaled by a special token, called the end-
marker. The end-marker is represented by either a zero or a negative number.

If the tokens up to but not including the end-marker form a construct that
matches the start symbol, the parser function returns to its caller after the end-
marker is seen and accepts the input. If the end-marker is seen in any other
context, it is an error.

A : B C D
| E F
| G
;

epsilon : ;

$token name1 name2 name3

$start symbol

yacc — A Compiler Compiler 41

3

It is the job of the user-supplied lexical analyzer to return the end-marker
when appropriate. Usually the end-marker represents some reasonably
obvious I/O status, such as end of file or end of record.

Actions

With each grammar rule, you can associate actions to be performed when the
rule is recognized. Actions may return values and may obtain the values
returned by previous actions. Moreover, the lexical analyzer can return values
for tokens if desired.

An action is an arbitrary C-language statement and as such can do input and
output, call subroutines, and alter arrays and variables. An action is specified
by one or more statements enclosed in { and } . For example, the following two
examples are grammar rules with actions:

and

The $ symbol is used to facilitate communication between the actions and the
parser. The pseudo-variable $$ represents the value returned by the complete
action.

For example, the action:

returns the value of one; in fact, that’s all it does.

A : ’(’ B ’)’
{

hello(1, "abc");
}

XXX : YYY ZZZ
{

(void) printf("a message\n");
flag = 25;

}

{ $$ = 1; }

42 SunOS 5.3 Programming Utilities—November 1993

3

To obtain the values returned by previous actions and the lexical analyzer, the
action can use the pseudo-variables $1 , $2 , ... $n. These refer to the values
returned by components 1 through n of the right side of a rule, with the
components being numbered from left to right. If the rule is

then $2 has the value returned by C, and $3 the value returned by D. The
following rule provides a common example:

One would expect the value returned by this rule to be the value of the expr
within the parentheses. Since the first component of the action is the literal left
parenthesis, the desired logical result can be indicated by:

By default, the value of a rule is the value of the first element in it ($1). Thus,
grammar rules of the following form frequently need not have an explicit
action:

In previous examples, all the actions came at the end of rules. Sometimes, it is
desirable to get control before a rule is fully parsed. yacc permits an action to
be written in the middle of a rule as well as at the end.

A : B C D ;

expr : ’(’ expr ’)’ ;

expr : ’(’ expr ’)’
{

$$ = $2 ;
}

A : B ;

yacc — A Compiler Compiler 43

3

This action is assumed to return a value accessible through the usual $
mechanism by the actions to the right of it. In turn, it may access the values
returned by the symbols to its left. Thus, in the rule below the effect is to set x
to 1 and y to the value returned by C:

Actions that do not terminate a rule are handled by yacc by manufacturing a
new nonterminal symbol name and a new rule matching this name to the
empty string. The interior action is the action triggered by recognizing this
added rule.

yacc treats the above example as if it had been written

where $ACT is an empty action.

In many applications, output is not done directly by the actions. A data
structure, such as a parse tree, is constructed in memory and transformations
are applied to it before output is generated. Parse trees are particularly easy to
construct given routines to build and maintain the tree structure desired.

A : B
{

$$ = 1;
}
C

{
x = $2;
y = $3;

}
;

$ACT : /* empty */
{

$$ = 1;
}
;

A : B $ACT C
{

x = $2;
y = $3;

}
;

44 SunOS 5.3 Programming Utilities—November 1993

3

For example, suppose there is a C-function node written so that the call:

creates a node with label L and descendants n1 and n2 and returns the index
of the newly created node. Then a parse tree can be built by supplying actions
such as in the following specification:

You may define other variables to be used by the actions. Declarations and
definitions can appear in the declarations section enclosed in %{ and %}. These
declarations and definitions have global scope, so they are known to the action
statements and can be made known to the lexical analyzer. For example:

could be placed in the declarations section making variable accessible to all
of the actions. You should avoid names beginning with yy because the yacc
parser uses only such names. Note, too, that in the examples shown thus far
all the values are integers.

A discussion of values is found in the section Advanced Topics. Finally, note
that in the following case:

yacc will start copying after %{ and stop copying when it encounters the first
%}, the one in printf() . In contrast, it would copy %{ in printf() if it
encountered it there.

node(L, n1, n2)

expr : expr ’+’ expr
{
$$ = node(’+’, $1, $3);
}

%{ int variable = 0; %}

%{
int i;
printf("%}");

%}

yacc — A Compiler Compiler 45

3

Lexical Analysis

You must supply a lexical analyzer to read the input stream and communicate
tokens (with values, if desired) to the parser. The lexical analyzer is an integer-
valued function called yylex() . The function returns an integer, the token
number, representing the kind of token read. If a value is associated with that
token, it should be assigned to the external variable yylval .

The parser and the lexical analyzer must agree on these token numbers in
order for communication between them to take place. The numbers may be
chosen by yacc or the user. In either case, the #define mechanism of C
language is used to allow the lexical analyzer to return these numbers
symbolically.

For example, suppose that the token name DIGIT has been defined in the
declarations section of the yacc specification file. The relevant portion of the
lexical analyzer might look like the following to return the appropriate token:

int yylex()
{

extern int yylval;
int c;
...
c = getchar();
...
switch (c)
{

...
case ’0’:
case ’1’:
...
case ’9’:

yylval = c – ’0’;
return (DIGIT);

...
}
...

}

46 SunOS 5.3 Programming Utilities—November 1993

3

The intent is to return a token number of DIGIT and a value equal to the
numerical value of the digit. You put the lexical analyzer code in the
subroutines section and the declaration for DIGIT in the declarations section.
Alternatively, you can put the lexical analyzer code in a separately compiled
file, provided you

• invoke yacc with the –d option, which generates a file called y.tab.h that
contains #define statements for the tokens, and

• #include y.tab.h in the separately compiled lexical analyzer.

This mechanism leads to clear, easily modified lexical analyzers. The only
pitfall to avoid is the use of any token names in the grammar that are reserved
or significant in C language or the parser.

For example, the use of token names if or while will almost certainly cause
severe difficulties when the lexical analyzer is compiled. The token name
error is reserved for error handling and should not be used naively.

In the default situation, token numbers are chosen by yacc . The default token
number for a literal character is the numerical value of the character in the
local character set. Other names are assigned token numbers starting at 257.

If you prefer to assign the token numbers, the first appearance of the token
name or literal in the declarations section must be followed immediately by a
nonnegative integer. This integer is taken to be the token number of the name
or literal. Names and literals not defined this way are assigned default
definitions by yacc . The potential for duplication exists here. Care must be
taken to make sure that all token numbers are distinct.

For historical reasons, the end-marker must have token number 0 or negative.
You cannot redefine this token number. Thus, all lexical analyzers should be
prepared to return 0 or a negative number as a token upon reaching the end of
their input.

As noted in Chapter 1, lex, lexical analyzers produced by lex are designed to
work in close harmony with yacc parsers. The specifications for these lexical
analyzers use regular expressions instead of grammar rules. lex can be used to
produce quite complicated lexical analyzers, but there remain some languages
that do not fit any theoretical framework and whose lexical analyzers must be
crafted by hand.

yacc — A Compiler Compiler 47

3

Parser Operation

Use yacc to turn the specification file into a C language procedure, which
parses the input according to the specification given. The algorithm used to go
from the specification to the parser is complex and will not be discussed here.
The parser itself, though, is relatively simple and understanding its usage will
make treatment of error recovery and ambiguities easier.

The parser produced by yacc consists of a finite state machine with a stack.
The parser is also capable of reading and remembering the next input token,
called the lookahead token. The current state is always the one on the top of
the stack. The states of the finite state machine are given small integer labels.
Initially, the machine is in state 0 (the stack contains only state 0) and no
lookahead token has been read.

The machine has only four actions available: shift , reduce , accept , and
error . A step of the parser is done as follows:

1. Based on its current state, the parser decides if it needs a look-ahead token
to choose the action to be taken. If it needs one and does not have one, it
calls yylex() to obtain the next token.

2. Using the current state and the lookahead token if needed, the parser
decides on its next action and carries it out. This may result in states being
pushed onto the stack or popped off of the stack and in the lookahead token
being processed or left alone.

The shift action is the most common action the parser takes. Whenever a
shift action is taken, there is always a lookahead token. For example, in state
56 there may be an action

that says, in state 56, if the lookahead token is IF , the current state (56) is
pushed down on the stack, and state 34 becomes the current state (on the top
of the stack). The lookahead token is cleared.

The reduce action keeps the stack from growing without bounds. reduce
actions are appropriate when the parser has seen the right-hand side of a
grammar rule and is prepared to announce that it has seen an instance of the
rule replacing the right-hand side by the left-hand side. It may be necessary to
consult the lookahead token to decide whether or not to reduce. In fact, the
default action (represented by .) is often a reduce action.

IF shift 34

48 SunOS 5.3 Programming Utilities—November 1993

3

reduce actions are associated with individual grammar rules. Grammar rules
are also given small integer numbers, and this leads to some confusion. The
following action refers to grammar rule 18:

However, the following action refers to state 34:

Suppose the following rule is being reduced:

The reduce action depends on the left-hand symbol (A in this case) and the
number of symbols on the right-hand side (three in this case). To reduce, first
pop off the top three states from the stack. (In general, the number of states
popped equals the number of symbols on the right side of the rule.)

In effect, these states were the ones put on the stack while recognizing x , y, and
z and no longer serve any useful purpose. After popping these states, a state is
uncovered, which was the state the parser was in before beginning to process
the rule.

Using this uncovered state and the symbol on the left side of the rule, perform
what is in effect a shift of A. A new state is obtained, pushed onto the stack,
and parsing continues. There are significant differences between the processing
of the left-hand symbol and an ordinary shift of a token, however, so this
action is called a goto action. In particular, the lookahead token is cleared by a
shift but is not affected by a goto . In any case, the uncovered state contains an
entry such as the following causing state 20 to be pushed onto the stack and
become the current state:

In effect, the reduce action turns back the clock in the parse, popping the
states off the stack to go back to the state where the right-hand side of the rule
was first seen. The parser then behaves as if it had seen the left side at that
time. If the right-hand side of the rule is empty, no states are popped off the
stacks. The uncovered state is in fact the current state.

. reduce 18

IF shift 34

A : x y z ;

A goto 20

yacc — A Compiler Compiler 49

3

The reduce action is also important in the treatment of user-supplied actions
and values. When a rule is reduced, the code supplied with the rule is executed
before the stack is adjusted. In addition to the stack holding the states, another
stack running in parallel with it holds the values returned from the lexical
analyzer and the actions.

When a shift takes place, the external variable yylval is copied onto the
value stack. After the return from the user code, the reduction is carried out.
When the goto action is done, the external variable yyval is copied onto the
value stack. The pseudo-variables $1 , $2 , and so on refer to the value stack.

The other two parser actions are conceptually much simpler. The accept
action indicates that the entire input has been seen and that it matches the
specification. This action appears only when the lookahead token is the end-
marker and indicates that the parser has successfully done its job.

The error action, on the other hand, represents a place where the parser can
no longer continue parsing according to the specification. The input tokens it
has seen (together with the lookahead token) cannot be followed by anything
that would result in a legal input. The parser reports an error and attempts to
recover the situation and resume parsing.

The error recovery (as opposed to the detection of error) is be discussed in the
Error Handling section.

Consider the following as a yacc specification:

When yacc is invoked with the –v (verbose) option, a file called y.output is
produced which describes the parser.

The y.output file corresponding to the above grammar (with some statistics
stripped off the end) follows.

$token DING DONG DELL
%%
rhyme : sound place

;
sound : DING DONG

;
place: DELL

;

state 0

50 SunOS 5.3 Programming Utilities—November 1993

3

$accept : _rhyme $end

DING shift 3

. error

rhyme goto 1

sound goto 2

state 1

$accept : rhyme_$end

$end accept

. error

state 2

rhyme : sound_place

DELL shift 5

. error

place goto 4

state 3

sound : DING_DONG

DONG shift 6

. error

yacc — A Compiler Compiler 51

3

The actions for each state are specified and there is a description of the parsing
rules being processed in each state. The _ character is used to indicate what
has been seen and what is yet to come in each rule. The following input can be
used to track the operations of the parser:

Initially, the current state is state 0.

The parser refers to the input to decide between the actions available in state 0,
so the first token, DING, is read and becomes the lookahead token. The action
in state 0 on DING is shift 3 , state 3 is pushed onto the stack, and the
lookahead token is cleared. State 3 becomes the current state. The next token,
DONG, is read and becomes the lookahead token.

state 4

rhyme : sound place_ (1)

. reduce 1

state 5

place : DELL_ (3)

. reduce 3

state 6

sound : DING DONG_ (2)

. reduce 2

DING DONG DELL

52 SunOS 5.3 Programming Utilities—November 1993

3

The action in state 3 on the token DONG is shift 6 , state 6 is pushed onto the
stack, and the lookahead is cleared. The stack now contains 0, 3, and 6. In state
6, without consulting the lookahead, the parser reduces by

which is rule 2. Two states, 6 and 3, are popped off the stack, uncovering state
0. Consulting the description of state 0 (looking for a goto on sound),

is obtained. State 2 is pushed onto the stack and becomes the current state.

In state 2, the next token, DELL, must be read. The action is shift 5 , so state
5 is pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead
token is cleared. In state 5, the only action is to reduce by rule 3. This has one
symbol on the right-hand side, so one state, 5, is popped off, and state 2 is
uncovered.

The goto in state 2 on place (the left side of rule 3) is state 4. Now, the stack
contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1. There are
two symbols on the right, so the top two states are popped off, uncovering
state 0 again.

• In state 0, there is a goto on rhyme causing the parser to enter state 1.

• In state 1, the input is read and the end-marker is obtained indicated by
$end in the y.output file. The action in state 1 (when the end-marker is
seen) successfully ends the parse.

sound : DING DONG

sound goto 2

yacc — A Compiler Compiler 53

3

Ambiguity and Conflicts

A set of grammar rules is ambiguous if some input string can be structured in
two or more different ways. For example, the following grammar rule is a
natural way of expressing the fact that one way of forming an arithmetic
expression is to put two other expressions together with a minus sign between
them:

Notice that this grammar rule does not completely specify the way that all
complex inputs should be structured. For example, if the input is the
following:

the rule allows this input to be structured as either:

or as:

The first is called left association, the second right association.

yacc detects such ambiguities when it is attempting to build the parser. Given
that the input is as follows, consider the problem that confronts the parser:

When the parser has read the second expr , the input seen is:

It matches the right side of the grammar rule above. The parser could reduce
the input by applying this rule. After applying the rule, the input is reduced to
expr (the left side of the rule). The parser would then read the final part of
the input (as represented below) and again reduce:

The effect of this is to take the left associative interpretation.

expr : expr ’–’ expr

expr – expr – expr

(expr – expr) – expr

expr – (expr – expr)

expr – expr – expr

expr – expr

– expr

54 SunOS 5.3 Programming Utilities—November 1993

3

Alternatively, if the parser sees the following:

it could defer the immediate application of the rule and continue reading the
input until the following is seen:

It could then apply the rule to the rightmost three symbols, reducing them to
expr , which results in the following being left:

Now the rule can be reduced once more. The effect is to take the right
associative interpretation. Thus, having read the following, the parser can do
one of two legal things, shift or reduce:

It has no way of deciding between them. This is called a shift -reduce
conflict. It may also happen that the parser has a choice of two legal
reductions. This is called a reduce -reduce conflict. Note that there are never
any shift -shift conflicts.

When there are shift -reduce or reduce -reduce conflicts, yacc still
produces a parser. It does this by selecting one of the valid steps wherever it
has a choice. A rule describing the choice to make in a given situation is called
a disambiguating rule.

yacc invokes two default disambiguating rules:

1. In a shift -reduce conflict, the default is to shift.

2. In a reduce -reduce conflict, the default is to reduce by the earlier
grammar rule (in the yacc specification).

Rule 1 implies that reductions are deferred in favor of shifts when there is a
choice. Rule 2 gives the user rather crude control over the behavior of the
parser in this situation, but reduce -reduce conflicts should be avoided when
possible.

expr – expr

expr – expr – expr

expr – expr

expr – expr

yacc — A Compiler Compiler 55

3

Conflicts may arise because of mistakes in input or logic or because the
grammar rules (while consistent) require a more complex parser than yacc can
construct. The use of actions within rules can also cause conflicts if the action
must be done before the parser can be sure which rule is being recognized.

In these cases, the application of disambiguating rules is inappropriate and
leads to an incorrect parser. For this reason, yacc always reports the number
of shift -reduce and reduce -reduce conflicts resolved by rules 1 and 2
above.

In general, whenever it is possible to apply disambiguating rules to produce a
correct parser, it is also possible to rewrite the grammar rules so that the same
inputs are read but there are no conflicts. For this reason, most previous parser
generators have considered conflicts to be fatal errors.

This rewriting is somewhat unnatural and produces slower parsers. Thus,
yacc will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider:

which is a fragment from a programming language involving an if -then -
else statement. In these rules, IF and ELSE are tokens, cond is a nonterminal
symbol describing conditional (logical) expressions, and stat is a nonterminal
symbol describing statements. The first rule will be called the simple if rule
and the second the if -else rule.

These two rules form an ambiguous construction because input of the form:

can be structured according to these rules in two ways:

stat : IF ’(’ cond ’)’ stat
| IF ’(’ cond ’)’ stat ELSE stat
;

IF (C1) IF (C2) S1 ELSE S2

IF (C1)
{

IF (C2)
S1

}
ELSE

S2

56 SunOS 5.3 Programming Utilities—November 1993

3

or:

where the second interpretation is the one given in most programming
languages having this construct; each ELSE is associated with the last
preceding un-ELSE’d IF . In this example, consider the situation where the
parser has seen the following and is looking at the ELSE:

It can immediately reduce by the simple if rule to get:

and then read the remaining input:

and reduce:

by the if -else rule. This leads to the first of the above groupings of the
input.

On the other hand, the ELSE may be shifted, S2 read, and then the right-hand
portion of:

can be reduced by the if -else rule to get:

which can be reduced by the simple if rule.

IF (C1)
{

IF (C2)
S1

ELSE
S2

}

IF (C1) IF (C2) S1

IF (C1) stat

ELSE S2

IF (C1) stat ELSE S2

IF (C1) IF (C2) S1 ELSE S2

IF (C1) stat

yacc — A Compiler Compiler 57

3

This leads to the second of the above groupings of the input, which is usually
the one desired.

Once again, the parser can do two valid things — there is a shift -reduce
conflict. The application of disambiguating rule 1 tells the parser to shift in
this case, which leads to the desired grouping.

This shift -reduce conflict arises only when there is a particular current
input symbol, ELSE, and particular inputs, such as:

have already been seen. In general, there may be many conflicts, and each one
will be associated with an input symbol and a set of previously read inputs.
The previously read inputs are characterized by the state of the parser.

The conflict messages of yacc are best understood by examining the –v
output. For example, the output corresponding to the above conflict state
might be:

where the first line describes the conflict — giving the state and the input
symbol. The ordinary state description gives the grammar rules active in the
state and the parser actions. Recall that the underscore marks the portion of
the grammar rules that has been seen.

Thus in the example, in state 23, the parser has seen input corresponding to:

and the two grammar rules shown are active at this time. The parser can do
two possible things. If the input symbol is ELSE, it is possible to shift into
state 45.

IF (C1) IF (C2) S1

23: shift-reduce conflict (shift 45, reduce 18) on ELSE

state 23
stat : IF (cond) stat_ (18)
stat : IF (cond) stat_ELSE stat

ELSE shift 45
. reduce 18

IF (cond) stat

58 SunOS 5.3 Programming Utilities—November 1993

3

State 45 will have, as part of its description, the line:

because the ELSE will have been shifted in this state. In state 23, the
alternative action (specified by .) is to be done if the input symbol is not
mentioned explicitly in the actions. In this case, if the input symbol is not
ELSE, the parser reduces to:

by grammar rule 18.

Once again, notice that the numbers following shift commands refer to other
states, while the numbers following reduce commands refer to grammar rule
numbers. In the y.output file, rule numbers are printed in parentheses after
those rules that can be reduced. In most states, there is a reduce action
possible, and reduce is the default command. If you encounter unexpected
shift -reduce conflicts, look at the –v output to decide whether the default
actions are appropriate.

Precedence

There is one common situation where the rules for resolving conflicts are not
sufficient. This is in the parsing of arithmetic expressions. Most of the
commonly used constructions for arithmetic expressions can be naturally
described by the notion of precedence levels for operators, with information
about left or right associativity. Ambiguous grammars with appropriate
disambiguating rules can be used to create parsers that are faster and easier to
write than parsers constructed from unambiguous grammars. The basic notion
is to write grammar rules of the form:

and:

for all binary and unary operators desired. This creates a very ambiguous
grammar with many parsing conflicts.

stat : IF (cond) stat ELSE_stat

stat : IF ’(’ cond ’)’ stat

expr : expr OP expr

expr : UNARY expr

yacc — A Compiler Compiler 59

3

You specify as disambiguating rules the precedence or binding strength of all
the operators and the associativity of the binary operators. This information is
sufficient to allow yacc to resolve the parsing conflicts in accordance with
these rules and construct a parser that realizes the desired precedences and
associativities.

The precedences and associativities are attached to tokens in the declarations
section. This is done by a series of lines beginning with the yacc keywords
%left , %right , or %nonassoc , followed by a list of tokens. All of the tokens
on the same line are assumed to have the same precedence level and
associativity; the lines are listed in order of increasing precedence or binding
strength. Thus:

describes the precedence and associativity of the four arithmetic operators. +
and – are left associative and have lower precedence than * and / , which are
also left associative. The keyword %right is used to describe right associative
operators. The keyword %nonassoc is used to describe operators, like the
operator .LT. in FORTRAN, that may not associate with themselves. That is,
because:

is illegal in FORTRAN, .LT. would be described with the keyword
%nonassoc in yacc .

As an example of the behavior of these declarations, the description

%left ’+’ ’–’
%left ’*’ ’/’

A .LT. B .LT. C

%right ’=’
%left ’+’ ’–’
%left ’*’ ’/’

%%

expr : expr ’=’ expr
| expr ’+’ expr
| expr ’–’ expr
| expr ’*’ expr
| expr ’/’ expr
| NAME
;

60 SunOS 5.3 Programming Utilities—November 1993

3

might be used to structure the input

as follows

in order to achieve the correct precedence of operators. When this mechanism
is used, unary operators must, in general, be given a precedence. Sometimes a
unary operator and a binary operator have the same symbolic representation
but different precedences. An example is unary and binary minus.

Unary minus may be given the same strength as multiplication, or even higher,
while binary minus has a lower strength than multiplication. The keyword
%prec changes the precedence level associated with a particular grammar rule.
%prec appears immediately after the body of the grammar rule, before the
action or closing semicolon, and is followed by a token name or literal. It
causes the precedence of the grammar rule to become that of the following
token name or literal. For example, the rules:

might be used to give unary minus the same precedence as multiplication.

A token declared by %left , %right , and %nonassoc need not, but may, be
declared by %token as well.

Precedences and associativities are used by yacc to resolve parsing conflicts.
They give rise to the following disambiguating rules:

1. Precedences and associativities are recorded for those tokens and literals
that have them.

a = b = c * d – e – f * g

a = (b = (((c * d) – e) – (f * g)))

%left ’+’ ’–’
%left ’*’ ’/’

%%

expr : expr ’+’ expr
| expr ’–’ expr
| expr ’*’ expr
| expr ’/’ expr
| ’–’ expr %prec ’*’
| NAME
;

yacc — A Compiler Compiler 61

3

2. A precedence and associativity is associated with each grammar rule. It is
the precedence and associativity of the final token or literal in the body of
the rule. If the %prec construction is used, it overrides this default value.
Some grammar rules may have no precedence and associativity associated
with them.

3. When there is a reduce -reduce or shift -reduce conflict, and either the
input symbol or the grammar rule has no precedence and associativity, then
the two default disambiguating rules given in the preceding section are
used, and the conflicts are reported.

4. If there is a shift -reduce conflict and both the grammar rule and the
input character have precedence and associativity associated with them,
then the conflict is resolved in favor of the action — shift or reduce —
associated with the higher precedence. If precedences are equal, then
associativity is used. Left associative implies reduce ; right associative
implies shift ; nonassociating implies error .

Conflicts resolved by precedence are not counted in the number of shift -
reduce and reduce -reduce conflicts reported by yacc . This means that
mistakes in the specification of precedences may disguise errors in the input
grammar. It is a good idea to be sparing with precedences and use them
strictly until some experience has been gained. The y.output file is useful in
deciding whether the parser is actually doing what was intended.

To illustrate further how you might use the precedence keywords to resolve a
shift -reduce conflict, look at an example similar to the one described in the
previous section. Consider the following C statement:

The problem for the parser is whether the else goes with the first or the
second if . C programmers will recognize that the else goes with the second
if , contrary to to what the misleading indentation suggests. The following
yacc grammar for an if -then -else construct abstracts the problem. That is,
the input iises will model these C statements.

if (flag) if (anotherflag) x = 1;
else x = 2;

62 SunOS 5.3 Programming Utilities—November 1993

3

When the specification is passed to yacc , however, we get the following
message:

The problem is that when yacc has read iis in trying to match iises , it has
two choices: recognize is as a statement (reduce) or read some more input
(shift) and eventually recognize ises as a statement.

%{
#include <stdio.h>
%}
%token SIMPLE IF ELSE
%%
S ; stmnt

;
stmnt : SIMPLE

| if_stmnt
;

if_stmnt : IF stmnt
{ printf("simple if\n");}

| IF stmnt ELSE stmnt
{ printf("if_then_else\n");}

;
%%
int
yylex() {

int c;
c=getchar();
if (c= =EOF) return 0;
else switch(c) {

case ’i’: return IF;
case ’s’: return SIMPLE;
case ’e’: return ELSE;
default: return c;

}
}

conflicts: 1 shift/reduce

yacc — A Compiler Compiler 63

3

One way to resolve the problem is to invent a new token REDUCE, whose sole
purpose is to give the correct precedence for the rules:

Since the precedence associated with the second form of if_stmnt is higher
now, yacc will try to match that rule first, and no conflict will be reported.

Actually, in this simple case, the new token is not needed:

would also work. Moreover, it is not really necessary to resolve the conflict in
this way, because, as we have seen, yacc will shift by default in a shift -
reduce conflict. Resolving conflicts is a good idea, though, in the sense that
you should not see diagnostic messages for correct specifications.

Error Handling

Error handling contains many semantic problems. When an error is found, for
example, it may be necessary to reclaim parse tree storage, delete or alter
symbol table entries, and, typically, set switches to avoid generating any
further output.

%{
#include <stdio.h>
%}
%token SIMPLE IF
%nonassoc REDUCE
%nonassoc ELSE
%%
S : stmnt ’\n’

;
stmnt : SIMPLE

| if_stmnt
;

if_stmnt : IF stmnt %prec REDUCE
{ printf("simple if");}

| IF stmnt ELSE stmnt
{ printf("if_then_else");}

;
%%

%nonassoc IF
%nonassoc ELSE

64 SunOS 5.3 Programming Utilities—November 1993

3

It is seldom acceptable to stop all processing when an error is found. It is more
useful to continue scanning the input to find further syntax errors. This leads
to the problem of getting the parser restarted after an error. A general class of
algorithms to do this involves discarding a number of tokens from the input
string and attempting to adjust the parser so that input can continue.

To allow the user some control over this process, yacc provides the token
name error . This name can be used in grammar rules. In effect, it suggests
where errors are expected and recovery might take place.

The parser pops its stack until it enters a state where the token error is legal.
It then behaves as if the token error were the current lookahead token and
performs the action encountered. The lookahead token is then reset to the
token that caused the error. If no special error rules have been specified, the
processing halts when an error is detected.

To prevent a cascade of error messages, the parser, after detecting an error,
remains in error state until three tokens have been successfully read and
shifted. If an error is detected when the parser is already in error state, no
message is given, and the input token is deleted.

As an example, a rule of the form:

means that on a syntax error the parser attempts to skip over the statement in
which the error is seen. More precisely, the parser scans ahead, looking for
three tokens that might legally follow a statement, and starts processing at the
first of these. If the beginnings of statements are not sufficiently distinctive, it
may make a false start in the middle of a statement and end up reporting a
second error where there is in fact no error.

Actions may be used with these special error rules. These actions might
attempt to reinitialize tables, reclaim symbol table space, and so forth.

Error rules such as the above are very general but difficult to control.

Rules such as the following are somewhat easier:

stat : error

stat : error ’;’

yacc — A Compiler Compiler 65

3

Here, when there is an error, the parser attempts to skip over the statement but
does so by skipping to the next semicolon. All tokens after the error and
before the next semicolon cannot be shifted and are discarded. When the
semicolon is seen, this rule will be reduced and any cleanup action associated
with it performed.

Another form of error rule arises in interactive applications where it may be
desirable to permit a line to be reentered after an error. The following
example:

is one way to do this. There is one potential difficulty with this approach. The
parser must correctly process three input tokens before it admits that it has
correctly resynchronized after the error. If the reentered line contains an error
in the first two tokens, the parser deletes the offending tokens and gives no
message. This is unacceptable.

For this reason, there is a mechanism that can force the parser to believe that
error recovery has been accomplished. The statement:

in an action resets the parser to its normal mode. The last example can be
rewritten as

input : error ’\n’
{

(void) printf("Reenter last line: ");
}
input

{
$$ = $4;

}
;

yyerrok ;

input : error ’\n’
{

yyerrok;
(void) printf("Reenter last line: ");

}
input

{
$$ = $4;

}
;

66 SunOS 5.3 Programming Utilities—November 1993

3

As previously mentioned, the token seen immediately after the error symbol
is the input token at which the error was discovered. Sometimes this is
inappropriate; for example, an error recovery action might take upon itself the
job of finding the correct place to resume input. In this case, the previous
lookahead token must be cleared. The statement:

in an action will have this effect. For example, suppose the action after error
were to call some sophisticated resynchronization routine (supplied by the
user) that attempted to advance the input to the beginning of the next valid
statement. After this routine is called, the next token returned by yylex() is
presumably the first token in a legal statement. The old illegal token must be
discarded and the error state reset. A rule similar to:

could perform this.

These mechanisms are admittedly crude but they do allow a simple, fairly
effective recovery of the parser from many errors. Moreover, the user can get
control to deal with the error actions required by other portions of the
program.

The yacc Environment

You create a yacc parser with the command:

where grammar.y is the file containing your yacc specification. (The .y
suffix is a convention recognized by other operating system commands. It is
not strictly necessary.) The output is a file of C-language subroutines called
y.tab.c . The function produced by yacc is called yyparse() , and is
integer-valued.

yyclearin ;

stat : error
{

resynch();
yyerrok ;
yyclearin;

}
;

$ yacc grammar.y

yacc — A Compiler Compiler 67

3

When it is called, it repeatedly calls yylex() , the lexical analyzer supplied by
the user (see Lexical Analysis), to obtain input tokens. Eventually, an error is
detected, yyparse() returns the value 1, and no error recovery is possible, or
the lexical analyzer returns the end-marker token and the parser accepts. In
this case, yyparse() returns the value 0.

You must provide a certain amount of environment for this parser in order to
obtain a working program. For example, as with every C-language program, a
routine called main() must be defined that eventually calls yyparse() . In
addition, a routine called yyerror() is needed to print a message when a
syntax error is detected.

These two routines must be supplied in one form or another by the user. To
ease the initial effort of using yacc , a library has been provided with default
versions of main() and yyerror() . The library is accessed by a –ly
argument to the cc command. The source codes:

and:

show the triviality of these default programs. The argument to yyerror() is
a string containing an error message, usually the string syntax error . The
average application wants to do better than this. Ordinarily, the program
should keep track of the input line number and print it along with the message
when a syntax error is detected. The external integer variable yychar contains
the lookahead token number at the time the error was detected (a feature
which gives better diagnostic)s. Since the main() routine is probably supplied
by the user (to read arguments, for instance), the yacc library is useful only in
small projects or in the earliest stages of larger ones.

main()
{

return (yyparse());
}

include <stdio.h>

yyerror(s)
char *s;
{

(void) fprintf(stderr, "%s\n", s);
}

68 SunOS 5.3 Programming Utilities—November 1993

3

The external integer variable yydebug is normally set to 0. If it is set to a
nonzero value, the parser will output a verbose description of its actions,
including a discussion of the input symbols read and what the parser actions
are.

Hints for Preparing Specifications

This part contains miscellaneous hints on preparing efficient, easy to change,
and clear specifications.

Input Style

It is difficult to provide rules with substantial actions and still have a readable
specification file. The following are a few style hints.

• Use all uppercase letters for token names and all lowercase letters for
nonterminal names. This is useful in debugging.

• Put grammar rules and actions on separate lines to make editing easier.

• Put all rules with the same left-hand side together. Put the left-hand side in
only once and let all following rules begin with a vertical bar.

• Put a semicolon only after the last rule with a given left-hand side and put
the semicolon on a separate line. This allows new rules to be easily added.

• Indent rule bodies by one tab stop and action bodies by two tab stops.

• Put complicated actions into subroutines defined in separate files.

Example 1 below is written following this style, as are the examples in this
section (where space permits). The central problem is to make the rules visible
through the maze of action code.

Left Recursion

The algorithm used by the yacc parser encourages so-called left recursive
grammar rules. Rules of the following form match this algorithm:

name : name rest_of_rule ;

yacc — A Compiler Compiler 69

3

Rules such as:

and:

frequently arise when writing specifications of sequences and lists. In each of
these cases, the first rule will be reduced for the first item only; and the second
rule will be reduced for the second and all succeeding items.

With right-recursive rules, such as:

the parser is a bit bigger; the items are seen and reduced from right to left.
More seriously, an internal stack in the parser is in danger of overflowing if an
extremely long sequence is read (although yacc can now process very large
stacks). Thus, you should use left recursion wherever reasonable.

It is worth considering if a sequence with zero elements has any meaning, and
if so, consider writing the sequence specification as:

using an empty rule. Once again, the first rule would always be reduced
exactly once before the first item was read, and then the second rule would be
reduced once for each item read. Permitting empty sequences often leads to
increased generality. However, conflicts might arise if yacc is asked to decide
which empty sequence it has seen when it hasn’t seen enough to know.

list : item
| list ’,’ item
;

seq : item
| seq item
;

seq : item
| item seq
;

seq : /* empty */
| seq item
;

70 SunOS 5.3 Programming Utilities—November 1993

3

C++ Mangled Symbols

The material for this section is an exact duplication of material found in the
C++ Mangled Symbols section of Chapter 1, lex. Please substitute yacc when
they refer to lex .

Lexical Tie-Ins

Some lexical decisions depend on context. For example, the lexical analyzer
might delete blanks normally, but not within quoted strings, or names might
be entered into a symbol table in declarations but not in expressions. One way
of handling these situations is to create a global flag that is examined by the
lexical analyzer and set by actions. For example,

specifies a program consisting of zero or more declarations followed by zero or
more statements. The flag dflag is now 0 when reading statements and 1
when reading declarations, except for the first token in the first statement.

%{
int dflag;

%}
... other declarations ...
%%
prog : decls stats

;
decls : /* empty */

{
dflag = 1;

}
| decls declaration
;

stats : /* empty */
{

dflag = 0;
}
| stats statement
;

. . . other rules . . .

yacc — A Compiler Compiler 71

3

This token must be seen by the parser before it can tell that the declaration
section has ended and the statements have begun. In many cases, this single
token exception does not affect the lexical scan. This approach represents a
way of doing some things that are difficult, if not impossible, to do otherwise.

Reserved Words

Some programming languages permit you to use words like if , which are
normally reserved as label or variable names, provided that such use does not
conflict with the legal use of these names in the programming language. This
is extremely hard to do in the framework of yacc .

It is difficult to pass information to the lexical analyzer telling it this instance of
if is a keyword and that instance is a variable. Using the information found in
the previous section, Lexical Tie-Ins might prove useful here.

Advanced Topics

This part discusses a number of advanced features of yacc .

Simulating error and accept in Actions

The parsing actions of error and accept can be simulated in an action by
use of macros YYACCEPT and YYERROR. The YYACCEPT macro causes
yyparse() to return the value 0; YYERROR causes the parser to behave as if
the current input symbol had been a syntax error; yyerror() is called, and
error recovery takes place.

These mechanisms can be used to simulate parsers with multiple end-markers
or context-sensitive syntax checking.

72 SunOS 5.3 Programming Utilities—November 1993

3

Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of the current rule.
The mechanism is the same as ordinary actions, $ followed by a digit.

In this case, the digit may be 0 or negative. In the action following the word
CRONE, a check is made that the preceding token shifted was not YOUNG. Note,
however that this is only possible when a great deal is known about what
might precede the symbol noun in the input. Nevertheless, at times this
mechanism prevents a great deal of trouble, especially when a few
combinations are to be excluded from an otherwise regular structure.

sent : adj noun verb adj noun
{

look at the sentence ...
}
;

adj : THE
{

$$ = THE;
}
| YOUNG
{

$$ = YOUNG;
}
...
;

noun : DOG
{

$$ = DOG;
}
| CRONE
{

if ($0 = = YOUNG)
{

(void) printf("what?\n");
}
$$ = CRONE;

}
;

...

yacc — A Compiler Compiler 73

3

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers.
yacc can also support values of other types including structures. In addition,
yacc keeps track of the types and inserts appropriate union member names so
that the resulting parser is strictly type checked. The yacc value stack is
declared to be a union of the various types of values desired. You declare the
union and associate union member names with each token and nonterminal
symbol having a value. When the value is referenced through a $$ or $n
construction, yacc will automatically insert the appropriate union name so
that no unwanted conversions take place.

Three mechanisms provide for this typing. First, there is a way of defining the
union. This must be done by the user since other subroutines, notably the
lexical analyzer, must know about the union member names. Second, there is
a way of associating a union member name with tokens and nonterminals.
Finally, there is a mechanism for describing the type of those few values where
yacc cannot easily determine the type.

To declare the union, you include:

in the declaration section. This declares the yacc value stack and the external
variables yylval and yyval to have type equal to this union. If yacc was
invoked with the –d option, the union declaration is copied into the y.tab.h
file as YYSTYPE.

Once YYSTYPE is defined, the union member names must be associated with
the various terminal and nonterminal names. The construction:

is used to indicate a union member name. If this follows one of the keywords
%token , %left , %right , and %nonassoc , the union member name is
associated with the tokens listed.

%union
{

body of union
}

<name>

74 SunOS 5.3 Programming Utilities—November 1993

3

Thus, saying

causes any reference to values returned by these two tokens to be tagged with
the union member name optype . Another keyword, %type , is used to
associate union member names with nonterminals. You could use the rule

to associate the union member nodetype with the nonterminal symbols expr
and stat .

There remain a couple of cases where these mechanisms are insufficient. If
there is an action within a rule, the value returned by this action has no a priori
type. Similarly, reference to left context values (such as $0) leaves yacc with
no easy way of knowing the type. In this case, a type can be imposed on the
reference by inserting a union member name between < and > immediately
after the first $. The example below:

shows this usage. This syntax has little to recommend it, but the situation
arises rarely.

A sample specification is given in the An Advanced Example section. The
facilities in this subsection are not triggered until they are used. In particular,
the use of %type will turn on these mechanisms. When they are used, there is
a fairly strict level of checking.

For example, use of $n or $$ to refer to something with no defined type is
diagnosed. If these facilities are not triggered, the yacc value stack is used to
hold int s.

%left <optype> ’+’ ’–’

%type <nodetype> expr stat

rule : aaa
{

$<intval>$ = 3;
}
bbb

{
fun($<intval>2, $<other>0);

}
;

yacc — A Compiler Compiler 75

3

yacc Input Syntax

This section has a description of the yacc input syntax as a yacc specification.
Context dependencies and so forth are not considered. Although yacc accepts
an LALR(1) grammar, the yacc input specification language is specified as an
LR(2) grammar; thedifficulty arises when an identifier is seen in a rule
immediately following an action.

If this identifier is followed by a colon, it is the start of the next rule; otherwise,
it is a continuation of the current rule, which just happens to have an action
embedded in it. As implemented, the lexical analyzer looks ahead after seeing
an identifier and figures out whether the next token (skipping blanks,
newlines, comments, and so on) is a colon. If so, it returns the token
C_IDENTIFIER .

Otherwise, it returns IDENTIFIER . Literals (quoted strings) are also returned
as IDENTIFIER s but never as part of C_IDENTIFIER s.

Figure 3-1 The yacc Input Syntax

/* grammar for the input to yacc */

/* basic entries */

%token IDENTIFIER /* includes identifiers and literals */

%token C_IDENTIFIER /* identifier (but not literal) */

/* followed by a : */

%token NUMBER /* [0-9]+ */

/* reserved words: %type=>TYPE %left=>LEFT,etc. */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK /* the %% mark */

76 SunOS 5.3 Programming Utilities—November 1993

3

%token LCURL /* the %{ mark */

%token RCURL /* the %} mark */

/* ASCII character literals stand for themselves */

%token spec t

%%

spec : defs MARK rules tail

;

tail : MARK

{

In this action,read in the rest of the file

}

| /* empty: the second MARK is optional */

;

defs : /* empty */

| defs def

;

def : START IDENTIFIER

| UNION

{

Copy union definition to output

}

| LCURL

Figure 3-1 The yacc Input Syntax

yacc — A Compiler Compiler 77

3

{

Copy C code to output file

}

RCURL

| rword tag nlist

;

rword : TOKEN

| LEFT

| RIGHT

| NONASSOC

| TYPE

;

tag : /* empty: union tag is optional */

| ’<’ IDENTIFIER ’>’

;

nlist : nmno

| nlist nmno

| nlist ’,’ nmno

;

nmno : IDENTIFIER /* Note: literal illegal with % type */

| IDENTIFIER NUMBER /* Note: illegal with % type */

;

/* rule section */

Figure 3-1 The yacc Input Syntax

78 SunOS 5.3 Programming Utilities—November 1993

3

rules : C_IDENTIFIER rbody prec

| rules rule

;

rule : C_IDENTIFIER rbody prec

| ’|’ rbody prec

;

rbody : /* empty */

| rbody IDENTIFIER

| rbody act

;

act : ’{’

{

Copy action translate $$ etc.

}

’}’

;

prec : /* empty */

| PREC IDENTIFIER

| PREC IDENTIFIER act

| prec ’;’

;

Figure 3-1 The yacc Input Syntax

yacc — A Compiler Compiler 79

3

Examples

A Simple Example

Figure 3-2 shows the complete yacc applications for a small desk calculator.
The calculator has 26 registers labeled a through z and accepts arithmetic
expressions made up of the operators +, –, * , / , %, &, | , and the assignment
operators.

If an expression at the top level is an assignment, only the assignment is made;
otherwise, the expression is printed. As in the C language, an integer that
begins with 0 is assumed to be octal; otherwise, it is assumed to be decimal.

As an example of a yacc specification, the desk calculator shows how
precedence and ambiguities are used and demonstrates simple recovery. The
major oversimplifications are that the lexical analyzer is much simpler than for
most applications, and the output is produced immediately, line by line.

Note the way that decimal and octal integers are read by grammar rules. This
jobcan also be performed by the lexical analyzer.

Figure 3-2 A yacc Application for a Desk Calculator

%{

include <stdio.h>

include <ctype.h>

int regs[26];

int base;

%}

%start list

%token DIGIT LETTER

80 SunOS 5.3 Programming Utilities—November 1993

3

%left ’|’

%left ’&’

%left ’+’ ’–’

%left ’*’ ’/’ ’%’

%left UMINUS /* supplies precedence for unary minus */

%% /* beginning of rules section */

list : /* empty */

| list stat ’\n’

| list error ’\n’

{

yyerrok;

}

;

stat : expr

{

(void) printf("%d\n", $1);

}

| LETTER ’=’ expr

{

regs[$1] = $3;

}

;

Figure 3-2 A yacc Application for a Desk Calculator

yacc — A Compiler Compiler 81

3

expr : ’(’ expr ’)’

{

$$ = $2;

}

| expr ’+’ expr

{

$$ = $1 + $3;

}

| expr ’–’ expr

{

$$ = $1 – $3;

{

| expr ’*’ expr

{

$$ = $1 * $3;

}

| expr ’/’ expr

{

$$ = $1 / $3;

}

| exp ’%’ expr

{

$$ = $1 % $3;

}

Figure 3-2 A yacc Application for a Desk Calculator

82 SunOS 5.3 Programming Utilities—November 1993

3

| expr ’&’ expr

{

$$ = $1 & $3;

}

| expr ’|’ expr

{

$$ = $1 | $3;

}

| ’–’ expr %prec UMINUS

{

$$ = –$2;

}

| LETTER

{

$$ = reg[$1];

}

| number

;

number : DIGIT

{

$$ = $1; base = ($1= =0) ? 8 ; 10;

}

| number DIGIT

{

Figure 3-2 A yacc Application for a Desk Calculator

yacc — A Compiler Compiler 83

3

$$ = base * $1 + $2;

}

;

%% /* beginning of subroutines section */

int yylex() /* lexical analysis routine */

{ /* return LETTER for lowercase letter, */

/* yylval = 0 through 25 returns DIGIT */

/* for digit, yylval = 0 through 9 */

/* all other characters are returned immediately */

int c;

/*skip blanks*/

while ((c = getchar()) = = ’ ’)

;

/* c is now nonblank */

if (islower(c)) {

yylval = c – ’a’;

return (LETTER);

}

if (isdigit(c)) {

yylval = c – ’0’;

return (DIGIT);

Figure 3-2 A yacc Application for a Desk Calculator

84 SunOS 5.3 Programming Utilities—November 1993

3

An Advanced Example

This section gives an example of a grammar using some of the advanced
features. The desk calculator in Example 1 is modified to provide a desk
calculator that does floating point interval arithmetic. The calculator
understands floating point constants, and the arithmetic operations +, –, * , / ,
and unary –. It uses the registers a through z . Moreover, it understands
intervals written

where X is less than or equal to Y. There are 26 interval valued variables A
through Z that may also be used. The usage is similar to that in Example 1;
assignments return no value and print nothing while expressions print the
(floating or interval) value.

This example explores a number of features of yacc and C. Intervals are
represented by a structure consisting of the left and right endpoint values
stored as double s. This structure is given a type name, INTERVAL, by means
of typedef .

The yacc value stack can also contain floating point scalars and integers (used
to index into the arrays holding the variable values). Notice that the entire
strategy depends strongly on being able to assign structures and unions in C
language. In fact, many of the actions call functions that return structures as
well.

Note the use of YYERROR to handle error conditions — division by an interval
containing 0 and an interval presented in the wrong order. The error recovery
mechanism of yacc is used to throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also
demonstrates a syntax to keep track of the type (for example, scalar or interval)
of intermediate expressions. Note that scalar-value can be automatically
promoted to an interval if the context demands an interval value. This causes

}

return (c);

}

(X,Y)

Figure 3-2 A yacc Application for a Desk Calculator

yacc — A Compiler Compiler 85

3

a large number of conflicts when the grammar is run through yacc : 18 shift -
reduce and 26 reduce -reduce . The problem can be seen by looking at the
two input lines:

and:

Notice that the 2.5 is to be used in an interval value expression in the second
example, but this fact is not known until the comma is read. By this time, 2.5
is finished, and the parser cannot go back and do something else. More
generally, it might be necessary to look ahead an arbitrary number of tokens to
decide whether to convert a scalar to an interval.

This problem is evaded by having two rules for each binary interval valued
operator — one when the left operand is a scalar and one when the left
operand is an interval. In the second case, the right operand must be an
interval, so the conversion will be applied automatically.

Despite this evasion, there are still many cases where the conversion may be
applied or not, leading to the above conflicts. They are resolved by listing the
rules that yield scalars first in the specification file; in this way, the conflict will
be resolved in the direction of keeping scalar-valued expressions scalar valued
until they are forced to become intervals.

This way of handling multiple types is instructive. If there were many kinds of
expression types instead of just two, the number of rules needed would
increase dramatically and the conflicts even more dramatically.

Thus, while this example is instructive, it is better practice in a more normal
programming language environment to keep the type information as part of
the value and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the
treatment of floating-point constants. The C-language library routine atof()
is used to do the actual conversion from a character string to a double-
precision value. If the lexical analyzer detects an error, it responds by
returning a token that is illegal in the grammar, provoking a syntax error in the
parser and thence error recovery. The following, Figure 3-3, is a yacc
Specification.

2.5 + (3.5 - 4.)

2.5 + (3.5, 4)

86 SunOS 5.3 Programming Utilities—November 1993

3

Figure 3-3 Advanced Example of a yacc Specification

%{

#include <stdio.h>

#include <ctype.h>

typedef struct interval {

double lo, hi;

} INTERVAL;

INTERVAL vmul(), vdiv();

double atof();

double dreg[26];

INTERVAL vreg[26];

%}

%start lines

%union {

int ival;

double dval;

INTERVAL vval;

yacc — A Compiler Compiler 87

3

}

%token <ival> DREG VREG /* indices into dreg, vreg arrays */

%token <dval> CONST /* floating point constant */

%type <dval> dexp /* expression */

%type <vval> vexp /* interval expression */

/* precedence information about the operators */

%left ’+’ ’/-’

%left ’*’ ’/’

%% /* beginning of rules section */

lines : /* empty */

| lines line

;

line : dexp ’\n’

{

(void)printf("%15.8f\n", $1);

}

| vexp ’\n’

{

(void)printf("(%15.8f, %15.8f)\n", $1.lo, $1.hi);

}

Figure 3-3 Advanced Example of a yacc Specification

88 SunOS 5.3 Programming Utilities—November 1993

3

| DREG ’=’ dexp ’\n’

{

dreg[$1] = $3;

}

| VREG ’=’ vexp ’\n’

{

vreg[$1] = $3;

}

| error ’\n’

{

yyerrok;

}

;

dexp : CONST

| DREG

{

$$ = dreg[$1];

}

| dexp ’+’ dexp

{

$$ = $1 + $3;

}

| dexp ’–’ dexp

{

$$ = $1 – $3;

Figure 3-3 Advanced Example of a yacc Specification

yacc — A Compiler Compiler 89

3

}

| dexp ’*’ dexp

{

$$ = $1 * $3;

}

| dexp ’/’ dexp

{

$$ = $1 / $3;

}

| ’–’ dexp

{

$$ = –$2;

}

| ’(’ dexp ’)’

{

$$ = $2;

}

;

vexp : dexp

{

$$.hi = $$.lo = $1;

}

| ’(’ dexp ’,’ dexp ’)’

{

$$.lo = $2;

Figure 3-3 Advanced Example of a yacc Specification

90 SunOS 5.3 Programming Utilities—November 1993

3

$$.hi = $4;

if($$.lo > $$.hi) {

(void) printf("interval out of order\n");

YYERROR;

}

}

| VREG

{

$$ = vreg[$1];

}

| vexp ’+’ vexp

{

$$.hi = $1.hi + $3.hi;

$$.lo = $1.lo + $3.lo;

}

| dexp ’+’ vexp

{

$$.hi = $1 + $3.hi;

$$.lo = $1 + $3.lo;

}

| vexp ’–’ vexp

{

$$.hi = $1.hi – $3.lo;

$$.lo = $1.lo – $3.hi;

}

Figure 3-3 Advanced Example of a yacc Specification

yacc — A Compiler Compiler 91

3

| dexp ’–’ vexp

{

$$.hi = $1 – $3.lo;

$$.lo = $1 – $3.hi;

}

| vexp ’*’ vexp

{

$$ = vmul($1.lo, $1.hi, $3);

}

| dexp ’*’ vexp

{

$$ = vmul($1, $1, $3);

}

| vexp ’/’ vexp

{

if (dcheck($3)) YYERROR;

$$ = vdiv($1.lo, $1.hi, $3);

}

| dexp ’/’ vexp

{

if (dcheck($3)) YYERROR;

$$ = vdiv($1, $1, $3);

}

| ’–’ vexp

{

Figure 3-3 Advanced Example of a yacc Specification

92 SunOS 5.3 Programming Utilities—November 1993

3

$$.hi = –$2.lo; $$.lo = –$2.hi;

}

| ’(’ vexp ’)’

{

$$ = $2;

}

;

%% /* beginning of subroutines section */

define BSZ 50 /* buffer size for floating point number */

/* lexical analysis */

int yylex()

{

register int c;

/* skip over blanks */

while ((c=getchar()) = = ’ ’)

;

if (isupper(c)) {

yylval.ival = c – ’A’;

return(VREG);

}

if (islower(c)) {

Figure 3-3 Advanced Example of a yacc Specification

yacc — A Compiler Compiler 93

3

yylval.ival = c – ’a’;

return(DREG);

}

/* digits, points, exponents */

if (isdigit(c) || c = = ’.’) {

char buf[BSZ + 1], *cp = buf;

int dot = 0, exp = 0;

for (;(cp – buf) < BSZ; ++cp, c = getchar()) {

*cp = c;

if (isdigit(c))

continue;

if (c = = ’.’) {

if (dot++ || exp)

return(’.’); /* will cause syntax error */

continue;

}

if (c = = ’e’) {

if (exp++)

return(’e’); /* will cause syntax error */

continue;

}

/* end of number */

Figure 3-3 Advanced Example of a yacc Specification

94 SunOS 5.3 Programming Utilities—November 1993

3

break;

}

*cp = ’\0’;

if (cp – buf >= BSZ)

(void)printf("constant too long -- truncated\n");

else

ungetc(c, stdin); /* push back last char read */

yylval.dval = atof(buf);

return(CONST);

}

return(c);

}

INTERVAL

hilo(a, b, c, d)

double a, b, c, d;

{

/* returns the smallest interval containing a, b, c, and d

used by vmul, vdiv routines */

INTERVAL v;

if (a > b){

Figure 3-3 Advanced Example of a yacc Specification

yacc — A Compiler Compiler 95

3

v.hi = a;

v.lo = b;

}

else{

v.hi = b;

v.lo = a;

}

if (c > d) {

if (c > v.hi)

v.hi = c;

if (d < v.lo)

v.lo = d;

}

else {

if (d > v.hi)

v.hi = d;

if (c < v.lo)

v.lo = c;

}

return(v);

}

Figure 3-3 Advanced Example of a yacc Specification

96 SunOS 5.3 Programming Utilities—November 1993

3

INTERVAL

vmul(a, b, v)

double a, b;

INTERVAL v;

{

return(hilo(a * v.hi, a * v.lo, b * v.hi, b * v.lo));

}

dcheck(v)

INTERVAL v;

{

if (v.hi >= 0. && v.lo <= 0.) {

(void) printf("divisor interval contains 0.\n");

return(1);

}

return(0);

}

INTERVAL

vdiv(a, b, v)

double a, b;

INTERVAL v;

{

return(hilo(a / v.hi, a / v.lo, b / v.hi, b / v.lo));

Figure 3-3 Advanced Example of a yacc Specification

